Dublin City Council

St. Anne's Court in Raheny, Dublin 5

Part 8 - Drainage and Watermain Report
Reference: SAC-ARUP-ZZ-XX-RP-C-0010

C03 | 21 December 2023

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 288354-00
Ove Arup \& Partners Ireland Limited
50 Ringsend Road
Dublin 4
D04 T6X0
Ireland
arup.com

Document Verification

Project title	St. Anne's Court in Raheny, Dublin 5
Document title	Issued for Planning - Drainage and Watermain Report
Job number	288354-00
Document ref	SAC-ARUP-ZZ-XX-RP-C-0010
File reference	$4-04-01$

Revision	Date	Filename	C 02	
C02	25 August 2023	Description	Approved for Section 179A of the Planning and Development Act Circulation - Status A2	
			Prepared by	Checked by Approved by
		Name	Shelly Bosman/ Hannah Foley Browne	Niamh McKevitt Gregg Sim
		Signature	BRAmon	$\text { Whamh Hokewitt } \rightarrow \text { reis. }$
C03	21 Dec 2023	Filename	C03	
		Description	Issued for Plann	ng (Status S4)

	Prepared by	Checked by	Approved by
Name	Shelly Bosman	Niamh McKevitt Gregg Sim	

Signature Bosmon Namhthckeritt \rightarrow reis. -

Filename
Description

	Prepared by	Checked by	Approved by
Name			
Signature			

[^0]

Contents

1. Introduction 1
2. Project Description 1
3. Reference Documents 2
4. Background Surveys 2
4.1 Topographical 2
4.2 Utility 2
5. Drawings 2
6. Geotechnical Data 3
7. Existing Services 3
7.1 Existing Drainage 3
7.1.1 Foul Water 3
7.1.2 Surface Water 3
7.2 Existing Water 3
8. Proposed Services 4
8.1 Proposed Surface Water 4
8.1.1 Design Criteria 4
8.1.2 Design Rainfall 4
8.1.3 Run-off Coefficient 5
8.1.4 Green Infrastructure 5
8.1.5 SuDS 7
8.1.6 Proposed SuDS Techniques 8
8.1.7 Catchment Delineation 11
8.1.8 QBAR Calculation 12
8.1.9 Throttles 13
8.1.10 Piped Networks 14
8.1.11 Hydraulic Calculations - Zone 1 15
8.1.12 Hydraulic Calculations - Zone 2 17
8.1.13 Operation and Maintenance 17
8.2 Proposed Foul 19
8.2.1 Design Criteria 19
8.2.2 Demand Estimation 19
8.3 Proposed Water 20
8.3.1 Design Criteria 20
8.3.2 Demand Estimation 20
9. Summary 21
Tables
Table 1 List of drawings 2
Table 2 Site Specific Dublin rainfall data 4
Table 3 Runoff coefficient 5
Table 4 Adopted Runoff coefficients 5
Table 5 SuDS components within a management train 7
Table 6 Zone 1 SuDS features 8
Table 7 Zone 2 SuDS features 8
Table 8 Zone 1 catchments 12
Table 9 Zone 2 catchments 12
Table 10 Proposed throttles 13
Table 11 Discharge through orifice 14
Table 12 Volume stored in SuDS techniques - Zone 1 15
Table 13 Volume stored in SuDS techniques - Zone 2 17
Table 14 SuDS maintenance 19
Table 15 Foul demands (IW) 20
Table 16 Comparison of pre and post development volumetric runoff and peak discharge 21
Figures
Figure 1 Site Plan - © Google Maps 1
Figure 2 SuDS schematic and management train 11
Figure 3 Orifice formula 14
Appendices
Appendix A (Drawings) A-1
A. 1 General Arrangements and Typical Details A-2
Appendix B (Calculations) B-1
B. 1 Critical Storm Calculation B-2
B. 2 Qbar calculation B-1
B. 3 Zone 1 SuDS Schematic B-1
B. 4 Zone 1 Runoff Calculations B-1
B. 5 Zone 2 Runoff Calculations B-1
B. 6 Swale attenuation volumes B-2
B. 7 Courtyard porous paving attenuation volume B-1
Appendix C (Background information) C-1
C. 1 Topographical Survey C-2
C. 2 Utility Survey C-1
C. 3 Irish Water Record Drawings C-1

1. Introduction

This report outlines the civil engineering design (drainage and watermains) proposals for the redevelopment of St. Anne's Court, All Saint Drive, Dublin 5 to be included as part of the overall planning application package.

The Client has expressed their desire that a design embracing the principles of green infrastructure be implemented for the development. The scheme and proposed SuDS techniques were presented to DCC on $20^{\text {th }}$ of June 2023, at a pre-application meeting under Section 247 of the Planning and Development Act 2000 as amended.

The purpose of this report is to explain the holistically integrated civil engineering solutions (primarily green infrastructure in the form of sustainable drainage systems, or SuDS) for the scheme and to describe the approaches taken in delivering the proposed solution.

In conjunction with other project planning information, this report should be used to describe the principles and details of the engineering design to support the planning submission.

2. Project Description

Dublin City Council intends to apply for planning permission of the "Older Persons Housing" project at St. Anne's Court in Raheny, Dublin 5. The proposed site is bound by All Saint's Park on the east, west and north. The proposal includes the demolition of all existing structures on site and the construction of new structures, as detailed below.

The project aims to replace the existing 61 bed-sit units on the site with 102 dwellings constructed to "Universal Design" and "Universal Design Plus" standards, as per the Dublin City Council Project Brief.

The project achieves the required 102nr - 1 bed 2-person Universal Design apartments, which include $96 \mathrm{nr}-1$ bed 2-person Universal Design apartments and 6 nr 1 bed 2-person Universal Design Plus apartments. The overall massing is four stories on all elevations. The proposed development includes associated plant, landscaping and ancillary development and site works above and below ground.

Figure 1 Site Plan - © Google Maps

3. Reference Documents

The basis of the SuDS and drainage strategies outlined in this report are founded on the principles detailed in the below list of documents.

- Greater Dublin Strategic Drainage Study (GDSDS)
- Dublin City Council Sustainable Drainage Design and Evaluation Guide 2021
- Dublin City Council Green and Blue Roof Guide 2021
- CIRIA report C753 The SuDS Manual

4. Background Surveys

4.1 Topographical

A topographical survey of the existing site was carried out by Apex Surveys. The existing levels fall from 28.89 m at the north-east of the site to 20.00 m at the south-west of the site.

Refer to Appendix C. 1 for the site topographical survey.

4.2 Utility

A utility survey of the existing site has been carried out by Apex Surveys. Refer to Appendix C. 2 for the existing utility survey in the vicinity of the site.

5. Drawings

The following engineering drawings accompany this report:
Table 1 List of drawings

Drawing Number	Drawing Title
SAC-ARUP-ZZ-XX-DR-C-2100	Existing Topographical Survey
SAC-ARUP-ZZ-XX-DR-C-2101	Existing Site Services
SAC-ARUP-ZZ-XX-DR-C-2102	Proposed Project Zones
SAC-ARUP-ZZ-XX-DR-C-2103	Proposed SuDS Features and Catchment Boundaries Zone 1
SAC-ARUP-ZZ-XX-DR-C-2104	Proposed SuDS Features and Catchment Boundaries Zone 2
SAC-ARUP-ZZ-XX-DR-C-2105	Proposed Surface Water Network
SAC-ARUP-ZZ-XX-DR-C-2106	Proposed Foul and Watermain Networks
SAC-ARUP-ZZ-XX-DR-C-2107	Typical Details - Sheet 1 of 2
SAC-ARUP-ZZ-XX-DR-C-2108	Typical Details - Sheet 2 of 2

A copy of the engineering drawings is included in Appendix A.

6. Geotechnical Data

Preliminary design of the proposed development is informed by existing site investigation records, which are available from the construction of the existing buildings. A project specific site investigation has commenced on site and will include a number of soakaway tests to confirm the permeability of the in-situ soils, for final sizing and design of the SuDS features. The calculations in this report are based on a conservative view of the likely permeability given the high probability of typical Dublin boulder clays being present on site.

7. Existing Services

7.1 Existing Drainage

The existing drainage systems on the site are mainly combined with some separate foul and surface water drains connecting to the combined system. These drains discharge by gravity through 2 No. existing 225 mm and 150 mm diameter pipes, which outfall to the combined sewer on All Saints Park at the south-east corner of the site and the west of the site respectively.

7.1.1 Foul Water

There is a 225 mm existing concrete foul sewer on All Saints Park on both the east and west sides of the proposed site. The existing 225 mm foul sewers discharge to a 225 mm foul sewer on Watermill Drive.

The current daily wastewater hydraulic loading is estimated to be 18.3 cubic metres per day.
The peak discharge is estimated to be 1.6 litres per second.

7.1.2 Surface Water

An existing 225mm diameter surface water sewer runs along the north and west (All Saints Park) of the development. A 300 mm and 225 mm surface water sewer on All Saints Park east and south of the site was identified on a utilities survey commissioned for the project and discharge in a southerly direction. From the utility survey it appears that the surface water sewer drains gullies from the public roadways and one of the existing buildings on the northeast side of the existing site.

See Appendix C for the Irish Water/DCC Drainage Division record drawing and underground utilities survey information carried out by Apex Surveys.

7.2 Existing Water

The site is bound by a 4 -inch Irish Water watermain on the north and east sides of the site on All Saints Park. There is an existing 6-inch watermain on All Saints Park along the west side of the development. The water supply connection to the existing development appears to be from a valved arrangement off the existing 6 -inch watermain to the west of the site and 4 -inch internal ring main on the north of the site on All Saints Park.

There are two fire hydrants located in the public way on All Saints Park. We would recommend that flow tests be carried out on the existing mains/hydrants to confirm both the pressure and flow from the existing network to confirm adequacy of supply and compliance with the Local Fire Officer's requirements and Part B of the Building Regulations.

See Appendix C for the Irish Water/DCC Drainage Division record drawing and underground utilities survey information carried out by Apex Surveys.

8. Proposed Services

8.1 Proposed Surface Water

8.1.1 Design Criteria

It is proposed to discharge the surface water to an existing 225 mm diameter surface water sewer at the south-west corner of the site on All Saints Park, which in turn discharges south into a 300 mm surface water sewer.

Surface water will be managed in accordance with the CIRIA SuDS Manual and discharges from the proposed development will be restricted in accordance with the Greater Dublin Strategic Drainage Study (GDSDS). Surface water discharges will be retained within the various SuDS systems, sized to contain the 1 in 100-year event plus 20% for climate change.

Surface water from the proposed development will be intercepted and treated in a SuDS system comprising of blue roofs, green roofs, swales and porous paving.

The drainage systems will be designed in accordance with Part H of the Building Regulations, BS EN 752 Drain and Sewer Systems outside Buildings, the Greater Dublin Regional Code of Practice for Drainage Works and Irish Water requirements.

8.1.2 Design Rainfall

The Dublin rainfall depth for various return periods and storm duration are provided by Met Eireann as indicated in the following table:

Table 2 Site Specific Dublin rainfall data

To calculate the critical storm duration for the St. Anne's Court site we performed an analysis in the Microdrainage software package. The critical storm was identified as the 1:100 year, 16-hour long winter storm, with a rainfall depth of 67 mm , allowing for 20% climate change. Refer to Appendix B. 1 for the Microdrainage critical storm calculation.

8.1.3 Run-off Coefficient

Selection of a run-off coefficient can be somewhat subjective and there is a vast amount of literature advising on appropriate factors for various ground types, slopes etc. The table below provides a comprehensive selection of potential run-off coefficients for different land uses, soil types and slopes:

Land use	Slope (\%)	Sand	Loamy sand	Sandy loam	Loam	Silt loam	Silt	Sandy clay loam	Clay loam	Silty clay loam	Sandy clay	Silty Clay	Clay
Forest	<0,5	0.03	0.07	0.10	0.13	0.17	0.20	0.23	0.27	0.30	0.33	0.37	0.40
	0,5-5	0.07	0.11	0.14	0.17	0.21	0.24	0.27	0.31	0.34	0.37	0.41	0.44
	5-10	0.13	0.17	0.20	0.23	0.27	0.30	0.33	0.37	0.40	0.43	0.47	0.50
	>10	0.25	0.29	0.32	0.35	0.39	0.42	0.45	0.49	0.52	0.55	0.59	0.62
Grass	<0,5	0.13	0.17	0.20	0.23	0.27	0.30	0.33	0.37	0.40	0.43	0.47	0.50
	0,5-5	0.17	0.21	0.24	0.27	0.31	0.34	0.37	0.41	0.44	0.47	0.51	0.54
	5-10	0.23	0.27	0.30	0.33	0.37	0.40	0.43	0.47	0.50	0.53	0.57	0.60
	>10	0.35	0.39	0.42	0.45	0.49	0.52	0.55	0.59	0.62	0.65	0.69	0.72
Crop	<0,5	0.23	0.27	0.30	0.33	0.37	0.40	0.43	0.47	0.50	0.53	0.57	0.60
	0,5-5	0.27	0.31	0.34	0.37	0.41	0.44	0.47	0.51	0.54	0.57	0.61	0.64
	5-10	0.33	0.37	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70
	>10	0.45	0.49	0.52	0.55	0.59	0.62	0.65	0.69	0.72	0.75	0.79	0.82
Bare	<0,5	0.33	0.37	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70
soil	0,5-5	0.37	0.41	0.44	0.47	0.51	0.54	0.57	0.61	0.64	0.67	0.71	0.74
	5-10	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80
	>10	0.55	0.59	0.62	0.65	0.69	0.72	0.75	0.79	0.82	0.85	0.89	0.92
IMP		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

For the purposes of the hydraulic calculations in this report we have adopted the following run-off factors:

Table 4 Adopted Runoff coefficients

Land use	Run-off coefficient
Blue roofs	1.0 (throttled and attenuated in situ)
Hard paved areas	1.0
Permeable paving	0.7 (on the assumption there will be some infiltration capacity on site)
Green roof	0.7 (on the assumption circa 30% of rainfall gets intercepted)
Swale / Dry detention basin	1.0

8.1.4 Green Infrastructure

Green Infrastructure (GI) is a strategically planned and delivered network of natural and man-made green (land) and blue (water) spaces that sustain natural processes (CIRIA, 2014). GI delivers a wide variety of benefits for biodiversity, amenity, health and wellbeing and climate change adaptation. GI can be subdivided into assets and functions that may be a park, woodland, green roof or street tree (to name a few) and can range in terms of both size and scale. GI functions relate to the roles that the assets can play if planned and managed in a way that is sensitive to, and includes provision for, natural features and ecosystems services.

The Primary Objective of GI in the context of drainage is to improve the status quo (which typically has prioritised volumetric control of run-off over at-source volumetric control and water quality improvement) by bringing a new approach to creating sustainable development through Water Sensitive Urban Design.

Water Sensitive Urban Design is the process of integrating water cycle management with the built environment. It is about using the transition of water through communities to add value, to enhance the wellbeing of the people and their environment, both natural and man-made, in a way which is aesthetically pleasing and adds to our overall appreciation and enjoyment of the setting. For new developments, water and its management need to be central to the planning and urban design ethos.

Arup has identified the elements in the above graphic as core to successful and lasting Water Sensitive Urban Design strategies.

In a world of growing populations and changing climates, water management is of key importance for the health and wellbeing of our planet. Arup thinks and plans at catchment scale and fully integrates with the planning and management of urban systems to deliver Water Sensitive Urban Design.

We propose a concept for achieving water supply resilience through blue and green thinking.

Blue thinking

- Work with the water cycle
- Use green and blue space -create, expand, adapt
- Capture, store, re-use and release
- Design places using water
- Natural/semi-natural puddles, pools, ponds, lakes, streams and rivers
- Man-made: Taps, toilets, reservoirs, canals, swales, fountains, ditches and drains

Green thinking

- Use green and blue space -create, expand, adapt
- Capture, store and release and treat
- Design places using vegetation
- Natural/semi-natural: bush, tree, wood, forest, meadow, wetland
- Man-made: green roof, planter, flowerbed, park, field, footpath, hedgerow

8.1.5
 SuDS

We propose to implement SuDS to the maximum extent possible across the full extent of the site, with the intention of filtering and storing rainfall at source and eliminating the need for conventional underground attenuation tank at the bottom end of the catchment. This will be achieved through a range of techniques and associated flow controls.

Sustainable drainage systems are designed to maximise the opportunities and benefits that can be secured from surface water management. SuDS can take many forms, both above and below ground, and they facilitate four main categories of benefits (water quantity, water quality, amenity, and biodiversity).

SuDS deliver high quality drainage while supporting urban areas to cope better with severe rainfall both now and in the future. SuDS also help counteract some of the impacts in the water cycle caused by increased urbanisation, such as reduced infiltration, which in turn can result in diminished groundwater supplies.

Arup has been delivering SuDS solutions worldwide in the last few years. The various available solutions for SuDS require a coordinated design between engineering, sustainability consultancy and landscape design.

There are several factors to be considered in advance of a system design including existing and proposed site topography, ground water levels, ground permeability, space availability, capital and ongoing maintenance costs etc.

A Management Train comprising of a series of features has been proposed to ensure that the series of features treat and attenuate the stormwater run-off to acceptable quality at greenfield rates of flow. Ideally systems should treat and control the run-off as close as possible to the source.

Several SuDS components in a Management Train facilitates the capture, conveyance and storage of surface water runoff while delivering interception and pollutant risk management. The suitability of different SuDS techniques in a Management Train is indicated in the following table:

Table 5 SuDS components within a management train

Indicative suitability of SuDS components within the Management Train				
SuDS component	Interception ${ }^{1}$	Close to source/ primary treatment	Secondary treatment	Tertiary treatment
Rainwater harvesting	Y			
Filter strip	Y	Y		
Swale	Y	Y	Y	
Filter drain	Y		Y	
Pervious pavements	Y	Y		
Bioretention	Y	Y	Y	
Green roof	Y	Y		
Detention basin	Y	Y	Y	
Pond	3	Y^{2}	Y	Y
Wetland	3	Y^{2}	Y	Y
Infiltration system (soakaways/ trenches/ blankets/basins)	Y	Y	Y	Y
Attenuation storage tanks	Y^{4}			
Proprietary treatment systems		Y^{5}	Y^{5}	Y^{5}

© CIRIA

We propose implementing a SuDS scheme at the St. Anne's Court site, compatible with the above philosophy. The site has been apportioned into two zones for the purpose of designing the SuDS scheme:

- Zone 1: Area comprising of the buildings and courtyard within
- Zone 2: Peripheral areas (ground floor between the outer building façade and redline boundary)

Refer to Drawing SAC-ARUP-ZZ-XX-DR-C-2102 in Appendix A for the extent of Zones 1 and 2. The proposed SuDS scheme includes the following features:

Table 6 Zone 1 SuDS features

Area	SuDS techniques
Roof	Blue roof; Green roof
Courtyard	Permeable paving, Swales/Dry detention basins

Table 7 Zone 2 SuDS features

Area	SuDS techniques
Overall	Permeable paving Addition of gardens/green areas where feasible

The proposed SuDS techniques are indicated on Drawings SAC-ARUP-ZZ-XX-DR-C-2103 and SAC-ARUP-ZZ-XX-DR-C-2104 in Appendix A. Each technique is described in more detail below:

Blue Roofs

These are similar in principle to green roofs but with a variation in design that is explicitly intended to store water, typically via a reservoir zone beneath the finished surface.

We propose blue roofs on all the proposed blocks, sized to collect and store up to the 1 in 100-year rainfall event for slow release to the public system.

We propose blue roofs with a coverage of 37% of the total roof area.
Refer to Drawing SAC-ARUP-ZZ-XX-DR-C-2107 in Appendix A for typical blue roof details.

Green Roofs

These are roofs that are adapted or designed to support plants. They are areas of living vegetation, installed on the top of buildings for a range of reasons including visual benefit, ecological value, enhanced building performance and the reduction of surface water run-off. Green roofs offer many benefits including:

- Supporting biodiversity
- Providing cooler buildings in summer
- Cleaning run-off
- Reducing run-off for day-to-day rain

[^1]- Green roofs can be installed on a variety of roof types, sizes and slopes. They principally come in two forms - extensive (low substrate depth) and intensive (deeper substrates). Both types are unlikely to increase the load on a roof by more than 20%.

The principal components of a green roof structure are:

- Waterproof membrane
- Root barrier
- Drainage layer
- Geotextile filter layer
- Soil or growing medium
- Vegetation

Green roofs absorb most of the rainfall during frequent events but have a similar hydraulic performance to standard roofs once saturated. They can be assumed to meet interception requirements in the summer months based on their minimum retention of 5 to 10 mm of rainfall. They can reduce the peak flow and volume of run-off in warmer periods when the soil moisture deficit is high. They are unlikely to perform as well during the winter months when they are likely to be saturated for much of the time.

We propose green roofs with a coverage of 25% of the total roof area.
To mitigate against reduced performance in the winter months we propose connecting the rainwater downpipes to swales at ground level, which will be sized to collect and store up to the 1 in 100 -year rainfall event.

Refer to drawing SAC-ARUP-ZZ-XX-DR-C-2107 for typical green roof details.

Porous/Permeable Paving

These are hard surfaces that can support vehicles or pedestrian loading, which also allow rainfall to soak into the ground or into underground storage to slow the release of runoff. Porous surfaces, together with their associated substructures, are an efficient means of managing surface water runoff close to its source - intercepting runoff, reducing the volume and frequency of runoff, and providing a treatment medium.

There are three principal systems of water management below the surface of porous paving:

- Total infiltration (typically flat areas with highly permeable subsoil conditions)
- Partial infiltration (flat or sloping sites with partially permeable subsoils)
- No infiltration (flat or sloping sites with impermeable subsoils)

Building Regulations Part H indicates that Soakaways should not be constructed within 5 m of a building, this 'rule' is usually applied where infiltration within the 5 m offset from the foundation is not permitted. We propose a partial infiltration philosophy for the St. Anne's Court project as some areas of the porous pavement is within 5 m of the proposed building.

Porous pavements are not suitable in areas at high risk of silt loads. They generally require flow controls at the outlets to ensure effective use of the storage in the subbase. The design thickness will be the greater of:

- Required thickness for hydraulic storage
- Required thickness structurally

If the site is sloping (as is the case for the St. Anne's Court site), then check dams may be required at intervals to maximise the storage in the substructure.

We propose porous paving to the pedestrian pathways within the central courtyard of the development.

The porous paving will be sized to collect and store up to the 1 in 100-year rainfall event.
Refer to Drawing SAC-ARUP-ZZ-XX-DR-C-2103 in Appendix A for the extent of the proposed porous paving and Drawing SAC-ARUP-ZZ-XX-DR-C-2108 in Appendix A for typical porous paving details.

Swales/Dry detention basins

Swales are shallow, flat bottomed, vegetated open channels designed to convey, treat and often attenuate surface water runoff. They can enhance the natural landscape and provide aesthetic and biodiversity benefits. They are designed to slow the water thereby facilitating sedimentation, filtration through the root zone and soil matrix, evapotranspiration and infiltration into the underlying soil.

On sites with steeper gradients, swales can have berms or check dams across the flow path to temporarily pond runoff, reduce velocities and increase pollutant retention and infiltration.

Typical features of a swale include:

- Bottom width $0.5-2.0 \mathrm{~m}$
- Longitudinal gradient $0.5-6 \%$
- Maximum side slope 3\%
- Maximum depth typically $400-600 \mathrm{~mm}$

We propose a network of swales to take excess runoff from the green roofs, hard roof areas, ground level landscaped areas and footpaths on the periphery of the courtyard. The swales discharge to a collector filter drain running beneath the courtyard permeable paving pathways. The swales will be fitted with orifice plates to restrict the discharge rate, to encourage infiltration and to attenuate runoff.

Refer to drawing SAC-ARUP-ZZ-XX-DR-C-2105 in Appendix A for locations of the swales and drawing STAC-ARUP-ZZ-XX-DR-C-2108 for a typical swale detail.

The management train for the proposed SuDS scheme is:

Figure 2 SuDS schematic and management train

A full schematic of the Zone 1 catchments and SuDS scheme is provided in Appendix B3.

8.1.7 Catchment Delineation

For the purpose of hydraulic calculations, the site has been divided into catchments based on SuDS technique/surface finish/topography. See Drawings SAC-ARUP-ZZ-XX-DR-C-2103 and SAC-ARUP-ZZ-XX-DR-C-2104 in Appendix A.

Zone 1 (Building and Courtyard):

The catchments for Zone 1 are summarised in the following table:

Table 8 Zone 1 catchments

Zone	Level	Catchment name	Details	Total area (m2)
1	Roof	BR.A1, BR.A2, BR.B, BR.C, BR.D1, BR.D2	Blue roof	1056
1	Roof	GR.A, GR.B, GR.C1, GR.C2, GR.D	Green roof	724
1	Roof	HL1.1, HL1.2, HL1.3, HL1.4, HL1.5, HL1.6, HL1.7, HL1.8, HL1.9, HL1.10, HL1.11	Hard standing	1076
1	GF	SW.A1, SW.A2, SW.B1, SW.B2, SW.C1, SW.D	Swale	336
1	GF	SL1.1, SL1.2, SL1.3, SL1.4, SL1.5, SL1.6, SL1.7, SL1.8, SL1.9, SL1.10, SL1.11, SL1.12, SL1.13	Soft Landscaping	1087
1	GF	PP1.1	Permeable Paving	419
				4,697

Zone 2 (Peripheral areas):

The catchments for Zone 2 are summarised in the following table:
Table 9 Zone 2 catchments

Zone	Catchment name	Details	Total area (m2)
2	SL2.1, SL2.2, SL2.3, SL2.4, SL2.5, SL2.6, SL2.7, SL2.8, SL2.9, SL2.10, SL2.11, SL2.12, SL2.13, SL2.14, SL2.15, SL2.16, SL2.17, SL2.18, SL2.19, SL2.20, SL2.21, SL2.22, SL2.23, SL2.24, SL2.25, SL2.26, SL2.27, SL2.28, SL2.29, SL2.30	Soft Landscaping	693
2	PP2.1, PP2.2, PP2.3	Permeable Paving	99
2	HL2.1, HL2.2, HL2.3, HL2.4, HL2.5, HL2.6, HL2.7, HL2.8	Hard Landscaping	765
			1557

8.1.8 QBAR Calculation

A QBAR calculation was carried out for the site within the redline boundary (0.6254 hectares) to determine the allowable run-off rate, as presented in Appendix B2.

The QBAR $_{\text {rural }}$ figure equates to $2.852 \mathrm{l} / \mathrm{s}$. When including the multiplier of 2.6 for the $1: 100$ year event the $\mathrm{QBAR}=7.42 \mathrm{l} / \mathrm{s}$.

When looking at Zone 1, the allowable discharge for the area of 0.4701ha:
QBAR=2.14 $1 / \mathrm{s}$. When including the multiplier of 2.6 for the $1: 100$ year event the QBAR for Zone $1=5.57 \mathrm{l} / \mathrm{s}$.

The QBAR for Zone 2 would therefore equate to $1.85 \mathrm{l} / \mathrm{s}$
All the QBAR figures above relate to greenfield sites. The St. Anne's Court site is brownfield so our strategy is to limit the discharge in Zone 1 to the greenfield QBAR rate, where we can make the biggest impact in terms of reducing the peak discharge via implementation of a comprehensive

SuDS scheme. The Zone 1 SuDS scheme will have throttles on the blue roofs, swales (collecting runoff from the green roofs, hard roof areas and ground level soft landscaped areas) and the bottom end of the porous paving system (the final chamber will comprise an orifice plate restricting the Zone 1 discharge to less than the QBAR rate of $5.57 \mathrm{l} / \mathrm{s}$).

We are not proposing any throttles or formal collection of surface water in Zone 2 as it would require an extensive network of linear drains e.g. aco channels to be installed along the redline boundary to intercept a relatively small amount of water that currently runs off directly into the public system.

As demonstrated in this report the proposed SuDS scheme will result in an overall significant reduction in the peak discharge when considering the overall site (Zone 1 plus Zone 2).

8.1.9 Throttles

Outlet structures are proposed to convey and control the flow out of the SuDS components. Their principal function is to throttle the discharge passed downstream in accordance with the GDSDS and thereby enable the attenuation volume to fill. Outlets can either be on the surface, piped systems or slow seepage systems. Outlets are usually built into the downstream side of SuDS components with easy access for maintenance.

The SuDS components at St. Anne's Court have been designed to maximise the volume of surface water stored locally (at source). The following throttles will help to achieve this goal:

Table 10 Proposed throttles

SuDS Technique	Throttle
Blue roof	Outlet Flow Restrictor (orifice)
Swale	Outlet Flow Restrictor (orifice)
Greenroof	Discharges to swale, which has a flow restrictor
Porous Paving	Final Outlet Flow Restrictor (orifice)

The orifice plate throttle is described in more detail below:

Orifice Plate

An orifice is a circular or rectangular opening of a prescribed shape and size that allows a controlled rate of outflow when the orifice is submerged. The flow rate depends on the height of water above the opening (hydraulic head) and the size and edge treatment of the orifice. When using a simple orifice plate, the flow rate passing through the control is directly proportional to the square root of the upstream head. We propose that orifice plates be installed in the wall of an outlet flow control chamber.

$$
Q=C_{d} A_{o} \sqrt{2 g h}
$$

Where:
$Q=$ orifice discharge rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
$C_{d}=\quad$ coefficient of discharge (m) (0.6 if material is thinner than orifice diameter; 0.8 if material is thicker than orifice diameter, 0.92 if edges of orifice are rounded)
$A_{0}=$ area of orifice $\left(\mathrm{m}^{2}\right)$
$h=$ hydraulic head (m)
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$

Figure 3 Orifice formula
We have considered $10 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}$ and 50 mm orifice plates. The following table indicates the discharge rate and velocity through the orifice for a range of heads up to 1 m :

Table 11 Discharge through orifice

Head (m)								
	Hydraulics through Orifice		50 mm	25 mm	20 mm	10 mm		
	$\mathrm{Q}(1 / \mathrm{s})$	$\mathrm{v}(\mathrm{m} / \mathrm{s})$						
0.1	1.71	0.86	0.43	0.87	0.27	0.87	0.07	0.87
0.2	2.41	1.23	0.60	1.23	0.39	1.23	0.10	1.23
0.3	2.95	1.50	0.74	1.50	0.47	1.50	0.12	1.50
0.4	3.41	1.74	0.85	1.74	0.54	1.74	0.14	1.74
0.5	3.81	1.94	0.95	1.94	0.61	1.94	0.15	1.94
0.6	4.18	2.13	1.04	2.13	0.67	2.13	0.17	2.13
0.7	4.51	2.30	1.13	2.30	0.72	2.30	0.18	2.30
0.8	4.82	2.46	1.21	2.46	0.77	2.46	0.19	2.46
0.9	5.12	2.61	1.28	2.61	0.81	2.61	0.20	2.61
1.0	5.39	2.75	1.35	2.75	0.86	2.75	0.22	2.75

The maximum head of water on the final orifice plate in the catchpit SMH03 is circa 1m, resulting in a restricted flow rate through a 50 mm orifice of $5.39 \mathrm{l} / \mathrm{s}$ at a velocity of $2.75 \mathrm{~m} / \mathrm{s}$, which is below the QBAR discharge rate for Zone 1 of $5.57 \mathrm{l} / \mathrm{s}$.

8.1.10 Piped Networks

We propose constructing piped surface water networks as follows:

- Zone 1 - ground level filter drain network collecting discharges from the blue roofs (direct connection), green roofs and hard roof areas (routed via the swales), porous paving paths and ground level soft landscaped areas.

Zone 1 volumetric calculations (m3)

The volumetric runoff for each catchment (see Drawings SAC-ARUP-ZZ-XX-DR-C-2103 and SAC-ARUP-ZZ-XX-DR-C-2104 in Appendix A) was calculated using a rainfall depth of 67 mm (see section 8.1.2) and runoff factors as detailed in section 8.1.3.

The runoff volumes per catchment are presented in the table in Appendix B.4.
The various proposed SuDS techniques (see section 8.1.6) were then sized to store the calculated volume locally for rainfall events up to and including the 1:100-year event plus 20% for climate change, for slow release once the storm abates.

Storage is proposed in the following locations:

- Blue roof
- Green roof
- Permeable Paving
- Swales

The volume of rain falling on the footprint of Zone 1 has been calculated as $315 \mathrm{~m}^{3}$, of which $74 \mathrm{~m}^{3}$ is removed via interception and evapotranspiration and infiltration through soft landscaping, with the remaining $241 \mathrm{~m}^{3}$ being stored/routed through the blue roof, swales and permeable paving subbase.

Table 12 Volume stored in SuDS techniques - Zone 1

SuDS Technique	Volume stored (m3)	Comments
Blue Roof	71	Discharges at 0.22 1/s per blue roof section (1.34 1/s total) to the DCC Surface Water Network
Greenroof	15	Removed through interception and evapotranspiration, excess rainfall discharges to swales
Porous Paving	10	Discharges to the DCC Surface Water Network
Swale	62	Discharges to the DCC Surface Water Network
Total	158	

The total volume of water leaving Zone 1 has been calculated at $241 \mathrm{~m}^{3}$ compared to a rainfall volume of $315 \mathrm{~m}^{3}$ i.e., a 23% reduction in volume.

The philosophy for each SuDS technique/drainage zone and hydraulic sizing is described below:

Blue Roofs

The blue roofs cover approximately 38% of the total roof area.
The entirety of the 1 in 100-year rainfall event can be stored within the build-up of the blue roof.
The discharge from the blue roofs will be controlled via a flow restrictor.
The total rate of water leaving the blue roof is circa $0.22 \mathrm{l} / \mathrm{s}$ per blue roof section i.e. cumulative discharge of $1.34 \mathrm{l} / \mathrm{s}$.

Green Roofs

The green roofs cover approximately 25% of the total roof area. The first 10 mm of rainfall on the existing buildings is intercepted by the green roof. All subsequent rainfall is brought to the swales within the central courtyard area.

The swales have been sized to store the entirety of the excess 1 in 100-year rainfall event.
The flow restricting orifice plate within the swale serves as the throttle, restricting the rate of flow to the piped network.

The cumulative rate of water leaving the swales to which the green roofs are connected is circa 2.64 1/s.

Swales / Detention Basins

Drawing SAC-ARUP-ZZ-XX-DR-C-2103 in Appendix A shows the catchment delineation, with corresponding hydraulic calculation tables in Appendix B6.

The green roof catchments and ground level soft landscaped areas are linked to a swale/detention basin with a flow restrictor installed at the outlet of the swales.

SW.A1, SW.A2, SW.B1, SWB2, SW.C1, SW.D connect to the piped network, with the flow restricted via an orifice plate in the last downstream manhole.

The total rate of water leaving the swales/dry detention basins is circa $2.64 \mathrm{l} / \mathrm{s}$.

Porous Paving

The porous paving in the courtyard collects runoff from the path itself and some of the adjacent soft landscaped areas. It is underlain by a filter drain that has piped connections from the throttled blue roof and swale discharges. The filter drain network and stone base (30% void ratio) serve as the final attenuation system for Zone 1.

See catchment delineation drawing SAC-ARUP-ZZ-XX-DR-C-2103 in Appendix B6 and associated calculations in Appendix B4.

The stone base and filter drain have a capacity to store 65 m 3 versus the required storage of 10 m 3 (see calculation in Appendix B4) on the basis that $5.39 \mathrm{l} / \mathrm{s}$ exits the site from this system i.e. below the QBAR rate for Zone 1.

Zone 1 discharge calculations (1/s)

The estimated existing/pre-development runoff from the overall site is $72 \mathrm{l} / \mathrm{s}$ based on a rainfall intensity of $67 \mathrm{~mm} / \mathrm{hr}$ for the 1:100-year rainfall event.

The estimated existing/pre-development runoff from Zone 1 is $58.9 \mathrm{l} / \mathrm{s}$ based on a rainfall intensity of $67 \mathrm{~mm} / \mathrm{hr}$ for the $1: 100$-year rainfall event.

The post development discharge rate is:

- $1.34 \mathrm{l} / \mathrm{s}$ from the blue roofs at the uppermost level discharging to the filter collector drain in the porous paving.
- $2.64 \mathrm{l} / \mathrm{s}$ from the swales discharging to the filter collector drain in the porous paving.

The filter collector drain is part of the porous paving system in the courtyard that serves as the final SuDS attenuation system. The flow discharging from this system i.e. the total discharge leaving the site is $5.39 \mathrm{l} / \mathrm{s}$ (orifice plate installed in final manhole).

This represents a 90.8% reduction in peak discharge from Zone 1 post implementation of the SuDS measures.

8.1.12 Hydraulic Calculations - Zone 2

Zone 2 volumetric calculations (m3)
The runoff volumes per catchment, are presented in the table in Appendix B.5.
There is limited SuDS proposed in this area principally due to space constraints and the difficulty in collecting surface water from a narrow flat parcel of land. The cost of installing a linear drainage system along the perimeter of the site is cost prohibitive for what would be a marginal benefit in overall (Zone 1 plus 2) discharge rates.

There is a small section of porous paving and increased green areas to restrict the runoff rate and volume to figures we believe are feasible and reasonable.

The volume of rain falling on the footprint of Zone 2 has been calculated as 104 m 3 , of which 34.4 m 3 is expected to be removed via infiltration, interception and evapotranspiration, with the remaining 69.6 m 3 discharging to the Irish Water network.

These figures are summarised in the following table:
Table 13 Volume stored in SuDS techniques - Zone 2

SuDS Technique	Volume stored (m3)	Comments
Porous paving	2	Removed through infiltration
Soft landscaping	32.5	Removed through interception and evapotranspiration
Total	34.5	

The total volume of water leaving Zone 2 has been calculated at 70 m 3 versus a rainfall volume of 104 m 3 i.e. 33% removed in the various SuDS techniques, compared to the current estimated 48 m 3 runoff volume.

Zone 2 discharge calculations (1/s)

The estimated existing/pre-development runoff from the overall site is $72 \mathrm{l} / \mathrm{s}$ based on a rainfall intensity of $67 \mathrm{~mm} / \mathrm{hr}$ for the 1:100-year rainfall event.

The estimated existing/pre-development runoff from Zone 2 is $13.3 \mathrm{l} / \mathrm{s}$ based on a rainfall intensity of $67 \mathrm{~mm} / \mathrm{hr}$ for the $1: 100$-year rainfall event.

The post development discharge rate is $19.4 \mathrm{l} / \mathrm{s}$, slightly higher than the pre-development rate, but we are not proposing any throttles or formal collection of surface water in Zone 2 as it would require an extensive network of linear drains e.g. aco channels to be installed along the redline boundary to intercept a relatively small amount of water that currently runs off directly into the public system. As demonstrated throughout this report the proposed SuDS scheme will result in an overall significant reduction in the peak discharge when considering the overall site (Zone 1 plus Zone 2).

8.1.13 Operation and Maintenance

The future operation and Maintenance of the SuDS components should be considered at all stages of the planning, design and construction process. At the planning stage it needs to be considered in terms of who will be doing it and whether they can do it. Design considerations include providing

[^2]source control, ease of access, health and safety and potential cost of maintaining features. During and at the end of construction, inspection is necessary to ensure the system has been constructed correctly and will not require remedial works

Despite perceptions to the contrary, the maintenance requirements of well designed and constructed SuDS are quite simple, and it is easy to estimate the costs. Well designed and constructed SuDS that incorporate source control will be easy to maintain, regardless of whether they are landscape or hard engineered solutions. Poorly designed or constructed drainage systems without source control (e.g., end of pipe ponds, basins, wetlands and storage tanks) will be inherently more difficult and costly to maintain because of greater potential to silt.

A well-designed SuDS system will follow the management train principle and include source controls, followed by site and possibly regional features.

Maintenance operations can be divided into the following categories:

- Regular - this covers items that are carried out typically with a frequency from monthly to annually. It includes item such as inspection and monitoring, litter removal, grass cutting or other vegetation management, sweeping permeable pavements
- Occasional - this covers items that are required typically with a frequency from annually up to 25 years (or possibly greater).
- It includes items such as wetland vegetation management, silt removal from swales, ponds or wetlands, scarifying and spiking infiltration basins and gravel replacement to filter drains
- Remedial - this covers maintenance that is not usually required, but may be necessary because of vandalism, accidental damage, rainfall that exceeds the design capacity or similar events. Examples include repair of erosion in a swale or repair of permeable surfaces blocked for example by mixing concrete on them

Most manufacturers provide guidance on the maintenance requirements for the "harder" or engineered solutions. The recommendations can also be checked using knowledge of the estimated time for silt to build up in the system combined with judgement.

For soft SuDS the regular maintenance simply comprises litter removal, grass cutting and other vegetation management that landscape contractors are familiar with and will carry out for the rest of the open space. Additional items for the SuDS include inspection and clearing of flow control structures (inlets and outlets) and occasional removal of silt.

The recommended type and frequency of the operation and maintenance regime for the various SuDS techniques is provided in Table 32.1 of the CIRIA SuDS Manual 2015:

8.2 Proposed Foul

Foul drainage from the new development will be drained by a separate system to that of the surface water drainage system.

It is proposed to discharge the foul drainage from the new development to the existing foul sewer on All Saints Park via 2 No. connections to existing manholes.

See Arup Drawing SAC-ARUP-ZZ-XX-DR-C-2106 in Appendix A for proposed foul network.
The design team has liaised with Irish Water in relation to the Pre-connection Enquiry Application (PCE). A confirmation of feasibility has been received for the proposal with reference CDS23004655. All proposals are subject to agreement with Irish Water.

8.2.1 Design Criteria

The foul drainage system will be designed in accordance with Part H of the Building Regulations, BS EN 752 Drain and Sewer Systems outside Buildings, the Greater Dublin Regional Code of Practice for Drainage Works and Irish Water requirements.

8.2.2 Demand Estimation

The estimated foul discharge has been calculated based on "population" Method as per Irish Water Guidance:

Irish Water Code of Practice for Wastewater Infrastructure Water demands
Table 15 Foul demands (IW)

Occupants/Popu lation	Flow	Flow	Flow	Peak factor	Total
	$1 / \mathrm{h} / \mathrm{d}$	$1 / \mathrm{d}$	$1 / \mathrm{s}$		$1 / \mathrm{s}$
122	150	18,300	0.212	6	1.59

The proposed development will have 122 occupants based on occupancy rates for the 102 units.
The Irish Water Hydraulic Design Guidance advises a discharge of 150 litres per head per day for residential domestic.

The estimated daily wastewater hydraulic loading would be 18,3 cubic metres per day for the proposed development.

This figure equates to an average (DWF) of approximately 0.212 litres per second based on a 24hour day.

Assuming a peaking factor of 6 times DWF for peak discharge. Peaking factor from Irish Water Wastewater Code of Practice.

Peak discharge would be 1.59 litres per second.

8.3 Proposed Water

The utility survey commissioned for the project indicates there is an existing 6 -inch diameter watermain running along All Saints Park on the west of the site.

The proposed connection to the existing 6 -inch watermain is shown on Arup drawing SAC-ARUP-ZZ-XX-DR-C-2106 in Appendix A.

The design team has liaised with Irish Water in relation to the Pre-connection Enquiry Application (PCE). A confirmation of feasibility has been received for the proposal with reference
CDS23004655. All proposals are subject to agreement with Irish Water.
The installation of low flow fittings for the development will reduce the demand on the existing water supply network.

8.3.1 Design Criteria

The new watermain network will be designed in accordance with the Irish Water "Code of Practice for Water Infrastructure" and detailed in accordance with the Irish Water "Water Infrastructure Standard Details" documents.

The proposed watermain system will be designed to supply water to the development with sluice valves and hydrants located in compliance with Part B of the Building Regulations and the local Fire Officers requirements. See Arup drawing SAC-ARUP-ZZ-XX-DR-C-2106 in Appendix A for layout of the watermain and connection to the public network.

8.3.2 Demand Estimation

The anticipated average water demand is 0.212 litres / second with a peak demand of 1.325 litres / second.

This report outlines the civil engineering design proposals for the proposed St. Anne's Court development. The proposals have been fully workshopped and aligned with the Architect and Landscape Architect.

A key area of focus is green infrastructure (GI). GI is a strategically planned and delivered network of natural and man-made green (land) and blue (water) spaces that sustain natural processes. GI delivers a wide variety of benefits for biodiversity, amenity, health and wellbeing and climate change adaptation. GI in the context of drainage translates into Sustainable Drainage Systems (SuDS). SuDS are designed to maximise the opportunities and benefits that can be secured from surface water management.

The site comprises the following zones:

- Zone 1: Building footprints and courtyard within
- Zone 2: Peripheral areas (ground floor between the building façade and redline boundary)

We propose implementing a range of SuDS techniques covering most of the site footprint. i.e., blue roof, green roof, porous paving and swale network.

The intention is to manage surface water runoff as close to source as possible. Where possible we have linked these SuDS features in a Management Train to facilitate the capture, conveyance and storage of surface water runoff as close to source as possible whilst delivering interception and pollutant risk management.

Most of these SuDS features can be designed to accommodate runoff up to and including the 1:100year rainfall event. Where constraints such as sloping topography exist, interventions such as the installation of check dams and throttles can be made to maximise the storage of water at source e.g. on the porous paving system.

The volumetric runoff (pre and post development) and peak discharge (pre and post development) has been calculated for Zones 1 and 2, summarised as follows:

Table 16 Comparison of pre and post development volumetric runoff and peak discharge

Area	Volumetric runoff (m3)		Peak discharge (I/s)			
	Pre-development	Post-development	$\%$ increase	Pre-development	Post-development	\% reduction
Zone 1	212	241	13.6%	59	5.39	91%
Zone 2	48	70	45.8%	13	19.4	49% increase
Overall site	260	311	19.6%	72	24.8	65%

If the full extent of the SuDS measures discussed in this report is implemented:

- The peak discharge from the site will be reduced by $47 \mathrm{l} / \mathrm{s}$ i.e., 65%, through installation of various throttles in strategic locations i.e., orifice plates from blue roof, porous paving and swales.

The discharge rate coming off Zone 1 has been restricted to $5.391 / \mathrm{s}$ which is less than the calculated $Q_{\text {bar }}$ allowable discharge of 5.571/s. Although the Zone 2 peak discharge rate has increased by 49%, the overall site has a reduction of 65%.

We do not consider it practical or cost effective to reduce this figure any further, as it would require an extensive network of linear drains e.g., aco channels to be installed along the redline boundary to intercept a small amount of water in Zone 2 and introduce the potential requirement for the addition of an attenuation tank. This would introduce additional capital, operating and maintenance costs that are disproportionately high when compared to the small reduction in flow that would be achieved by further interventions in Zone 2. It would further impact negatively on the carbon footprint of the project.

We are therefore hoping that Dublin City Council/Irish Water will accept the proposed discharge rates given the substantial SuDS solutions being proposed resulting in a significant reduction in peak discharge from the St. Anne's Court site.

Appendix A (Drawings)

A. 1 General Arrangements and Typical Details

Green Roof - Upstand to Parapet

Green Roof - Outlet
Scale: 1.5

Blue Roof - Parapet Upstand

- Parapape

Porous Asphalt Walkway Detail Infiltration Trench

Section A-A Scale: :120

SMH 03 - Flow Control Chamber

ARUP

ciment
Dublin City Council

St. Anne's Court in Raheny

Sampane
Typical Details
Sheet 2 of 2

$1: 20$		
	Civil Iffastucture	
	s4- Issued for Plaming	
$\underset{\text { SAC-ARUP-ZZ-XX-DR-C-2108 }}{ }$		

Appendix B (Calculations)

B. 1 Critical Storm Calculation

Return Period Rainfall Depths for sliding Durations
Irish Grid: Easting: 321238, Northing: 237840

Interval			Years										
DURATION	6 months ,	1 year,	2,	3,	4,	5,	10,	20,	30,	50,	75,	100,	120,
5 mins	2.6,	3.6,	4.2,	5.1,	5.7,	6.2,	7.7,	9.4,	10.6,	12.2,	13.6,	14.8,	15.5,
10 mins	3.6,	5.1,	5.9,	7.1,	7.9,	8.6,	10.7,	13.1,	14.7,	17.0,	19.0,	20.6,	21.6,
15 mins	4.2,	6.0,	6.9,	8.4,	9.3,	10.1,	12.6,	15.4,	17.3,	20.0,	22.4,	24.2,	25.5,
30 mins	5.6,	7.8,	9.0,	10.8,	12.0,	12.9,	16.0,	19.4,	21.7,	24.9,	27.7,	29.9,	31.4,
1 hours	7.3,	10.2,	11.6,	13.9,	15.4,	16.5,	20.2,	24.4,	27.2,	31.0,	34.4,	37.0,	38.8,
2 hours	9.7,	13.2,	15.1,	17.8,	19.7,	21.1,	25.7,	30.7,	34.0,	38.6,	42.7,	45.8,	47.8,
3 hours	11.4,	15.5,	17.6,	20.7,	22.8,	24.4,	29.5,	35.1,	38.8,	43.9,	48.4,	51.8,	54.1,
4 hours	12.8,	17.3,	19.6,	23.0,	25.2,	27.0 ,	32.5,	38.6,	42.6 ,	48.1,	52.9,	56.6,	59.0,
6 hours	15.1,	20.2,	22.8,	26.6,	29.2,	31.1 ,	37.4,	44.2 ,	48.6,	54.7,	60.0,	64.1,	66.8,
9 hours	17.8,	23.6,	26.5,	30.9,	33.8,	35.9,	42.9,	50.5,	55.4,	62.2 ,	68.0,	72.5,	75.5,
12 hours	20.0,	26.3,	29.6,	34.3,	37.4,	39.8,	47.4,	55.6,	60.9,	68.1 ,	74.4,	79.2,	82.4,
18 hours	23.5,	30.7,	34.4,	39.8,	43.3,	45.9,	54.4 ,	63.6,	69.4,	77.4,	84.4,	89.7,	93.2,
24 hours	26.4,	34.3,	38.3,	44.2 ,	48.0,	50.9,	60.0,	69.9,	76.2,	84.8,	92.3,	97.9,	101.7,
2 days	32.4 ,	41.4,	45.8,	52.2,	56.4 ,	59.5,	69.4,	79.8,	86.5,	95.5,	103.2,	109.0,	112.8,
3 days	37.5,	47.3,	52.2,	59.1,	63.5,	66.9 ,	77.4,	88.5,	95.5,	104.9,	112.9,	119.0,	123.0,
4 days	42.1,	52.6,	57.8,	65.2,	69.9,	73.5,	84.6,	96.2,	103.6,	113.4,	121.8,	128.1,	132.2,
6 days	50.3,	62.1,	67.9,	76.1,	81.3,	85.3,	97.4,	110.1,	118.0,	128.6,	137.6,	144.3,	148.7,
8 days	57.7,	70.7,	77.0,	85.9,	91.5,	95.8,	108.9,	122.5,	130.9,	142.2,	151.7,	158.8,	163.5,
10 days	64.6,	78.6,	85.4,	94.9,	101.0,	105.5,	119.4,	133.9,	142.8,	154.7,	164.7,	172.2,	177.1,
12 days	71.1,	86.1,	93.3,	103.5,	109.9,	114.7,	129.4,	144.6,	153.9,	166.4,	176.9,	184.7,	189.9,
16 days	83.4,	100.1,	108.2,	119.4,	126.5,	131.8,	147.9,	164.5,	174.6,	188.2,	199.5,	207.9,	213.5,
20 days	95.0,	113.3,	122.1,	134.3,	142.0,	147.7,	165.1,	182.9,	193.8,	208.3,	220.4,	229.4,	235.3,
25 days	108.8,	129.0,	138.6,	151.9,	160.3,	166.5,	185.4,	204.6,	216.4,	231.9,	244.9,	254.5,	260.7,

NOTES:

These values are derived from a Depth Duration Frequency (DDF) Model update 2023
For details refer to:
'Mateus C., and Coonan, B. 2023. Estimation of point rainfall frequencies in Ireland. Technical Note No. 68. Met Eireann', Available for download at.
http://hdl.handle.net/2262/102417

B. 2 Qbar calculation

Calculation Sheet

Greenfield Runoff Rate Analysis

Catchment Characteristics:
Total Site Area: 0.6254ha
SAAR: 723mm
SOIL: 4
SOIL Value: 0.45 (Taken from reference table below, Table D1 Different Classes of Soil, GDSDS, Volume 2, Appendix D)

SOIL	WRAP	Runoff	SOIL Value	Soil Characteristics
1	Very high	Very low	0.15	Sandy, well drained
2	High	Low	0.30	Intermediate soils (sandy)
3	Moderate	Moderate	0.40	Intermediate soils (silty)
4	Low	High	0.45	Clayey, poorly drained
5	Very low	Very high	0.50	Steep, rocky areas
Table D1 Different Classes of Soil				

The formula from report IoH 124 :
QBAR $_{\text {rural }}=\mathbf{0 . 0 0 1 0 8}$ AREA $^{0.89}$ SAAR $^{1.17}$ SOIL $^{2.17}$

As the site is less than 50ha, the formula is applied with an area of 50ha.
QBAR $_{\text {rural }}=0.00108 \times 0.5^{0.89} \times 723^{1.17} \times 0.45^{2.17}$
$\mathrm{QBAR}_{\text {rural }}=0.00108 \times 0.5396 \times 2214 \times 0.1768$
$\mathrm{QBAR}_{\text {rural }}=0.2281 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{QBAR}_{\text {rural }}=228 \mathrm{l} / \mathrm{s}$
$\mathrm{QBAR}_{\text {rural }}=4.56 \mathrm{l} / \mathrm{s} / \mathrm{ha}$

The allowable discharge for zone 1 is calculated for an area of 0.4701 ha
\therefore QBARZ1 $=2.141 / \mathrm{s}$
With the multiplier of $\mathbf{2 . 6}$ for a $\mathbf{1 : 1 0 0}$ year event, the allowable runoff for Zone $\mathbf{1}=\mathbf{5 . 5 7} \mathrm{l} / \mathrm{s}$

The allowable discharge for proposed site is calculated for an area of $\mathbf{0 . 6 2 5 4}$ ha
\therefore QBAR $=2.852 \mathrm{l} / \mathrm{s}$

B. 3 Zone 1 SuDS Schematic

ST ANNES COURT

Zone 1 SuDS SCHEMATIC

LEGEND

Blue roof	387	Porous paving	---	Filter drain
Swale		collecting runoff from mounded courtyard areas Surface water pipe	\rightarrow	Mounded courtyard areas draining towards gravel strip filter drain

B. 4 Zone 1 Runoff Calculations

Predevelopement Zone 1

Catchment	Details	Rainfall depth	Area	Rainfall volume	Runoff factor	Runoff volume	Peak Discharge
		mm	m2	m3	C Coeff	m3	1/s
Zone 1	Hard Landscaping	67	2503	167.70	1.00	167.70	46.62
Zone 1	Soft Landscaping	67	2198	147.27	0.30	44.18	12.28
[4701						211.88	58.90

Post developement discharge, volume and rate Zone 1

Zone	Level	Catchment	Details	Rainfall depth	Area	Rainfall volume	Runoff factor	Runoff volume
				mm	m2	m3	C Coeff	m3
1	Roof	BR.A1	Blue roof	67	96	6.4	1	6.4
1	Roof	GR.A	Green roof	67	64	4.3	0.7	3.0
1	Roof	BR.A2	Blue roof	67	158	10.6	1	10.6
1	Roof	GR.B	Green roof	67	160	10.7	0.7	7.5
1	Roof	BR.B	Blue roof	67	278	18.6	1	18.6
1	Roof	BR.C	Blue roof	67	332	22.2	1	22.2
1	Roof	GR.C1	Green roof	67	164	11.0	0.7	7.7
1	Roof	GR.C2	Green roof	67	178	11.9	0.7	8.3
1	Roof	BR.D1	Blue roof	67	97	6.5	1	6.5
1	Roof	GR.D	Green roof	67	158	10.6	0.7	7.4
1	Roof	BR.D2	Blue roof	67	95	6.4	1	6.4
1	Roof	HL1.1	Hard Landscapin	67	76	5.1	1	5.1
1	Roof	HL1.2	Hard Landscapin	67	43	2.9	1	2.9
1	Roof	HL1.3	Hard Landscapin	67	121	8.1	1	8.1
1	Roof	HL1.4	Hard Landscapins	67	74	4.9	1	4.9
1	Roof	HL1.5	Hard Landscapins	67	142	9.5	1	9.5
1	Roof	HL1.6	Hard Landscapins	67	188	12.6	1	12.6
1	Roof	HL1.7	Hard Landscapins	67	89	6.0	1	6.0
1	Roof	HL1.8	Hard Landscapins	67	126	8.5	1	8.5
1	Roof	HL1.9	Hard Landscapin	67	81	5.4	1	5.4
1	Roof	HL1.10	Hard Landscapin	67	81	5.4	1	5.4
1	Roof	HL1.11	Hard Landscapin	67	55	3.7	1	3.7
1	GF	SW.A1	Swale	67	49	3.3	1	3.3
1	GF	SW.A2	Swale	67	29	1.9	1	1.9
1	GF	SW.B1	Swale	67	88	5.9	1	5.9
1	GF	SW.B2	Swale	67	56	3.8	1	3.8
1	GF	SW.C1	Swale	67	48	3.2	1	3.2
1	GF	SW.D	Swale	67	66	4.4	1	4.4
1	GF	SL1.1	Soft Landscaping	67	6	0.4	0.3	0.1
1	GF	SL1.2	Soft Landscaping	67	55	3.7	0.3	1.1
1	GF	SL1.3	Soft Landscaping	67	62	4.2	0.3	1.2
1	GF	SL1.4	Soft Landscaping	67	161	10.8	0.3	3.2
1	GF	SL1.5	Soft Landscaping	67	120	8	0.3	2
1	GF	SL1.6	Soft Landscaping	67	41	2.7	0.3	0.8
1	GF	SL1.7	Soft Landscaping	67	103	6.9	0.3	2.1
1	GF	SL1.8	Soft Landscaping	67	45	3.0	0.3	0.9
1	GF	SL1.9	Soft Landscaping	67	223	14.9	0.3	4.5
1	GF	SL1.10	Soft Landscaping	67	112	7.5	0.3	2.3
1	GF	SL1.11	Soft Landscaping	67	101	7	0.3	2.0
1	GF	SL1.12	Soft Landscaping	67	16	1	0.3	0.3
1	GF	SL1.13	Soft Landscaping	67	42	3	0.3	0.8
1	GF	PP1.1	Permeable Pavins	67	419	28.1	0.7	19.7
					4,697	315		241

B. 5 Zone 2 Runoff Calculations

Predevelopement Zone 2

Post developement discharge, volume and rate

Zone 2

Zone	Catchment	Details	Rainfall depth	Area	Rainfall volume	Runoff factor	Runoff volume
			mm	m2	m3	C Coeff	m3
2	SL2.1	Soft Landscaping	67	268	17.9	0.3	5.4
2	SL2.2	Soft Landscaping	67	9	0.6	0.3	0.2
2	SL2.3	Soft Landscaping	67	19	1.3	0.3	0.4
2	SL2.4	Soft Landscaping	67	18	1.2	0.3	0.4
2	SL2.5	Soft Landscaping	67	40	2.6	0.3	0.8
2	SL2.6	Soft Landscaping	67	19	1.3	0.3	0.4
2	SL2.7	Soft Landscaping	67	10	0.6	0.3	0.2
2	SL2.8	Soft Landscaping	67	14	1.0	0.3	0.3
2	SL2.9	Soft Landscaping	67	15	1.0	0.3	0.3
2	SL2.10	Soft Landscaping	67	12	0.8	0.3	0.2
2	SL2.11	Soft Landscaping	67	3	0.2	0.3	0.1
2	SL2.12	Soft Landscaping	67	9	0.6	0.3	0.2
2	SL2.13	Soft Landscaping	67	9	0.6	0.3	0.2
2	SL2.14	Soft Landscaping	67	8	0.5	0.3	0.2
2	SL2.15	Soft Landscaping	67	10	0.6	0.3	0.2
2	SL2.16	Soft Landscaping	67	10	0.6	0.3	0.2
2	SL2.17	Soft Landscaping	67	10	0.7	0.3	0.2
2	SL2.18	Soft Landscaping	67	14	1.0	0.3	0.3
2	SL2.19	Soft Landscaping	67	16	1.1	0.3	0.3
2	SL2.20	Soft Landscaping	67	13	0.9	0.3	0.3
2	SL2.21	Soft Landscaping	67	16	1.1	0.3	0.3
2	SL2.22	Soft Landscaping	67	16	1.1	0.3	0.3
2	SL2.23	Soft Landscaping	67	16	1.1	0.3	0.3
2	SL2.24	Soft Landscaping	67	16	1.1	0.3	0.3
2	SL2.25	Soft Landscaping	67	14	0.9	0.3	0.3
2	SL2.26	Soft Landscaping	67	34	2.3	0.3	0.7
2	SL2.27	Soft Landscaping	67	12	0.8	0.3	0.2
2	SL2.28	Soft Landscaping	67	15	1.0	0.3	0.3
2	SL2.29	Soft Landscaping	67	16	1.1	0.3	0.3
2	SL2.30	Soft Landscaping	67	14	0.9	0.3	0.3
2	PP2.1	Permable Paving	67	44	2.9	0.7	2.1
2	PP2.2	Permable Paving	67	25	1.7	0.7	1.2
2	PP2.3	Permeable Paving	67	30	2.0	0.7	1.4
2	HL2.1	Hard Landscaping	67	75	5.0	1	5.0
2	HL2.2	Hard Landscaping	67	16	1.1	1	1.1
2	HL2.3	Hard Landscaping	67	342	22.9	1	22.9
2	HL2.4	Hard Landscaping	67	218	14.6	1	14.6
2	HL2.5	Hard Landscaping	67	56	3.7	1	3.7
2	HL2.6	Hard Landscaping	67	12	0.8	1	0.8
2	HL2.7	Hard Landscaping	67	3	0.2	1	0.2
2	HL2.8	Hard Landscaping	67	44	2.9	1	2.9
				1557	104		70

B. 6 Swale attenuation volumes

Contract St Anne's Court		Job ref. 288354		
Part of Structure Swale A1		Calc. Sheet No.		
Drawing ref.	Calculations by GS	Checked by SB	Date Aug 2023	
RCD.	ISSUE.		REV.	A

Duration (\min)	Rainfall (mm)	Intensity (mm/hr)	Rainfall $\left(\mathrm{m}^{3} / \mathrm{ha}\right)$	Runoff $\left(\mathrm{m}^{3}\right)$	Allowable Outflow $\left(\mathrm{m}^{3}\right)$	Storage Req'd (m^{3})
1						
2		0.00	0	0	0	0
5		0.00	0	0	0	0
10		0.00	0	0	0	0
15	29.0	116.16	290	7	0	7
30	35.9	71.76	359	9	1	8
60	44.4	44.40	444	11	2	10
120	55.0	27.48	550	14	3	11
240	67.9	16.98	679	17	6	11
360	76.9	12.82	769	19	10	10
720	95.0	7.92	950	24	19	5
1440	117.5	4.90	1175	30	38	-8
2880	130.8	2.73	1308	33	76	-43

base case 20\% climate change

24.2
29.9
37.0
45.8
56.6
64.1
79.2
97.9
109.0

29.0
35.9
44.4
55.0
67.9
76.9
95.0
117.5
130.8

Minimum value of storage required $=$

Oversized Pipe Requirements

600	38
900	17
1050	13
1200	10
1500	6

Tank Requirements

$\mathrm{X}=$	3	m
$\mathrm{Y}=$	1.0	m
$\mathrm{Z}=$	3	m

Contract St Anne's Court		Job ref. 288354		
Part of Structure Swale A2		Calc. Sheet No.		
Drawing ref.	Calculations by GS	Checked by SB	Date Aug 2023	
RCD.	ISSUE.		REV.	A

Duration (\min)	Rainfall (mm)	Intensity (mm/hr)	Rainfall $\left(\mathrm{m}^{3} / \mathrm{ha}\right)$	Runoff $\left(\mathrm{m}^{3}\right)$	Allowable Outflow $\left(\mathrm{m}^{3}\right)$	Storage Req'd (m^{3})
1						
2		0.00	0	0	0	0
5		0.00	0	0	0	0
10		0.00	0	0	0	0
15	24.2	96.80	242	3	0	3
30	29.9	59.80	299	4	1	3
60	37.0	37.00	370	5	2	3
120	45.8	22.90	458	6	3	3
240	56.6	14.15	566	8	6	1
360	64.1	10.68	641	9	10	-
720	79.2	6.60	792	11	19	-8
1440	97.9	4.08	979	13	38	-25
2880	109.0	2.27	1090	15	76	-62

	24.2
$\mathbf{2 9 . 9}$	29.0
$\mathbf{3 7 . 0}$	35.9
$\mathbf{4 5 . 8}$	44.4
$\mathbf{5 6 . 6}$	55.0
$\mathbf{6 4 . 1}$	67.9
$\mathbf{7 9 . 2}$	76.9
$\mathbf{9 7 . 9}$	95.0
$\mathbf{1 0 9 . 0}$	

Minimum value of storage required $=$

Oversized Pipe Requirements

600	12
900	5
1050	4
1200	3
1500	2

Tank Requirements

$\mathrm{X}=$	2	m
$\mathrm{Y}=$	1.0	m
$\mathrm{Z}=$	2	m

Contract St Anne's Court		$\begin{aligned} & \hline \text { Job ref. } \\ & \quad 288354 \\ & \hline \end{aligned}$		
Part of Structure Swale B1		Calc. Sheet No.		
Drawing ref.	$\begin{aligned} & \text { Calculations by } \\ & \text { GS } \end{aligned}$	$\begin{gathered} \text { Checked by } \\ \text { SB } \end{gathered}$	Date Aug 2023	
RCD.	ISSUE.		REV.	A

Duration (\min)	Rainfall (mm)	Intensity (mm/hr)	$\begin{aligned} & \hline \text { Rainfall } \\ & \left(\mathrm{m}^{3} / \mathrm{ha}\right) \\ & \hline \end{aligned}$	Runoff $\left(\mathrm{m}^{3}\right)$	Allowable Outflow $\left(\mathrm{m}^{3}\right)$	Storage Req'd $\left(\mathrm{m}^{3}\right)$
1						
2		0.00	0	0	0	(0)
5		0.00	0	0	0	0
10		0.00	0	0	0	0
15	29.0	116.16	290	9	0	9
30	35.9	71.76	359	12	1	11
60	44.4	44.40	444	14	2	13
120	55.0	27.48	550	18	3	15
240	67.9	16.98	679	22	6	16
360	76.9	12.82	769	25	10	15
720	95.0	7.92	950	31	19	12
1440	117.5	4.90	1175	38	38	0
2880	130.8	2.73	1308	42	76	-34

	24.2
$\mathbf{2 9 . 9}$	29.0
$\mathbf{3 7 . 0}$	35.9
$\mathbf{4 5 . 8}$	44.4
$\mathbf{5 6 . 6}$	55.0
$\mathbf{6 4 . 1}$	67.9
$\mathbf{7 9 . 2}$	76.9
$\mathbf{9 7 . 9}$	95.0
$\mathbf{1 0 9 . 0}$	

Minimum value of storage required $=$

Oversized Pipe Requirements

600	55
900	24
1050	18
1200	14
1500	9

Tank Requirements

$\mathrm{X}=$	4	m
$\mathrm{Y}=$	1.0	m
$\mathrm{Z}=$	4	m

Contract St Anne's Court		$\begin{aligned} & \hline \text { Job ref. } \\ & 288354 \\ & \hline \end{aligned}$		
Part of Structure Swale B2		Calc. Sheet No.		
Drawing ref.	Calculations by GS	Checked by SB	Date Aug 2023	
RCD.	ISSUE.		REV.	A

Duration (\min)	Rainfall (mm)	Intensity (mm/hr)	Rainfall $\left(\mathrm{m}^{3} / \mathrm{ha}\right)$	Runoff $\left(\mathrm{m}^{3}\right)$	Allowable Outflow $\left(\mathrm{m}^{3}\right)$	Storage Req'd (m^{3})
1						
2		0.00	0	0	0	0
5		0.00	0	0	0	0
10		0.00	0	0	0	0
15	29.0	116.16	290	2	0	2
30	35.9	71.76	359	3	1	2
60	44.4	44.40	444	4	2	2
120	55.0	27.48	550	5	3	1
240	67.9	16.98	679	6	6	-
360	76.9	12.82	769	7	10	-3
720	95.0	7.92	950	8	19	-11
1440	117.5	4.90	1175	10	38	-28
2880	130.8	2.73	1308	11	76	-65

24.2	29.0
29.9	35.9
37.0	44.4
45.8	55.0
56.6	67.9
64.1	76.9
79.2	95.0
97.9	117.5
109.0	130.8

Minimum value of storage required $=$

Oversized Pipe Requirements

600	8
900	4
1050	3
1200	2
1500	1

Tank Requirements

$\mathrm{X}=$	2	m
$\mathrm{Y}=$	1.0	m
$\mathrm{Z}=$	2	m

Contract St Anne's Court		Job ref. 288354		
Part of Structure Swale C		Calc. Sheet No.		
Drawing ref.	Calculations by GS	$\begin{gathered} \text { Checked by } \\ \text { SB } \end{gathered}$	Date Aug 2023	
RCD.	ISSUE.		REV.	A

Duration (\min)	Rainfall (mm)	Intensity (mm/hr)	Rainfall $\left(\mathrm{m}^{3} / \mathrm{ha}\right)$	Runoff $\left(\mathrm{m}^{3}\right)$	Allowable Outflow $\left(\mathrm{m}^{3}\right)$	Storage Req'd (m^{3})
1						
2		0.00	0	0	0	0
5		0.00	0	0	0	0
10		0.00	0	0	0	0
15	29.0	116.16	290	8	0	8
30	35.9	71.76	359	10	1	9
60	44.4	44.40	444	13	2	11
120	55.0	27.48	550	16	3	12
240	67.9	16.98	679	19	6	13
360	76.9	12.82	769	22	10	12
720	95.0	7.92	950	27	19	8
1440	117.5	4.90	1175	33	38	-5
2880	130.8	2.73	1308	37	76	-39

base case 20\% climate change

	24.2
$\mathbf{2 9 . 9}$	29.0
$\mathbf{3 7 . 0}$	
$\mathbf{4 5 . 8}$	35.9
$\mathbf{5 6 . 6}$	44.4
$\mathbf{6 4 . 1}$	55.0
$\mathbf{7 9 . 2}$	76.9
$\mathbf{9 7 . 9}$	95.0
$\mathbf{1 0 9 . 0}$	

29.0
35.9
44.4
55.0
67.9
76.9
95.0
130.8

Minimum value of storage required $=$

Oversized Pipe Requirements

600	45
900	20
1050	15
1200	11
1500	7

Tank Requirements

$\mathrm{X}=$	4	m
$\mathrm{Y}=$	1.0	m
$\mathrm{Z}=$	4	m

Contract St Anne's Court		Job ref. 288354		
Part of Structure Swale D		Calc. Sheet No.		
Drawing ref.	Calculations by GS	$\begin{gathered} \text { Checked by } \\ \text { SB } \end{gathered}$	Date Aug 2023	
RCD.	ISSUE.		REV.	A

Duration (\min)	Rainfall (mm)	Intensity (mm/hr)	Rainfall $\left(\mathrm{m}^{3} / \mathrm{ha}\right)$	Runoff $\left(\mathrm{m}^{3}\right)$	Allowable Outflow $\left(\mathrm{m}^{3}\right)$	Storage Req'd $\left(\mathrm{m}^{3}\right)$
1						
2		0.00	0	0	0	0
5		0.00	0	0	0	0
10		0.00	0	0	0	0
15	29.0	116.16	290	10	0	9
30	35.9	71.76	359	12	1	11
60	44.4	44.40	444	15	2	13
120	55.0	27.48	550	19	3	15
240	67.9	16.98	679	23	6	17
360	76.9	12.82	769	26	10	16
720	95.0	7.92	950	32	19	13
1440	117.5	4.90	1175	40	38	2
2880	130.8	2.73	1308	44	76	-32

$\mathbf{2 4 . 2}$	
$\mathbf{2 9 . 9}$	29.0
$\mathbf{3 7 . 0}$	35.9
$\mathbf{4 5 . 8}$	44.4
$\mathbf{5 6 . 6}$	55.0
$\mathbf{6 4 . 1}$	67.9
$\mathbf{7 9 . 2}$	76.9
$\mathbf{9 7 . 9}$	95.0
$\mathbf{1 0 9 . 0}$	

Minimum value of storage required $=$

Oversized Pipe Requirements

600	59
900	26
1050	19
1200	15
1500	9

Tank Requirements

$\mathrm{X}=$	4	m
$\mathrm{Y}=$	1.0	m
$\mathrm{Z}=$	4	m

B. 7 Courtyard porous paving attenuation volume

Contract St Anne's Court		Job ref. 288354	
Part of Structure Courtyard Porous Paving system		Calc. Sheet No.	

Minimum value of storage required $=$

Oversized Pipe Requirements

600	35
900	16
1050	11
1200	9
1500	6

Tank Requirements

$\mathrm{X}=$	3	m
$\mathrm{Y}=$	1.0	m
$\mathrm{Z}=$	3	m

Appendix C (Background information)

C. 1 Topographical Survey

5 *

dush	
Staring	
TreE	
	¢
Linework:	
Emankenent op	
\%8800	

STREET FURNIURE:	
	${ }_{\text {cp }}^{\text {c. }}$
	+10+5
	cor
${ }_{\text {posf }}^{\text {post max }}$	
coicheos	
	Tr:

	Dublin City Council

C. 2 Utility Survey

C. 3 Irish Water Record Drawings

[^0]: Issue Document Verification with Document

[^1]: Dublin City Council

[^2]: Dublin City Council

