

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

Housing Bundle 4 & 5 - Lot 2 - Ballymun

National Development Finance Agency

Factual Ground Investigation Report

March 2024

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Housing Bundle 4 & 5 - Lot 2 – Ballymun
Engineer	Malone O'Regan Consultant Engineer
Client	National Development Finance Agency
Project No	13061-08-23
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
С	Final	G. G. Rocha	D. MagLochlainn	C. Finnerty	Dublin	10 April 2024

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

CONTENTS

1.0	Preamble	1
2.0	Overview	1
2.1.	Background	1
2.2.	Purpose and Scope	1
3.0	Subsurface Exploration	1
3.1.	General	1
3.2.	Trial Pits	2
3.4.	Soakaway Testing	2
3.3.	Slit Trenching	2
3.5.	Cable Percussion Boreholes	2
3.6.	Rotary Boreholes	3
3.7.	Surveying	3
3.8.	Groundwater Monitoring Installations	4
3.9.	Laboratory Testing	4
4.0	Ground Conditions	4
4.1.	General	4
4.2.	Groundwater	5
4.3.	Laboratory Testing	6
4.3.1	. Geotechnical Laboratory Testing	6
4.3.2	. Chemical Laboratory Testing	6
4.3.3	. Environmental Laboratory Testing	6
4.3.4	Rock Laboratory Testing	7

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

APPENDICES

Appendix 1

Appendix 2

Trial Pit Records

Appendix 3

Soakaway Results

Appendix 4

Slit Trench records

Appendix 5

Borehole Records

Appendix 6

Laboratory Testing

Appendix 7 Groundwater Monitoring

1.0 Preamble

On the instructions of Malone O'Regan Consultant Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between November 2023 and March 2024 at the site of the proposed residential development, Housing Bundle 4 & 5 Lot 2, Ballymun, County Dublin.

2.0 Overview

2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. The site is currently brownfield and is used as a greenspace between apartment buildings to the north and a housing estate to the west. This site was previously the location of the Ballymun Flats before it was redeveloped as a greenspace. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 12 No. Trial Pits to a maximum depth of 3.70m BGL
- Carry out 5 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Carry out 22 No. Cable Percussion boreholes to a maximum depth of 7.60m BGL
- Carry out 5 No. Rotary Core Boreholes to a maximum depth of 28.00m BGL
- Carry out 14 No. Slit Trench to locate services and old foundations
- Installation of 3 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a JCB 3CX at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by an Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.4. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.3. Slit Trenching

The slit trenches were excavated using a 3.5T excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The soil was slowly stripped using a spotter on the trench to alert the driver if any services were seen, to avoid damage to any underlying services. The slit trenches were sampled, logged and photographed by an Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the slit trench records which are provided in Appendix 4 of this Report.

3.5. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular

material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 5 of this Report.

3.6. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 5 of this Report.

3.7. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.8. Groundwater Monitoring Installations

Groundwater Monitoring Installation were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm uPVC/HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.9. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite/Engineers Ireland Suite I, organic matter, pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK. The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer, tests were carried out in NMTL's Geotechnical Laboratory in Carlow. California Bearing Ratio (CBR), resistivity and redox tests were carried out in Professional Soils Laboratory (PSL Ltd) in the UK. Rock strength testing including Point Load (Is₅₀) and Unconfined Compressive Strength (UCS) testing was carried out in CMTL Geotechnical Laboratory in Portlaoise.

The results of the laboratory testing are included in Appendix 6 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and generally comprised;

- Topsoil
- Made Ground
- Cohesive Deposits
- Granular
- Bedrock

TOPSOIL: Topsoil was encountered in the majority of exploratory holes and was present to a maximum depth of 0.30m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil or from Surface and were present to depths between 0.60m and 4.10m BGL. These deposits were described generally as *brown slightly sandy gravelly CLAY* or *dark grey slightly sandy slightly gravelly CLAY with occasional fragments of concrete, red brick, metal, pipe and plastic.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown slightly sandy slightly gravelly CLAY with occasional cobbles and boulders* overlying a *dark grey slightly sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm to stiff or stiff below 2.0m BGL in the majority of the exploratory holes. These deposits had occasional, some or frequent cobble and boulder content, where noted on the exploratory hole logs.

GRANULAR DEPOSITS: A Granular deposit was encountered within the cohesive deposits at location BH02 and was typically described as *grey clayey sandy sub rounded to sub angular fine to coarse GRAVEL with occasional cobbles and rare boulders.* The secondary sand/gravel and silt/clay constituents may vary across the site and with depth while occasional or frequent cobble and boulder content also present where noted on the exploratory hole logs. Based on the SPT N values the deposit is typically dense.

BEDROCK: The rotary core boreholes recovered strong to very strong grey/dark grey massive fine grained argillaceous LIMESTONE. This is typical of the Calp Formation, which is noted on the geological mapping to the east of the proposed site. Rare visible pyrite veins were noted during logging which are typically present within the Calp Limestone.

The depth to rock varies from 16.30m BGL in BH02 to a maximum of 18.80m BGL in BH19 to the south of the site. The total core recovery is good, typically 100% with some of the uppermost runs dropping to 80 or 90%. The SCR and RQD both are relatively poor in the upper weathered zone, often recovered as non-intact, however both indices show an increase with depth in each of the boreholes.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in BH04, BH14A and BH19 to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 8 of this Report.

4.3. Laboratory Testing

4.3.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 17.50% and 49.7% generally with fines contents of 18.50% to 65%.

The CBR testing on remoulded samples gave results ranging between 0.70% and 1.70% for the cohesive deposits. The Thermal Resistivity results range from 13.433 to 26.138 Ohms/m while the Redox potential range from 510 to 540 mV.

4.3.2. Chemical Laboratory Testing

The pH and sulphate testing completed on samples recovered from the exploratory holes indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005 with the exception of BH04 at 0.5m BGL. This sample was present in the more variable Made Ground stratum and the material testing indicates a DS-2 Classification for the specification of concrete. No special precautions are required for concrete foundations to prevent sulphate attack, with the exception of BH04 sample above. The samples tested were below the limits of DS-1 for the majority of tests completed, with one result below the limits of DS-2 in the BRE Special Digest 1:2005.

4.3.3. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken

should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation. A waste classification report is recommended to be carried out to provide an interpretation of the laboratory data should any material be required to be disposed of off site.

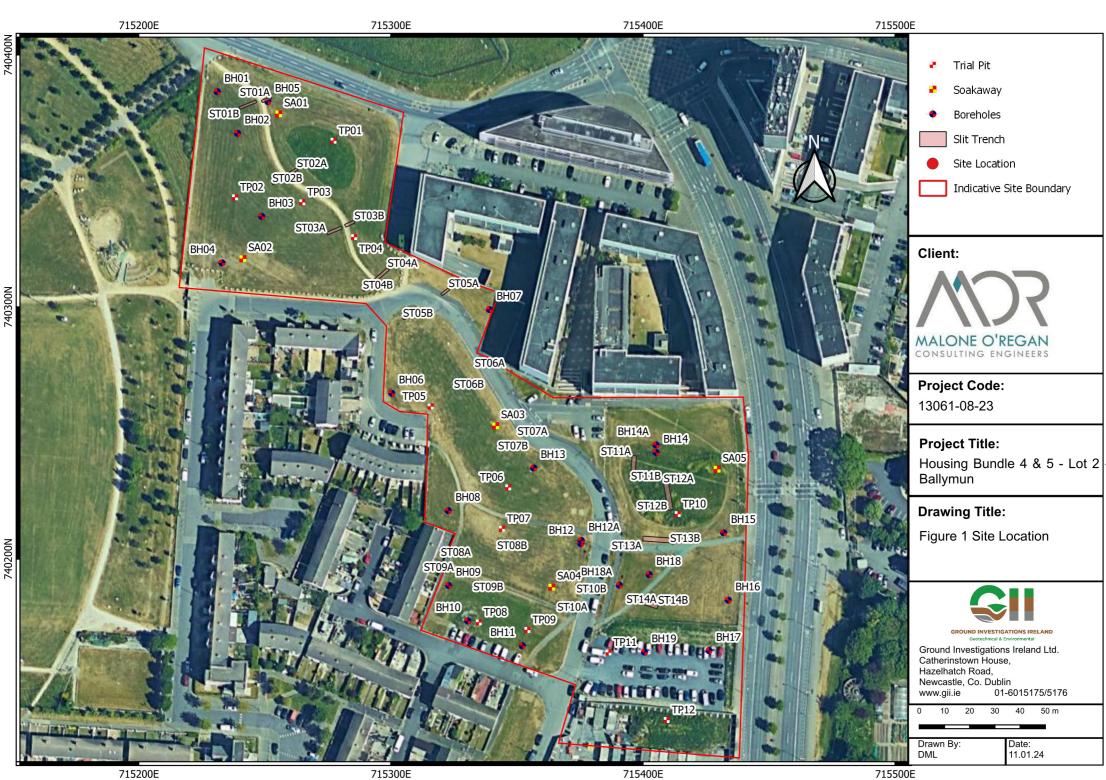
4.3.4. Rock Laboratory Testing

The rock testing carried out on samples recovered from the boreholes reported Unconfined Compressive Strength (UCS) values ranging between 87.3 and 118.5 MPa while the point load testing gave Is50 values ranging between 3.00 to 6.93 MPa. The Is₅₀ results correlate to the UCS values using a factor of approximately 20, giving values of 60 MPa and 138.6 MPa. These results correlate to the strength descriptions ranging between of Strong to very Strong and confirming the variability of this stratum and the descriptions on the logs.

The results from the completed laboratory testing are included in Appendix 6 of this report.

The groundwater and stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations.

Any waste material to be removed off site should be disposed of to a suitably licenced landfill.


5.5. Soakaway Design

At the locations of SA01, SA02, SA03, SA04 and SA05 the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore not recommended as suitable for soakaway design and construction.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

APPENDIX 2 – Trial Pit Records

Ground Investigations Ireland Ltd							Site Housing Bundle_Ballymur	1	Trial Pit Number TP01	
Excavation Trial Pit	Method	Dimens 2.70m	ions x 0.70m x 2.80m (L)	x W x D)		Level (mOD) 65.15	Client National Development Fin	ance Agency	Job Number 13061-08-23	
		Locatio 71	n 5277.3 E 740365.8 I		Dates 19	/10/2023	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	rds	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
					64.85	(0.30) - (0.30) - 0.30	and rootlets	ightly sandy gravelly Clay was sub rounded cobbles and ber and wire		
0.70	B1				64.15	(0.70)				
1.20	B2				04.15	(0.60)	Firm brown slightly sandy sub angular to sub rounde	gravelly CLAY with occasion d cobbles	nal	
					63.55	1.60	Stiff brown slightly sandy g angular to sub rounded co	gravelly CLAY with occasion bbles	al sub	
2.00	B3					(1.00)				
2.60	B4		Slow(1) at 2.70m.		62.55 62.35	2.60 (0.20) 2.80	angular to sub rounded co	avelly CLAY with some sub bbles possible boulder or bedroc		Z 1
Plan .						.	Remarks			
							Groundwater encountered a Trial pit side walls collapsing Trial pit terminated due to be Trial pit backfilled upon com	it 2.70m BGL 3 edrock pletion		
						-				
						. s	Scale (approx)	Logged By	Figure No . 13061-08-23(4).TF	-0

	Grou	nd In	vestigations Ire www.gii.ie	Site Housing Bundle_Ballymun	Site Housing Bundle_Ballymun				
Excavation Trial Pit	Method	Dimens 3.50m	ions x 0.70m x 3.40m (L x W x D)		Level (mOD) 64.74	Client National Development Fin	ance Agency	Job Number 13061-08-23(4	- 1
		Locatio 71	n 5238.1 E 740343.3 N	Dates 19)/10/2023	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend to A	Avaio:
0.50	B1			64.44	(0.30) - (0.30) - (0.30) - (0.70)	and rootlets	ily gravelly TOPSOIL with g ightly sandy gravelly Clay v and fabric		
1.20	B2			63.74	1.00	MADE GROUND grey slig fragments of wire, plastic a	htly sandy gravelly Clay wit and metal	h	
2.00	B3		Slow(1) at 1.70m.	62.94	- - - - - - - - - - - -	Firm brown slightly sandy sub angular to sub rounde	gravelly CLAY with occasio d cobbles and boulders	nal V	1
3.00 3.30	B4			61.54 61.34	(0.20)		dy gravelly CLAY with occa d cobbles and boulders	sional	
					-	OBSTRUCTION: Due to Complete at 3.40m	large boulder		
Plan .						Remarks			
						Groundwater encountered a Trial pit side walls collapsing Trial pit terminated due to a Trial pit backfilled upon com	1		
						Scale (approx) 1:25	Logged By GGR	Figure No. 13061-08-23(4).TP	02

	Grou	nd In	vestigations Ire www.gii.ie	Site Housing Bundle_Ballymun Trial Pit Number TP03				
Excavation Trial Pit	Method	Dimens 4.00m			Level (mOD) 63.78	Client National Development Fin	ance Agency	Job Number 13061-08-23(4)
		Locatio 71	n 5264.8 E 740341.3 N	Dates 23	3/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Kater Pungal
0.50	B1			63.48	(0.30) - (0.30) - (0.60)	and rootlets MADE GROUND brown sl	ly gravelly TOPSOIL with grading and gravelly Clay with grading sandy gravelly Clay with grading and red bring and	th
1.00	B2		Slow/ Mederate(4) at	62.88	0.90	Soft to firm brown slightly soccasional sub angular to boulders	sandy gravelly CLAY with sub rounded cobbles and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2.00	B3		Slow/ Moderate(1) at 1.40m.	62.28	(1.10)		dy gravelly CLAY with occas d cobbles tly sandy gravelly CLAY with sub rounded cobbles	
3.00	B4			60.68	(0.40)	Stiff dark grey slightly sand sub angular to sub rounde	dy gravelly CLAY with occas d cobbles and boulders	onal CAPO
3.50	B5			60.28	3.50	OBSTRUCTION: Due to Complete at 3.50m	large boulder	
Plan .						Remarks	4.4.40 DOI	
						Groundwater encountered a Trial pit side walls stable Trial pit terminated due to a Trial pit backfilled upon com		
		-						
						Scale (approx) 1:25	Logged By GGR 1	Figure No. 3061-08-23(4).TP03

	Grou	nd In	vestigat www.g	Site Housing Bundle_Ballymun	ı	Trial Pit Number TP04			
Excavation Trial Pit	Method	Dimens 4.60m				Level (mOD) 63.43	Client National Development Fina	ance Agency	Job Number 13061-08-23(4)
		Locatio	n 5285.4 E 74032	27.5 N	Dates 23	3/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	lecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater V
Plan	B1	Depth (m)	Slow(1) at 0.90		63.13 62.53	- (0.30) - (0.60) - (0.60) - (0.60) - (0.60)	Brown slightly sandy slight and rootlets	ly gravelly TOPSOIL with gra ightly sandy gravelly Clay wit gments of plastic, concrete, n old foundation	iss
							Scale (approx)		Figure No.
							1:25	GGR 13	3061-08-23(4).TP0

	Grou	nd In	vestigations Ire www.gii.ie	Site Housing Bundle_Ballymur	Housing Bundle_Ballymun			
Excavation Trial Pit	Method	Dimens 3.30m	ions x 0.50m x 3.70m (L x W x D)		Level (mOD) 63.60	Client National Development Fin	ance Agency	Job Number 13061-08-23(4)
		Locatio 71	n 5315.8 E 740260.3 N	Dates 23	8/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend A state of the state of
					(0.30)	Brown slightly sandy slight and rootlets	tly gravelly TOPSOIL with gr	ass
0.50	B1			63.30	0.30	MADE GROUND brown sl grass and rootlets and frag	ightly sandy gravelly Clay w gments of plastic and red bri	ith cks
1.00	B2			62.70		Firm dark grey slightly san sub angular to sub rounde	dy gravelly CLAY with occas d cobbles	sional o o o
					- - (0.70)			6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				62.00	1.60 - 1.60	Firm to stiff dark grey sligh occasional sub angular to	itly sandy gravelly CLAY with sub rounded cobbles	10.000 0.000 0.000 0.000 0.000 0.000 0.000
2.00	В3		Slow(1) at 2.40m.	61.20	(0.80)	Stiff dark grey slightly sand sub angular to sub rounde	dy gravelly CLAY with occasi d cobbles	\(\partial \partial \
3.00	B4				- - - - - - - - - - - - - - - - - - -	ous ungular to ous rounds	u 0025100	
3.00	D4			60.40	3.20	Stiff dark grey slightly sand sub angular to sub rounde	dy gravelly CLAY with occas d cobbles and boulders	ional
3.70	B5			59.90		OBSTRUCTION: Due to Complete at 3.70m	large boulder	
Plan .						 Remarks		
				-		Groundwater encountered a Trial pit side walls collapsing Trial pit terminated due to a Trial pit backfilled upon com	it 2.40m BGL 3 large boulder pletion	
						Scale (approx)	Logged By	Figure No.
						1:25		3061-08-23(4).TP0

	Grou	nd In	vestigations Ire www.gii.ie	Site Housing Bundle_Ballymun	ı	Trial Pit Number TP06		
Excavation Trial Pit	n Method	Dimens 3.40m	ions x 0.50m x 1.60m (L x W x D)		Level (mOD) 63.07	Client National Development Fin	ance Agency	Job Number 13061-08-23(4)
		Locatio 71	n 5346.5 E 740228.3 N	Dates 23	3/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
Depth (m) 0.50 1.00 Plan	B1 B2		Field Records Fast(1) at 1.30m.	62.77 62.27	- (0.30) - 0.30 - (0.50) - 0.80 - (0.80) - 1.60	Brown slightly sandy slight and rootlets MADE GROUND brown sl grass and rootlets and frag brick, pipe	ty gravelly TOPSOIL with gravity gravelly Sandy gravelly Clay wignents of plastic, concrete, ravelly CLAY with occasional bbles	ass the deduction of th
					S	Scale (approx) 1:25		Figure No. 3061-08-23(4).TP0

	Grou	ınd In		ations Ire ⁄.gii.ie	Site Housing Bundle_Ballymur	1	Trial Pit Number TP07		
Excavation Trial Pit	Method	Dimens 3.80m		50m (L x W x D)		Level (mOD) 63.21	Client National Development Fin	ance Agency	Job Number 13061-08-23(4)
		Locatio	n 5344 E 7402	211.8 N	Dates 23	3/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fiel	d Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Mater
					62.91		and rootlets	tly gravelly TOPSOIL with gra lightly sandy gravelly Clay wit gments of plastic, wire, metal	
0.50	B1								
					62.01	1.20	Firm grey slightly sandy gr angular to sub rounded co	avelly CLAY with occasional bbles	sub
2.00	В3		Slow(1) at	2.60m.	61.21	2.00	Stiff grey slightly sandy ve angular to sub rounded co	ry gravelly CLAY with some s bbles	# # # # # # # # # # # # # # # # # # #
3.00	B4				60.21	3.00	Stiff dark grey slightly sand angular to sub rounded co	dy gravelly CLAY with some s bbles and boulders	### ##################################
3.50	B5				59.71	3.50	OBSTRUCTION: Due to Complete at 3.50m	large boulder	
Plan .							⊥ Remarks		
							Groundwater encountered a Trial pit side walls collapsing Trial pit terminated due to a Trial pit backfilled upon com	it Z.60M BGL } large boulder pletion	
							Scale (approx)		Figure No. 3061-08-23(4).TP0

	Grou	ınd In	vestigatioi www.gii.i	Site Housing Bundle_Ballymur	Housing Bundle_Ballymun				
Excavation Trial Pit	Method	Dimens 3.30m	ions x 0.50m x 3.40m (L	x W x D)		Level (mOD) 63.31	Client National Development Fin	ance Agency	Job Number 13061-08-23(4)
		Locatio 71	n 5334.9 E 740174.7	N	Dates 23	/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	rds	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Region Legistra
						 (0.30)	Brown slightly sandy slight and rootlets	tly gravelly TOPSOIL with gra	ass
0.50	B1				63.01	0.30	MADE GROUND brown sl with grass and rootlets and	ightly sandy slightly gravelly d rare fragments of red brick	Clay s
					00.44	(0.60)			
1.00	B2				62.41	0.90	Firm light brown slightly sa	andy slightly gravelly CLAY	· · · · · · · · · · · · · · · · · · ·
					61.81	1.50	Firm arayinh beaus alighth	v aandy gravally CLAV with	· · · · · · · · · · · · · · · · · · ·
							occasional sub angular to	/ sandy gravelly CLAY with sub rounded cobbles	6 - 5 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
2.00	В3					(0.90)			0.00 0.00 0.00 0.00 0.00 0.00
			Slow(1) at 2.30m.		60.91	2.40	Firm greyish brown slightly occasional sub angular to	/ sandy gravelly CLAY with sub rounded cobbles	
						(0.50) 			
3.00	B4				60.41	2.90	Stiff dark grey slightly sand angular to sub rounded co	dy gravelly CLAY with some bbles and boulders	sub
3.40	B5		Slow(2) at 3.40m.		59.91	3.40	OBSTRUCTION: Due to	large boulder	<u>\$\$</u> \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
						- - - - -	Complete at 3.40m		
Plan							Remarks		
						•	Groundwater encountered a Trial pit side walls spalling Trial pit terminated due to a Trial pit backfilled upon com	it 2.30m and 3.40m BGL large boulder	
							Trial pit backfilled upon com	pletion	
		•							
		•		-		. [Scale (approx) 1:25	Logged By GGR 1	Figure No.

	Grou	nd In	vestigations Ire www.gii.ie	Site Housing Bundle_Ballymun Trial Pit Number TP09				
Excavation Trial Pit	Method	Dimens 2.20m	ions x 0.50m x 2.00m (L x W x D)		Level (mOD) 63.00	Client National Development Fin	ance Agency	Job Number 13061-08-23(4)
		Locatio 71	n 5354.1 E 740171.7 N	Dates 24	/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater Vater
				62.70	(0.30) - (0.30) - 0.30	and rootlets	ly gravelly TOPSOIL with gra ightly sandy gravelly Clay wi gments of plastic	
0.50	B1			62.20	(0.50) - (0.50) - 0.80			
				61.80	(0.40)	and boulders	ND brown slightly sandy gravingular to sub rounded cobb	/elly les ∇1
1.20	B2		Slow(1) at 1.20m.	61.40	(0.40)	Soft to firm brown slightly soccasional sub angular to		0.000 0.000 0.000 0.000
				00	(0.60)	Firm brown slightly sandy sub angular to sub rounde	gravelly CLAY with occasion d cobbles	al 6 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2.20	B3			60.80		Terminated Trial pit due to Complete at 2.20m	to side walls collapsing	, , av ,
Plan .						Groundwater encountered a	t 1.20m BGL	
		•				Trial pit side walls collapsing Trial pit terminated due to sid Trial pit backfilled upon com	de walls collapsing pletion	
					s	Scale (approx)	Logged By GGR 1	Figure No. 3061-08-23(4).TP0

Ground Investigations Irela www.gii.ie					Ltd	Site Housing Bundle_Ballymun		Trial Pit Number TP10
Excavation Method Trial Pit		Dimensions 4.20m x 0.50m x 1.70m (L x W x D) Location 715413.8 E 740217.6 N		Ground Level (mOD) 62.66 Dates 24/10/2023		Client National Development Finance Agency Engineer		Job Number 13061-08-23(4
								Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
Depth (m) 0.50 1.00 Plan	B1 B2	Water Depth (m)	Field Records	62.36 62.36	(0.30) - (0.30) - (1.30) - (1.30) - (0.10) - (0.	Brown slightly sandy slight and rootlets MADE GROUND brown sl grass and rootlets and frag	ery sandy gravelly Clay with services	ass th
		•				Scale (approx) 1:25		Figure No. 3061-08-23(4).TP1

	Grou	nd In	vestigations Ire www.gii.ie	eland	Ltd	Site Housing Bundle_Ballymun		N	Trial Pit Number TP11	
Excavation Method Trial Pit		Dimensions 2.80m x 0.50m x 3.30m (L x W x D) Location 715386.3 E 740162.8 N		Ground Level (mOD) 63.06 Dates 24/10/2023		Client National Development Finance Agency Engineer		N	Job Number 13061-08-23(4) Sheet 1/1	
								S		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Le	gend	Water
						Brown slightly sandy sligh and rootlets	tly gravelly TOPSOIL with gr	ass		
			Slow(1) at 0.40m	62.76 62.66	⊢ (0.10)	MADE GROUND grey slig	htly sandy very gravelly Cla gments of plastic and geote	y with	Z	Z 1
0.50	B1		Slow(1) at 0.40m.	52.00	(0.50)		lightly sandy gravelly Clay w			
				62.16	0.00					
1.00	B2			62.16	- 0.90 	Stiff brown slightly sandy g angular to sub rounded co	gravelly CLAY with occasion obbles	al sub		
					_ (0.90) _ _ _ _ _				0.0.0 0.0.0 0.0.0 0.0.0	
2.00	В3			61.26	1.80	Stiff brown slightly sandy of angular to sub rounded co	gravelly CLAY with occasion abbles	al sub	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
3.00	B4			60.16	2.90	Stiff dark grey slightly sand angular to sub rounded co	dy gravelly CLAY with some bbles and boulders	sub		
				59.76	_ ` ′	OBSTRUCTION: Due to	large boulder	\$ \$	<u>**</u> 0	
					- - - - - - -	Complete at 3.30m				
Plan						Remarks				_
						Groundwater encountered a Trial pit side walls stable Trial pit terminated due to po Trial pit backfilled upon com				
						That pit backfilled upon com	pietion			
						Scale (approx)	Logged By	Figure No		
						1.20			~('). ' '	•

Ground Investigations Irela www.gii.ie					Ltd	Site Housing Bundle_Ballymun		Trial Pit Number TP12
Excavation Method Trial Pit		Dimensions 2.90m x 0.50m x 1.50m (L x W x D) Location 715409.4 E 740135.9 N		Ground Level (mOD) 63.40 Dates 24/10/2023		Client National Development Finance Agency Engineer		Job Number 13061-08-23(4)
								Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nate
Plan	B1 B2		Slow/ Moderate(1) at 1.40m.	63.10	1.50	and rootlets	t 1 40m BGI	
					·	Scale (approx) 1:25		Figure No. 8061-08-23(4).TP1

Housing Bundle - Ballymun

TP10

Housing Bundle - Ballymun

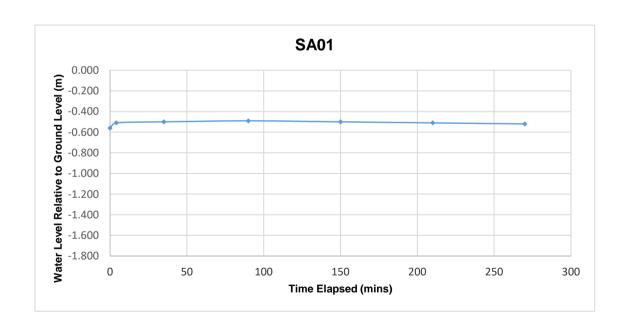
TP11

Housing Bundle - Ballymun

TP12

APPENDIX 3 – Soakaway Records

SA01
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 3.60m x 0.50m x 1.80m (L x W x D)


Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
26/10/2023	0	-0.560
26/10/2023	4	-0.510
26/10/2023	35	-0.500
26/10/2023	90	-0.490
26/10/2023	150	-0.500
26/10/2023	210	-0.510
26/10/2023	270	-0.520

*Soakaway failed - Pit backfilled

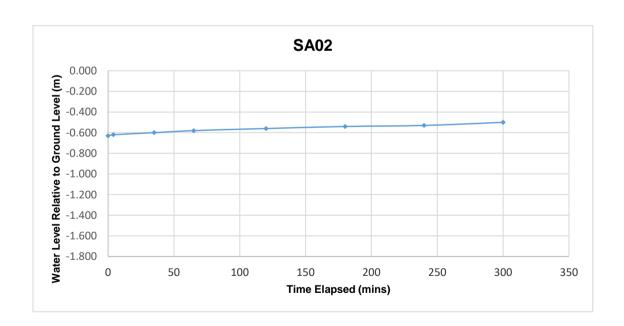
Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Email: info@gii.ie

Web: www.gii.ie

01 601 5175 / 5176

Tel:


SA02

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 3.10m x 0.50m x 1.80m (L x W x D)

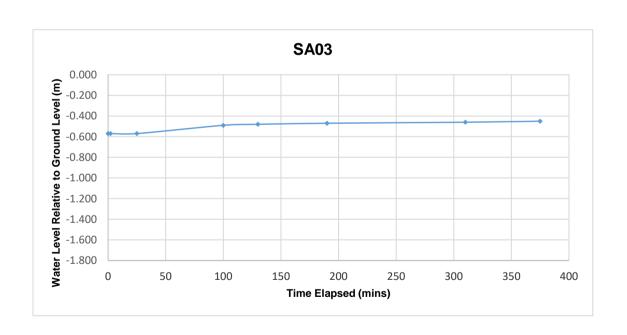
Date	Time	Water level (m bgl)
26/10/2023	0	-0.630
26/10/2023	4	-0.620
26/10/2023	35	-0.600
26/10/2023	65	-0.580
26/10/2023	120	-0.560
26/10/2023	180	-0.540
26/10/2023	240	-0.530
26/10/2023	300	-0.500

*Soakaway failed - Pit backfilled

Start depth **Depth of Pit** Diff 75% full 25%full 1.800 0.63 1.170 0.9225 1.5075

SA03
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 3.20m x 0.50m x 1.80m (L x W x D)

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52


Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
25/10/2023	0	-0.570
25/10/2023	2	-0.570
25/10/2023	25	-0.570
25/10/2023	100	-0.490
25/10/2023	130	-0.480
25/10/2023	190	-0.470
25/10/2023	310	-0.460
25/10/2023	375	-0.450

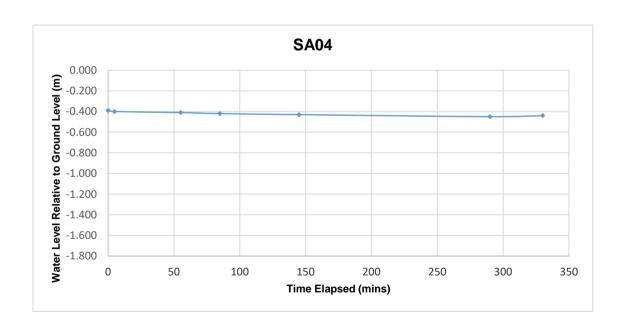
*Soakaway failed - Pit backfilled

Start depth	Depth of Pit	Diff	75% full	25%full
0.57	1.800	1.230	0.8775	1.4925

SA04
Soakaway Test to BRE Digest 365

Trial Pit Dimensions: 3.40m x 0.50m x 1.80m (L x W x D)

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52


Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

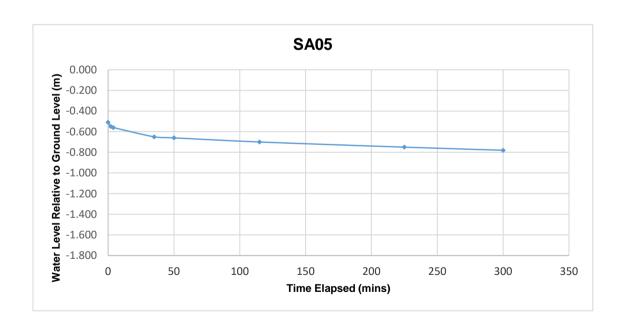
Date	Time	Water level (m bgl)
25/10/2023	0	-0.390
25/10/2023	5	-0.400
25/10/2023	55	-0.410
25/10/2023	85	-0.420
25/10/2023	145	-0.430
25/10/2023	290	-0.450
25/10/2023	330	-0.440

*Soakaway failed - Pit backfilled

Start depth Depth of Pit Diff 75% full 25%full 0.39 1.800 1.410 0.7425 1.4475

SA05
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 2.60m x 0.50m x 1.80m (L x W x D)

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52


Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
25/10/2023	0	-0.510
25/10/2023	2	-0.550
25/10/2023	4	-0.560
25/10/2023	35	-0.650
25/10/2023	50	-0.660
25/10/2023	115	-0.700
25/10/2023	225	-0.750
25/10/2023	300	-0.780

*Soakaway failed - Pit backfilled

Start depth	Depth of Pit	Diff	75% full	25%full
0.51	1.800	1.290	0.8325	1.4775

	Ground Investigations Ireland Ltd www.gii.ie			Site Housing Bundle_Ballymun		Trial Pit Number SA01		
Excavation Trial Pit	n Method		Dimensions 3.60m x 0.50m x 1.80m (L x W x D) 64.96			Client National Development Fin	ance Agency	Job Number 13061-08-23(4)
		Location 715	n 5255.4 E 740376.4 N	Dates 26	/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) D	escription	Legend Nate
				64.76 64.26	(0.50)	and roots MADE GROUND: brown s occasional subangular to s fragments of concrete. Sa subangular to subrounded MADE GROUND: brown s occasional subangular to swith concrete and brick fra Gravel is subangular to su	llightly sandy gravelly Clay wisubrounded cobbles and nd is fine to coarse. Gravel is fine to coarse. llightly sandy gravelly Clay wisubrounded cobbles and bou gments. Sand is fine to coarse brounded fine to coarse.	ith
				63.16	- 1.80	Complete at 1.80m		
					_			
Plan .					-	Remarks No groundwater encountere	d	
						Sidewalls stable Trial pit backfilled upon com	pletion	
					.	Scale (approx)		Figure No. 3061-08-23(4).SA0

	Ground Investigations Ireland Ltd www.gii.ie			Site Housing Bundle_Ballymun			Trial Pit Number SA02		
Excavation Trial Pit	Method	Dimens 3.10m	ions x 0.50m x 1.80m (L x W x D)		Level (mOD) 64.34	Client National Development Fin	ance Agency		Job Number 3061-08-23(4)
		Locatio 71	n 5241.2 E 740318.9 N	Dates 26	5/10/2023	Engineer			Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	L	.egend Mater
Plan .			Water strike(1) at 0.80m.	64.14	(0.20) - (0.30) - (0.50) - (1.30) - (1.30) - (1.30) - (1.30) - (1.30)	Brown slightly sandy slight and roots MADE GROUND: Brown s concrete fragments and of subrounded cobbles and b Gravel is subangular to su	nt 0.80m BGL slow rate	rass with arse.	Σ1
						Scale (approx)	Logged By	Figure I	No.
						1:25	JI	13061-08	-23(4).SA0

	Ground Investigations Ireland Ltd www.gii.ie				Site Housing Bundle_Ballymun		Trial Pit Number SA03	
Excavation Trial Pit	n Method	Dimens 3.20m	ions x 0.50m x 1.80m (L x W x D)		Level (mOD) 62.40	Client National Development Fin	ance Agency	Job Number 13061-08-23(4)
		Locatio 71	n 5341.4 E 740252.6 N	Dates 25	5/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
				62.20	(0.20) - 0.20 - 0.20 (0.70)	and roots	tly gravelly TOPSOIL with gr ghtly sandy gravelly Clay wi is fine to coarse. Gravel is fine to coarse.	
			Water strike(1) at 1.00m.	61.50	- 0.90 - 0.90 - (0.90)	MADE GROUND: Dark gr with pipe fragments. Sand subangular to subrounded	ey slightly sandy gravelly Cl is fine to coarse. Gravel is fine to coarse.	ay V1
				60.60		Complete at 1.80m		
Plan .		•			•	Groundwater encountered a	it 1.00m BGL moderate rate due to pipe	
					•	Trial pit terminated at 1.80m Sidewalls stable Trial pit backfilled upon com	pletion	
		•						
					<u> </u>	Scale (approx)	Logged By	Figure No. 13061-08-23(4).SA0

	Ground Investigations Ireland Ltd www.gii.ie				Site Housing Bundle_Ballymur	Trial Pit Number SA04		
Excavation	n Method	Dimensi 3.40m x	ons c 0.50m x 1.80m (L x W x D)		Level (mOD) 62.63	Client National Development Fin	ance Agency	Job Number 13061-08-23(4
		Location 715	n 5363.7 E 740188.6 N	Dates 25	/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
				62.43	(0.20) - 0.20 - 0.20 (0.70)	Brown slightly sandy slight MADE GROUND: Grey sli with concrete fragments. S subangular to subrounded	ghtly sandy slightly gravelly Sand is fine to coarse. Grave	Clay el is
				61.73	0.90	Soft to firm brown slightly: Sand is fine to coarse. Gra fine to coarse.	sandy slightly gravelly CLAY avel is subangular to subrou	nded
				61.23 60.83	(0.40)	Firm brown slightly sandy occasional subangular to s to coarse. Gravel is suban coarse. Complete at 1.80m	slightly gravelly CLAY with subrounded cobbles. Sand is gular to subrounded fine to	s fine (5 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 /
Plan						Remarks		
					•	No groundwater encountere Sidewalls stable Trial pit backfilled upon com		
					•	mai pit backillieu upon com	picaon	
					•			
						Scale (approx)	Logged By	Figure No. 3061-08-23(4).SA0

	Ground Investigations Ireland Ltd www.gii.ie				Site Housing Bundle_Ballymun	Trial Pit Number SA05		
Excavation Trial Pit	n Method	Dimens 2.60m	ions x 0.50m x 1.80m (L x W x D)		Level (mOD) 62.35	Client National Development Fin	ance Agency	Job Number 13061-08-23(4)
		Locatio 71	n 5429.3 E 740235.4 N	Dates 25	5/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
			Water strike(1) at 1.40m.	62.15 61.85		and roots MADE GROUND: Grey sliconcrete and pipe fragmer is subangular to subround. MADE GROUND: Brown spipe at 1.80m. Sand is fine to subrounded fine to coar. Complete at 1.80m	ghtly sandy gravelly Clay with ts. Sand is fine to coarse. Ged fine to coarse. lightly sandy gravelly Clay with to coarse. Gravel is subangue.	h ravel
Plan .						Remarks Groundwater encounteres a	t 1.4m BGL slow/moderate r	ate
						Sidewalls collapsing Trial pit terminated at 1.80m Trial pit backfilled upon com	due to pipe pletion	
		•						
						Scale (approx)	Logged By	Figure No.
						1:25		3061-08-23(4).SA0

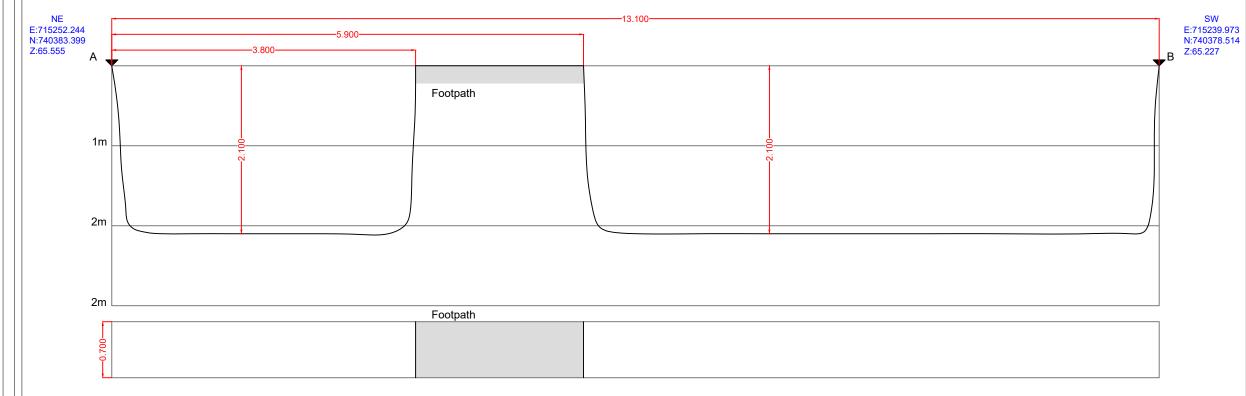
Housing Bundle_ Ballymun

Housing Bundle_Ballymun

Housing Bundle_ Ballymun

Housing Bundle_Ballymun

Housing Bundle_ Ballymun



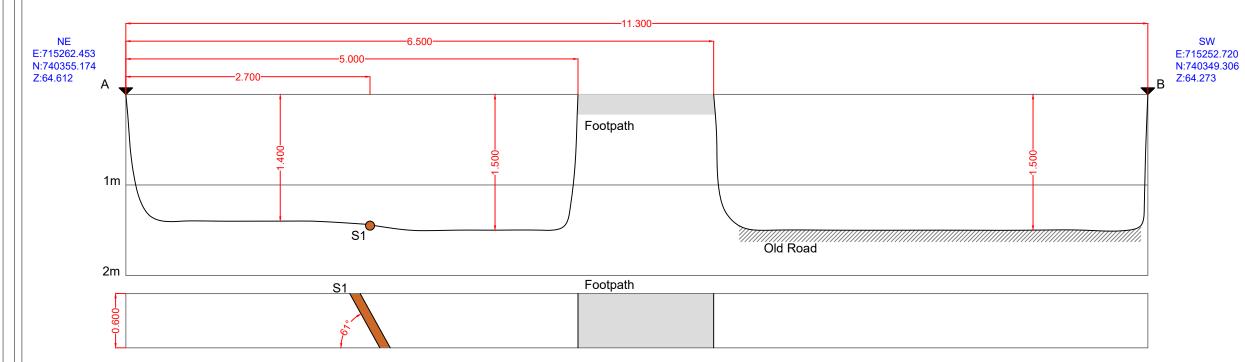
APPENDIX 4 – Slit Trench Records

Service No	ø (m) Colour - Ma	Calaur Matarial	Utility Angle to trench Coordinates East Nort	Angle to trench	inates	Lavial	
Service INO		Colour - Material			East	North	Level

Surface fr	Surface type	
0.00	3.80	GRASS
3.80	5.90	GRAVEL
5.90	13.10	GRASS

0 1 1 11	
Sample depth (m)	Sample type

From (m)	To (m)	Description
0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
0.20	1.30	MADE GROUND: Brown slightly sandy gravelly Clay with occasional subangular to subrounded cobbles and fragments of plastic, styrofoam, metal, wire.
1.30	2.10	Firm to stiff brown slightly sandy gravelly CLAY with some subangular to subrounded cobbles and boulders.


Groundwater	Y/N	Depth	Notes
Slow	Υ	0.50	

PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
DRAWING No.:	ST-01
DATE:	12/12/2023
CLIENT:	NDFA
SCALE:	NTS

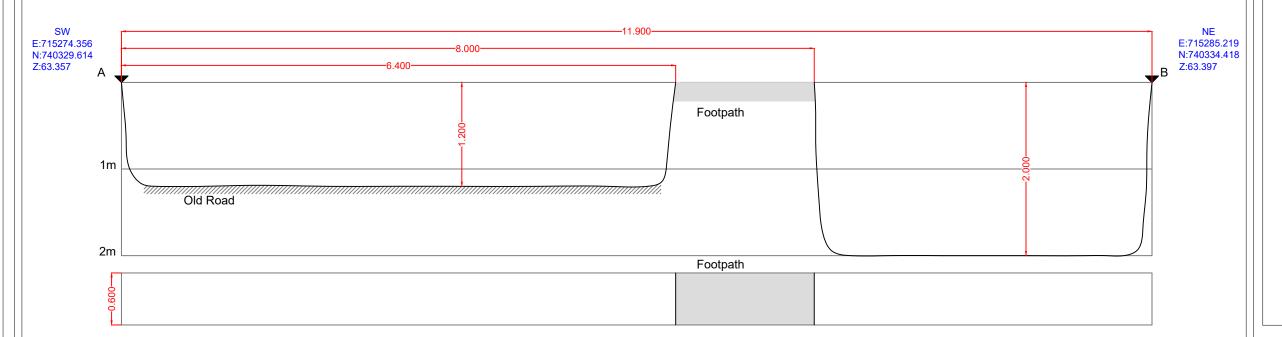
Version:	Date:	Drawn By:	Checked By:	
1	13/12/2023	J.S.	G.R.	

Service No	ø (m) Colour - Mate	Calaur Matarial	Utility	Angle to trench	Coordinates		Lavial
Service No		Colour - Material	Othity		East	North	Level
S1	0.100	Brown - Plastic	Storm water	61°	715260.240	740353.563	64.429

Surfa	ce from/to (m)	Surface type
0.00	5.00	GRASS
5.00	6.50	GRAVEL
6.50	11.30	GRASS

Sample depth (m)	Sample type	

From (m)	To (m)	Description
0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
0.20	1.50	MADE GROUND: Brown slightly sandy gravelly Clay with occasional subangular to subrounded cobbles and fragments of plastic, metal, service pipe.


Groundwater	Y/N	Depth	Notes
Slow	Y	1.50	

PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
DRAWING No.:	ST-02
DATE:	15/11/2023
CLIENT:	NDFA
SCALE:	NTS

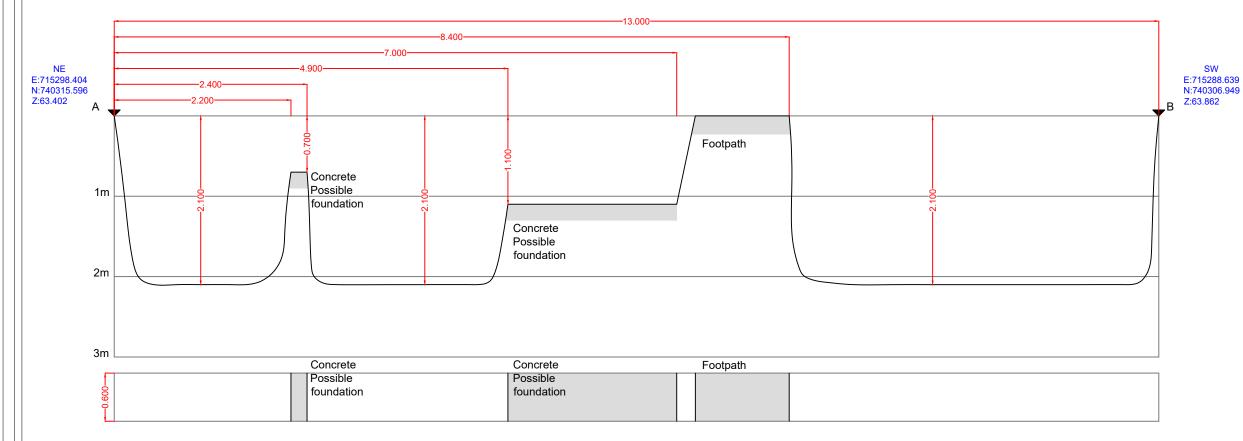
Version:	Date:	Drawn By:	Checked By:
1	13/12/2023	J.S.	G.R.

Service No	ø (m)	Colour - Material	r - Material Utility Angle to trench		Coord	inates	Lovol
		Coloui - Material	Ounty	Angle to trending	East	North	Level

Surface fr	om/to (m)	Surface type
0.00	6.40	GRASS
6.40	8.00	GRAVEL
8 00	11 90	GRASS

Sample depth (m)	Sample type

	rom (m)	To (m)	Description				
0	0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with gras				
0	0.20	1.10	MADE GROUND: Brown slightly sandy gravelly Clay with occasional subangular to subrounded cobbles and fragments of plastic, timber, concrete.				
1	1.10 2.00 Pos		Possible MADE GROUND: Grev slightly sandy gravelly Cl				


Groundwater	Groundwater Y/N		Notes	
Moderate	Υ	1.10		

PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun			
DRAWING No.:	ST-03			
DATE:	15/11/2023			
CLIENT:	NDFA			
SCALE:	NTS			

Version:	Date:	Drawn By:	Checked By:
1	13/12/2023	J.S.	G.R.

Service No	ø (m)	Colour - Material	Utility	Angle to trench	Coord	امريما	
Service No	y (111)		Othity		East	North	Level

Surface fr	om/to (m)	Surface type
0.00	7.00	GRASS
7.00	8.40	GRAVEL
8.40	13.00	GRASS

		East	North		(m)	` ′	'
					0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
Sample depth (m) Sample type		0.20	0.70	MADE GROUND: Grey slightly sandy gravelly Clay with some subangular to subrounded cobbles and fragments of timber, plastic, tarmacadam.			
(**)					0.70	2.10	MADE GROUND: Brown slightly sandy gravelly Clay with some subangular to subrounded cobbles and tarmacadam

From (m)

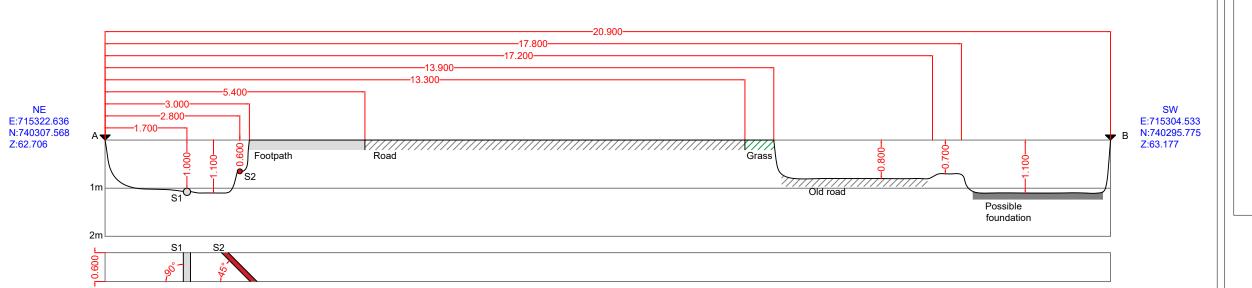
To (m)

Slow

		u.	JOLLOITI O	i tronon (ola roda).	
Grou	ındwater	Y/N	Depth	Note	es

Y 2.00

Description



Ground Investigations Ireland Ltd.
Catherinestown House
Hazelhatch Road,
Newcastle,
County Dublin

۱			
		PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
		DRAWING No.:	ST-04
		DATE:	14/11/2023
		CLIENT:	NDFA
		SCALE:	NTS

Version:	Date:	Drawn By:	Checked By:	
1	13/12/2023	J.S.	G.R.	

ST-05

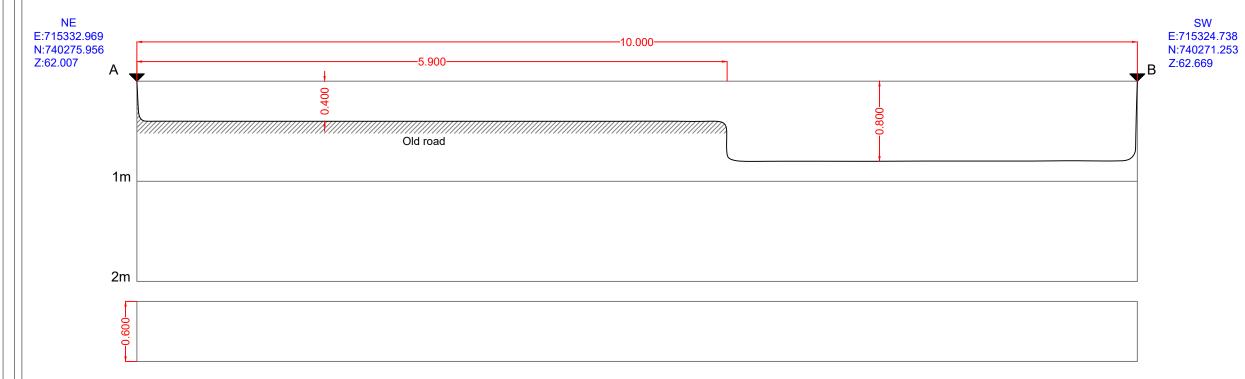
Service No	ø (m)	Colour - Material	Utility	Angle to trench	Coord	inates	Level
Service NO	Ø (III)	Coloui - Material	Othicy	Angle to trenen	East	North	Level
S1	0.150	Concrete	GW	90°	715321.221	740306.082	62.390
S2	0.100	Red - Plastic	ESB	65°	715320.286	740305.749	61.717

	Surface fr	Surface type	
ĺ	0.00	3.00	GRASS
	3.00	13.30	TARMACADAM
ı	13 30	20.90	GRASS

Sample depth (m)	Sample type

From (m)	To (m)	Description
0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
0.20	1.10	MADE GROUND: Brown slightly sandy gravelly Clay with occasional subangular to subrounded cobbles, service pipes and fragments of timber, plastic.

Groundwater	Y/N	Depth	Notes
Slow	Y	1.00	



Ground Investigations Ireland Ltd.
Catherinestown House
Hazelhatch Road,
Newcastle,
County Dublin

PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
DRAWING No.:	ST-05
DATE:	14/11/2023
CLIENT:	NDFA
SCALE:	NTS

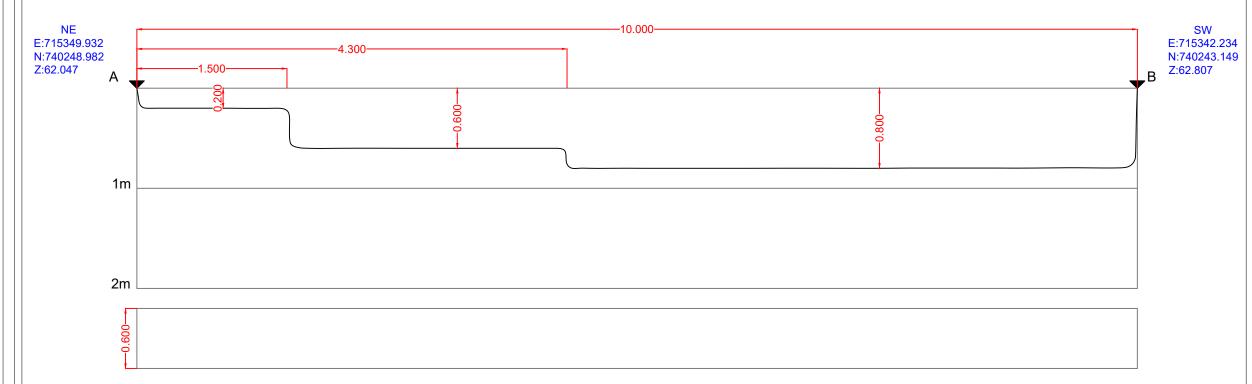
Version:	Date:	Drawn By:	Checked By:
1	13/12/2023	J.S.	G.R.

Service No	ø (m)	Colour - Material	Utility	Angle to trench	Coord	inates	Lovel
Service No	Ø (III)	Colour - Material	Cully	Angle to trench	East	North	Level

Surface f	rom/to (m)	Surface type
0.00	10.00	GRASS

Sample depth (m)	Sample type

(m) '		To (m)	Description
		0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
	0.20	0.80	MADE GROUND: Brown slightly sandy gravelly Clay with fragments of concrete, tarmacadam, pipe, plastic, steel.


Groundwater	Y/N	Depth	Notes
	N		

PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
DRAWING No.:	ST-06
DATE:	27/10/2023
CLIENT:	NDFA
SCALE:	NTS

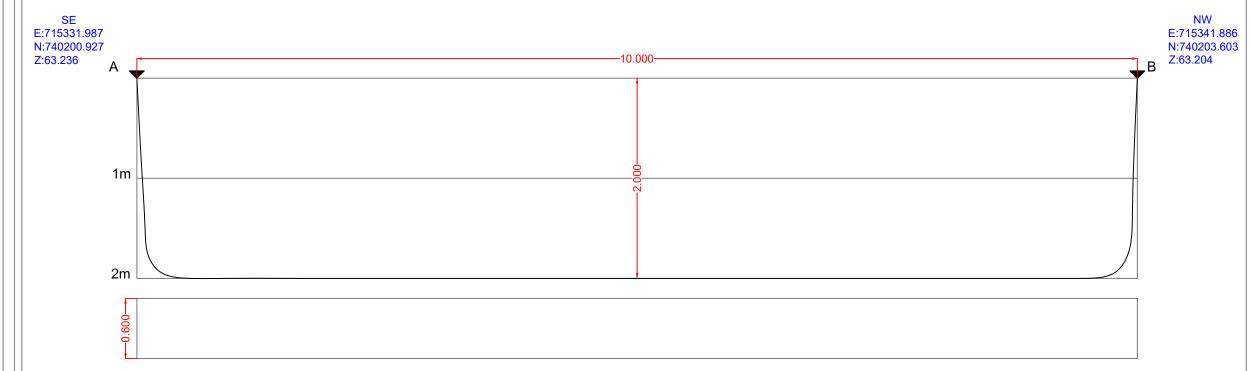
Version:	Date:	Drawn By:	Checked By:
1	14/11/2023	J.S.	G.R.

Service No	ø (m)	Calaur Matarial	Utility	Angle to trench	Coordinates		Level
Service No (III)	Colour - Material	Ottilly	Angle to trench	East	North		

Surface from/to (m)		Surface type
0.00	10.00	GRASS

Sample depth (m)	Sample type

1 -	rom (m)	To (m)	Description
0	0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
0).20	0.80	MADE GROUND: Brown slightly sandy gravelly Clay with occasional subangular to subrounded cobbles and fragments of plastic, tarmacadam, concrete.


Groundwater	Y/N	Depth	Notes
Slow	Υ	0.50	

Email: imo@gil.ic vvcb. www.gil.ic				
PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun			
DRAWING No.:	ST-07			
DATE:	27/10/2023			
CLIENT:	NDFA			
SCALE:	NTS			

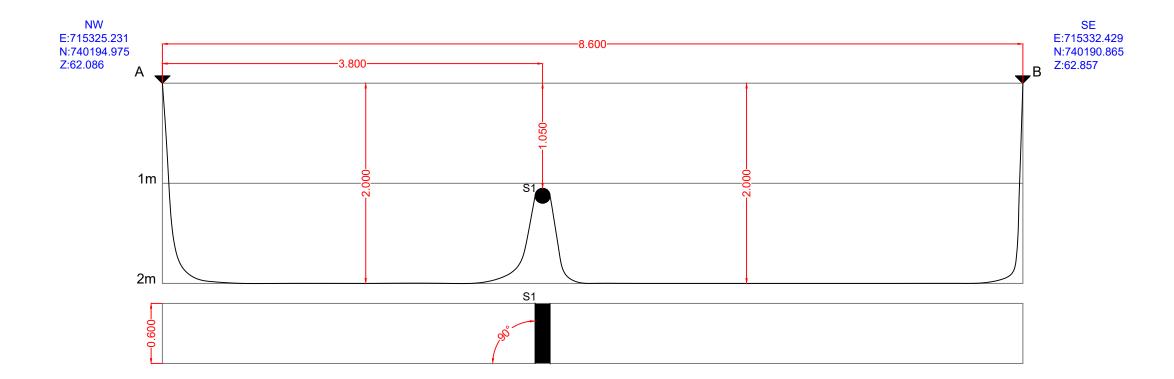
Version:	Date:	Drawn By:	Checked By:	
1	14/11/2023	J.S.	G.R.	

Service No	a (m)	ø (m) Colour - Material Utility Angle to trench	Coordinates		Lavial		
Service No	Ø (III)		Angle to trench	East	North	Level	

Surface fro	Surface type	
0.00	10.00	GRASS

Sample depth (m)	Sample type

From (m)	To (m)	Description
0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
0.20	2.00	MADE GROUND: Brown slightly sandy gravelly CLAY with occasional subangular to subrounded cobbles and boulders.


Groundwater	Y/N	Depth	Notes
Slow	Υ	1.90	

	•
PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lo 2 - Ballymun
DRAWING No.:	ST-08
DATE:	26/10/2023
CLIENT:	NDFA
SCALE:	NTS

Version:	Date:	Drawn By:	Checked By:	
1	14/11/2023	J.S.	G.R.	

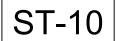
ST-09

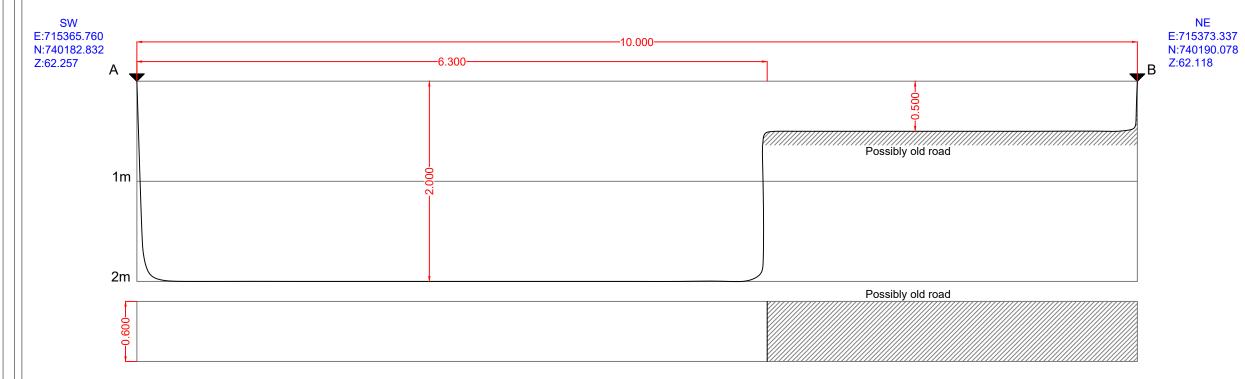
Service No	ø (m) Colour - Materi	Colour Motorial	Utility Angle to trench	Angle to trench	Coordinates		Level
Service NO		Coloui - Material		East	North		
S1	0.150	Black - Steel	Water main	90°	715327.812	740192.635	62.940

Surface fr	Surface type	
0.00	8.60	GRASS

Sample depth	Camania tura	
(m)	Sample type	

From (m)	To (m)	Description			
0.00	0.20	Dark brown TOPSOIL with rootlets.			
0.20	0.70	MADE GROUND: Dark brown slightly gravelly Clay. Gravel is fine to coarse subangular to subrounded with low subangular cobbles with fragments of plastic (medium), red brick and metal fragments.			
0.70	2.00	MADE GROUND: Brown slightly gravelly Clay. Gravel is fine to coarse angular to subrounded with low subangular cobbles, red brick with low subrounded boulders and plastic fragments.			


Groundwater	Y/N	Depth	Notes
Slow	Υ	1.70	



Ground Investigations Ireland Ltd.
Catherinestown House
Hazelhatch Road,
Newcastle,
County Dublin

PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
DRAWING No.:	ST-09
DATE:	27/10/2023
CLIENT:	NDFA
SCALE:	NTS

Version:	Date:	Drawn By:	Checked By:
1	14/11/2023	J.S.	G.R.

Service No	ø (m)	Colour - Material	Utility And	Angle to trench	Coord	inates	Lovel
Service No	y (III)	Colour - Material	Cully		East	North	Level

Surface fr	om/to (m)	Surface type	Sample depth (m)	Sample type
0.00	10.00	GRASS		

From (m)	To (m)	Description
0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
0.20	1.60	MADE GROUND: Brown slightly sandy gravelly Clay with occasional subangular to subrounded cobbles and fragments of plastic, concrete, steel, timber.
1.60	2.00	Firm brown slightly sandy gravelly CLAY with occasional subangular to subrounded cobbles.

Groundwater	Y/N	Depth	Notes
	N		

	•
PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
DRAWING No.:	ST-10
DATE:	26/10/2023
CLIENT:	NDFA
SCALE:	NTS

Version:	Date:	Date: Drawn By:	
1	14/11/2023	J.S.	G.R.

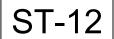
ST-11

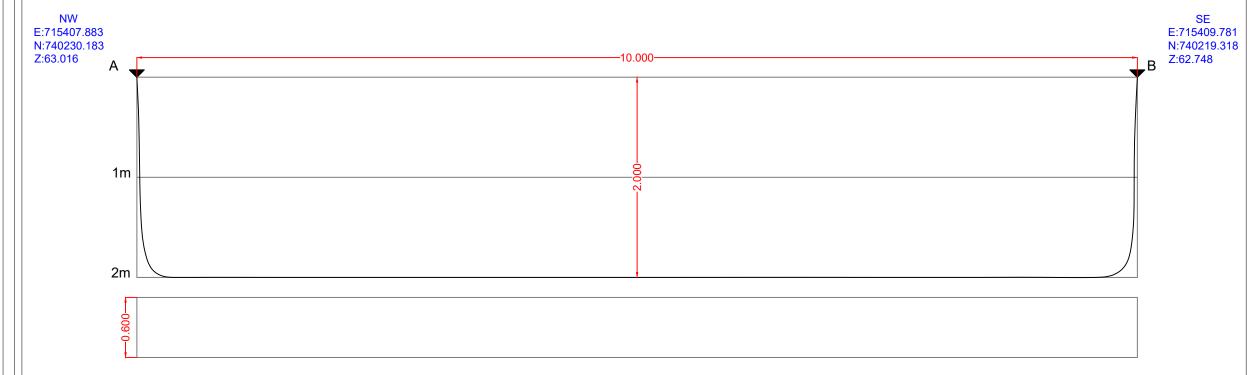
	Service No	ø (m)	Colour - Material	l Utility	Angle to trench	Coord	inates	Level
	Service INO	Ø (III)	Coloui - Material	Othicy	Angle to trench	East	North	Level
ſ	S1	-	Concrete	Sewer	90°			
Ī	S2	-	Black - Steel	Water main	90°			

Surface from/to (m)		Surface type
0.00	10.00	GRASS

Sample depth (m)	Sample type	

From (m)	To (m)	Description
0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
0.20	0.80	MADE GROUND: Brown slightly sandy gravelly Clay with occasional subangular to subrounded cobbles and fragments of red brick, concrete, timber, plastic.
0.80	1.95	MADE GROUND: Grey slightly sandy gravelly Clay with occasional subangular to subrounded cobbles and fragments of concrete.


Groundwater	Y/N	Depth	Notes
Slow	Y	1.95	



Ground Investigations Ireland Ltd.
Catherinestown House
Hazelhatch Road,
Newcastle,
County Dublin

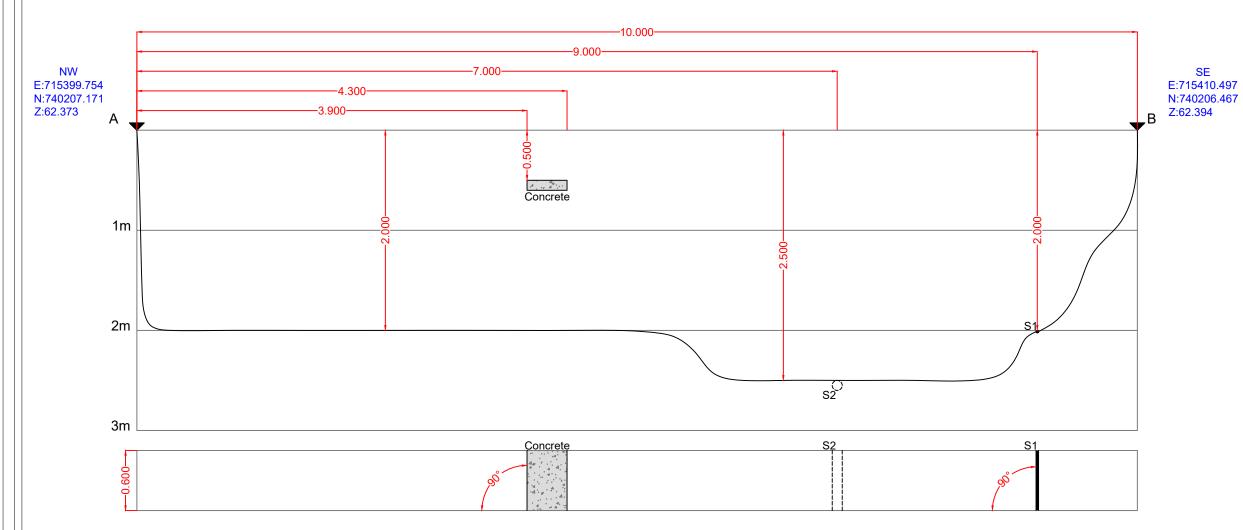
PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lo 2 - Ballymun
DRAWING No.:	ST-11
DATE:	25/10/2023
CLIENT:	NDFA
SCALE:	NTS

Version:	Date:	Drawn By:	Checked By:
1	14/11/2023	J.S.	G.R.

Service No	ø (m)	Colour - Material	Utility	Angle to trench	Coordinates		Lavial
Service INO	Ø (III)	Colour - Material	Othity	Angle to trench	East	North	Level

Surface fr	om/to (m)	Surface type	Sample depth (m)	Sample type
0.00	10.00	GRASS		

From (m)	To (m)	Description
0.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
0.20	2.00	MADE GROUND: Brown slightly sandy gravelly Clay with occasional subangular to subrounded cobbles and fragments of plastic, timber, red brick, metal, concrete.


Groundwater	Y/N	Depth	Notes
	N		

PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
DRAWING No.:	ST-12
DATE:	25/10/2023
CLIENT:	NDFA
SCALE:	NTS

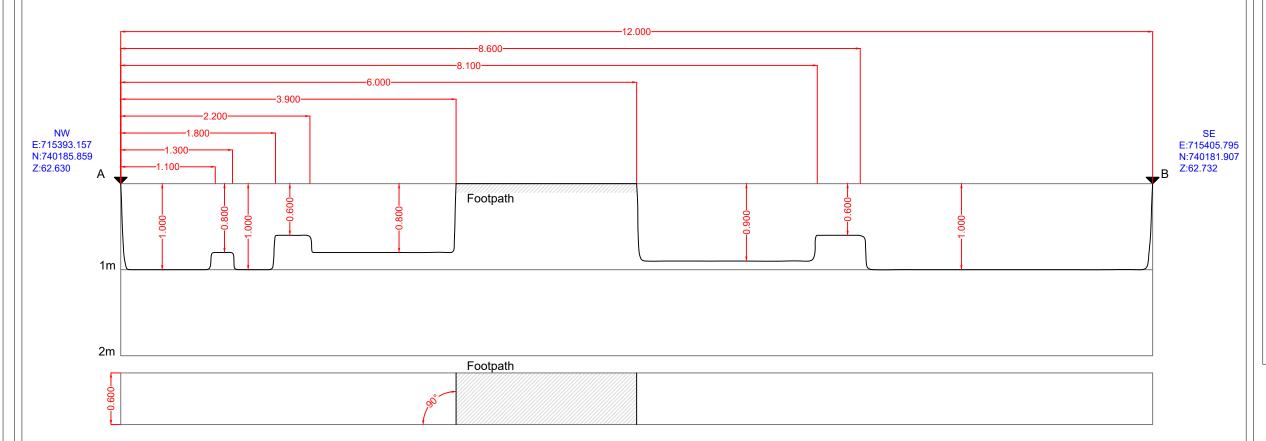
Version:	Date:	Drawn By:	Checked By:
1	14/11/2023	J.S.	G.R.

Service No	ø (m)	Colour - Material	Utility Angle to trench		Coordinates		Level
Service INO	(۱۱۱) ه	Coloui - Material	Othicy	Angle to trendi	East	North	Levei
S1	0.025	Black	Telecom	90°	715408.466	740206.892	62.440
S2	-	-	-	-			

Surface f	rom/to (m)	Surface type
0.00	10.00	GRASS

Sample depth (m)	Sample type
()	

From (m)	To (m)	Description
0.00	0.20	TOPSOIL.
0.20	0.60	Crushed rock FILL grey sandy clayey fine to coarse angular to subangular GRAVEL with fragments of concrete, rebar, red brick.
0.60	2.50	MADE GROUND: Dark grey slightly sandy gravelly CLAY with fragments of plastic, red brick.


Groundwater	Y/N	Depth	Notes
Slow	Y	0.50	
Medium	Y	2.00	

PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
DRAWING No.:	ST-13
DATE:	24/10/2023
CLIENT:	NDFA
SCALE:	NTS

Version:	Date:	Drawn By:	Checked By:	
1	14/11/2023	J.S.	G.R.	

	Service No	ø (m)	Colour - Material	l Utility	Angle to trench	Coordinates		Lovol	
	Service INO	(۱۱۱) ه				East	North	Level	
								•	
Surface from/to (m)		Surface type		Sample der	Sample typ	ре			

GRASS

0.00

12.00

	om m)	To (m)	Description
0.	.00	0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets.
0.	.20	1.00	MADE GROUND: Brown slightly sandy gravelly Clay with fragments of red brick, plastic, wire, concrete.

Groundwater	Y/N	Depth	Notes	
Slow	Υ	0.90		

Ground Investigations Ireland Ltd.
Catherinestown House
Hazelhatch Road,
Newcastle,
County Dublin

	PROJECT:	13061-08-23 - Housing Bundle 4 & 5 - Lot 2 - Ballymun
	DRAWING No.:	ST-14
	DATE:	26/10/2023
	CLIENT:	NDFA
	SCALE:	NTS

Version:	Date:	Drawn By:	Checked By:
1	14/11/2023	J.S.	G.R.

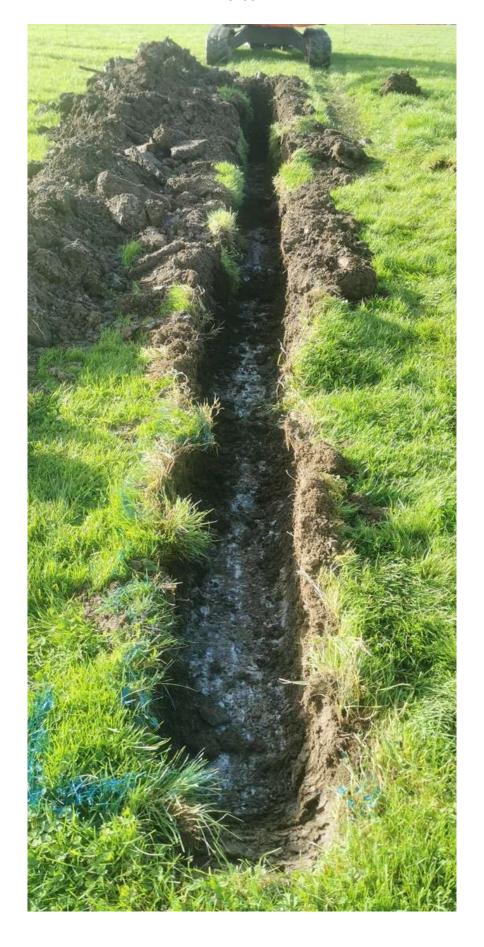
Housing Bundle _ Ballymun

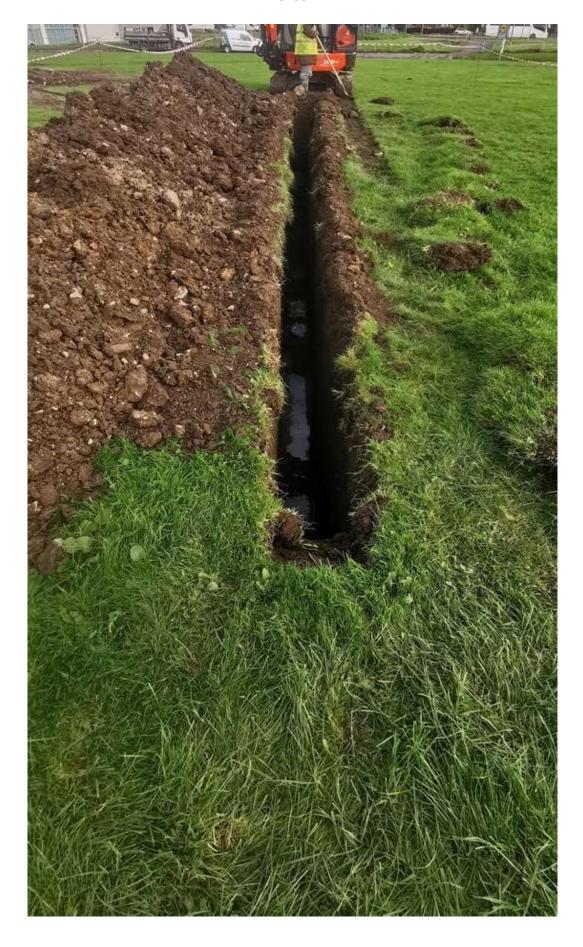
ST01

Housing Bundle _ Ballymun


ST02

ST04





ST13

APPENDIX 5 –Borehole Records

	Grou	nd In		gations Ire w.gii.ie	land l	Ltd		Site Housing Bundle_Ballymun	Borehole Number BH01
Machine : D Method : C	ando 2000 able Percussion		Diamete Omm cas	r ed to 6.20m	Ground	Level (65.29	(mOD)	Client National Development Finance Agency	Job Number 13061-08-23(4)
		Locatio 71		740385.2 N	Dates 08	/12/202	23	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De (r (Thick	pth n) kness)	Description	Mater Nater
0.50 1.00-1.45 1.00	B1 SPT(C) N=15 B2			1,2/4,4,4,3	65.09 64.59	E	(0.20) 0.20 (0.50) 0.70	Brown slightly sandy slightly gravelly TOPSOIL with rootlets. Gravel is subangular to subrounded fine to coarse. MADE GROUND (reworked): Brown slightly sandy gravelly Clay. Gravel is angular to subrounded fine to coarse. Stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse.	
2.00-2.45 2.00	SPT(C) N=20 B3			2,3/4,5,6,5			(2.10)		
3.00-3.45 3.00	SPT(C) N=29 B4			3,4/5,6,8,10	62.49		2.80	Stiff grey to dark grey slightly sandy gravelly CLAY with occasional subrounded cobbles. Gravel is subangular to subrounded fine to coarse.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
4.00-4.45 4.00	SPT(C) N=43 B5			7,9/10,11,11,11			(2.20)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.00-5.19 5.00	SPT(C) 50/40 B6			8,9/10,12,13,15	60.29		5.00	Very stiff grey to dark grey slightly sandy gravelly CLAY with occasional subrounded cobbles. Gravel is subangular to subrounded fine to coarse.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
6.00-6.21 6.00	SPT(C) 50/60 B7			7,7/13,17,20	59.09		6.20	Terminated at 6.20m	6 0 d.
Remarks No groundwa Cable percua Borehole bac Chiselling fro	ater encountered. ssion boring techniqu ckfilled on completio om 5.50m to 5.50m fo	ues carrie n. or 1 hour.	d out fror	n ground level to 6.20	m BGL.			Scale (approx) 1:50 Figure N 13061-08	Logged By CE No. 3-23(4).BH01

	Grou	nd In		igations Ire	land	Ltd	Site Housing Bundle_Ballymun		Borehole Number BH02
	Dando 2000 and Baretha T-41	Casing	Diamete	r	Ground	Level (mOD)	Client		Job
Method : 0	Cable Percussion			ed to 5.50m ased to 28.00m		64.69	National Development Finance Agency		Number 13061-08-23(4)
	vith Rotary Core Follow-on	Locatio 71		740368.7 N		5/11/2023- 5/02/2024	Engineer		Sheet 1/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend Nater
0.50	B1				00.70	(0.90)	MADE GROUND: Brown sandy gravelly Clay.		
1.00-1.45	SPT(C) N=12			2,2/3,3,3,3	63.79 63.69	0.90	Firm to stiff brown slightly sandy slightly gravelly C Gravel is fine to coarse sub-angular to sub-rounde	LAY. d.	
1.00	B2 (*)					(1.00)	Firm brown slightly sandy slightly gravelly CLAY. G fine to coarse sub-angular to sub-rounded.	ravel is	
2.00-2.45 2.00	SPT(C) N=25 B3			3,4/7,6,7,5	62.69	2.00	Stiff dark grey/black slightly sandy slightly gravelly Gravel is fine to coarse sub-angular to angular.	CLAY.	
3.00-3.45 3.00	SPT(C) N=43 B4 26.67 0	0		5,7/7,9,12,15		(2.00)			
4.00-4.45 4.00	SPT(C) N=50 B5			6,9/12,16,22	60.69	4.00	Very stiff dark grey/black slightly sandy slightly gra CLAY. Gravel is fine to coarse sub-angular to angu	velly llar.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.00-5.45 5.00	SPT(C) N=50 B6			8,11/15,17,18	59.19	(1.50)	Dense grey slightly sandy slightly clayey fine to coa	arse sub	
7.00-7.45 7.00	TCR SCR	RQD	FI	7,9/9,11,13,13 SPT(C) N=46		(3.00)	angular to sub rounded GRAVEL with occasional s angular to sub rounded cobbles	ub	
8.50-8.94	40 0	0		6,8/10,12,14,14 SPT(C) 50/290					
10.00	73.33 0	0	23	(5,55,250	56.19	8.50	Very stiff dark grey slightly sandy gravelly CLAY wi sub angular to sub rounded cobbles and boulders	th some	
Remarks	racion bi / / /		ما منبد د	n eroundle!. 5.5	0m POL 3	Negtro -4:-	us to possible boulder bedeed	Scale	Logged
Rotary corir	ussion boring techniq ng carried out to 28.0 ackfilled on completic	ues carrie 0m BGL. on.	a out fror	n ground level to 5.5	um BGL. C	pstruction - d	ue to possible boulder or bedrock.	(approx)	Logged By
Chiselling fr	ackfilled on completic rom 5.50m to 5.50m t	for 1 hour.						1:50	JC & GGR
								Figure N 13061-08	l o. -23(4).BH02

	(Groui	nd In		igations Ire	land	Ltd	Site Housing Bundle_Ballymun		Borehole Number BH02
Flush :	aretha T-41	and	Casing 200 63.	Diamete Omm cas			Level (mOD) 64.69	Client National Development Finance Agency		Job Number 13061-08-23(4)
Method : Co		ssion Core	Locatio 71		740368.7 N	Dates 16	6/11/2023- 4/02/2024	Engineer		Sheet 2/3
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend Nater
10.00-10.22 11.50-11.72 11.50	100	0	0		SPT(C) 50/70 20,5/50 20,5/50 SPT(C) 50/65			as previous		
11.50	86.67	0	0		, ,		(7.80)			
13.00-13.22 13.00	100	0	0		20,5/50 SPT(C) 50/70 20,5/50 SPT(C) 50/70		(7.80)			
14.50	100	0	0							
16.00	100	56	50			48.39	16.30	Strong to very strong massive dark grey to black argillaceous LIMESTONE with rare calcite veining pyrite mineralisation. Partially weathered	g and rare	
17.50	100	66.67	53.33	21						
19.00	100	66	39.33	32					T	
Remarks									Scale (approx)	Logged By
									1:50	JC & GGR
									Figure N	l o. -23(4).BH02

		Groui	nd In		igations Ire ww.gii.ie	land	Ltd	Site Housing Bundle_Ballymun	Borehole Number BH02
Machine : D B Flush : Core Dia: n	aretha T-4	and 1	20	Diamete			Level (mOD) 64.69	Client National Development Finance Agency	Job Number 13061-08-23(4)
Method : C			Locatio 71		740368.7 N		5/11/2023- 1/02/2024	Engineer	Sheet 3/3
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Fig. 1
20.50	100	60.67	46	22				as previous	
22.00	100	62.67	38.67	28			(11.70)	16.30m to 28.00m BGL: 3 Fracture sets - F1: Fractures are dipping 0 - 30 degrees, very close to medium spaced, undulating smooth to planar smooth, with slight clay smearing. F2: Fractures are dipping 50 - 70 degrees, wide to very wide spaced, undulating rough, with slight brown staining. F3: Fractures are dipping 70 - 90 degrees, medium to wide spaced, undulating rough to planar rough, with slight clay smearing and brown staining.	
23.50	100	68.67	52.67	23					
25.00	100	80	73.33	15					
26.50	100	49.33	27.33	29		36.69	28.00		
28.00						33.09	20.00	Terminated at 28.00m	
Remarks								Scale (approx	Logged By
								1:50 Figure 13061-0	JC & GGR No. 8-23(4).BH02

	Groui	nd In		gations Irel w.gii.ie	land	Ltd		Site Housing Bundle_Ballymun	Nu	rehole imber H03
Machine : D	ando 2000 able Percussion		Diamete		Ground	Level 64.62	(mOD)	Client National Development Finance Agency		b imber 1-08-23(4)
		Locatio 71		740335.7 N	Dates 17	//11/20	23	Engineer	Sh	1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De (i (Thic	epth m) kness)	Description	Leg	Water
0.50	B1				64.52		0.10	TOPSOIL MADE GROUND: Brown/ Dark grey slightly sandy gravell Clay with fragments of steel, concrete and plastic	у	
1.00-1.45 1.00	SPT(C) N=8 B2			1,1/2,2,2,2						
2.00-2.45 2.00	SPT(C) N=10 B3			2,1/2,2,3,3			(4.00)			
3.00-3.45 3.00	SPT(C) N=12 B4			2,3/2,3,4,3						
4.00-4.45 4.00	SPT(C) N=45 B5			5,79/11,15,19	60.52	Ē	4.10 (0.90)	Very stiff black slightly sandy slightly gravelly CLAY with some sub angular to sub rounded cobbles and boulders	6.0	21, <u>14, 15, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18</u>
5.00-5.45 5.00	SPT(C) N=50 B6			20,20/50	59.62		5.00	Terminated at 5.20m	7.0.0	
Borehole bar	ssion boring techniqu minated at 5.00m BG ckfilled on completion om 5.00m to 5.20m fo	า	d out fron obstructio	n ground level to 5.00 on - possible boulder (m BGL or bedrock	₹.				JC

	(Grou	nd In		gations Ire w.gii.ie	eland	Ltc	k	Site Housing Bundle_Ballymun		N	orehole lumber 3H04
Method : C	Baretha T-41 Cable Percus	ssion	20		r ed to 5.00m ased to 28.00m		Leve 64.2	el (mOD) 1	Client National Development Finance Agency		N	ob lumber 61-08-23(4)
	vith Rotary C Follow-on	ore	Locatio 71		40317.3 N	Dates 20 08	0/11/2 3/02/2	2023- 2024	Engineer		SI	heet 1/3
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Thi	Depth (m) ickness)	Description	Legend	Water	Instr
0.50	B1					64.01 63.51		(0.20) 0.20 (0.50) 0.70	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets MADE GROUND brown grey gravelly Clay			
1.00 1.20-1.65	B2 SPT(C) I	N=12			2,2/3,2,3,4			(1.70)	Firm to stiff Brown mottled grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded.			
2.00-2.45 2.00	SPT(C) I B3	N=15 0	0		2,3/3,3,4,5	61.81		2.40	Very stiff dark grey/black slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded.			(2) 4 (2) 5
3.00-3.45 3.00	SPT(C) I B4	N=35			4,4/7,9,9,10			(2.60)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
4.00-4.45 4.00	SPT(C) I B5	N=43			6,7/9,8,10,16							A CONTROL OF THE PROPERTY OF T
5.00 5.00-5.00 5.50	B6 SPT(C) 2 50/0 TCR	20*/0	RQD	FI	9,11/16,34	59.21		5.00	Very stiff dark grey slightly sandy gravelly CLAY with some sub angular to sub rounded cobbles and boulders			A CONTROL OF CONTROL O
7.00-7.45	93.33	0	0		8,13/50 SPT(C) N=50							
7.00 8.50-8.72	100	0	0		20,5/50 SPT(C) 50/70							
8.50	86.67	0	0	33	S. 1(S) 30/10							
Remarks Cable percu Rotary corin Standpipe ir	าstalled in bo	orehole u	pon comp	letion. SI	otted standpipe from	0m BGL. C	Dbstru 1.00	uction - po	ossible boulder or bedrock. vith a pea gravel surround. Plain standpipe	Scale (approx)		ogged
installed froi Borehole ba	m 1.00m BG	iL to GL \	with a ben	tonite sea	al and a flush cover					1:50 Figure N 13061-08	lo.	GGR (4).BH04

		Grou	nd In	vesti wv	igations Ire vw.gii.ie	land	Ltd	Site Housing Bundle_Ballymun		N	oreh umb 3H0	er
Flush :	aretha T-41	and 1	Casing 200 63.		sed to 5.00m ased to 28.00m		Level (mOD) 64.21	Client National Development Finance Agency		N	ob umb 61-08-2	
Core Dia: n			Locatio			Dates		Engineer		S	heet	
Method : C w Fe	able Percu ith Rotary (ollow-on	ssion Core	71	5233 E 7	740317.3 N	20 08	0/11/2023- 8/02/2024				2/3	i
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
11.50-11.72	100	0	0		SPT(C) 50/70 20,5/50 20,5/50 20,5/50 SPT(C) 50/65			as previous			50,000 to 000 to	్ట్రింద్ లో స్ట్రించ్ లక్ష్మింద్రి అన్నారు. అన్నారు అన్నారు అన్నారు ప్రాంత్రికి ముంద్రికిన్న మంత్రికిన్న ముంద్రికిన్న మంత్రికిన్నారు. ఈ స్ట్రించిన్ని మంత్రికిన్నారు. ఈ స్ట్రించిన్న మంత్రికిన్నారు. మంత్రికిన్నారు. మంత్రికిన్నారు. మంత్రికిన్నారు. మంత్రికిన్నారు. మంత్రికిన్నారు. మంత్రికిన్నారు
11.50	100	0	0								00 82 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13.00-13.22 13.00	86.67	7 0	0		20,5/50 SPT(C) 50/70 20,5/50 SPT(C) 50/60						2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	్లికి అన్నారు. అన్నారికి అన్నారు. అన్నారు అన్నారు. అన్నారు. అన్నారు. అన్నారు. ఈ తెల్లక్కి ముందికి స్పాటి అన్నారు. అన్నారు కొండి కొన్నారు. అన్నారు. ఈ ఆస్త్రికే అన్నారు. ఈ ఆస్త్రికే అన్నారు. ఈ ఆస్త్రిక్ మండ్రికి మార్లు కొన్నారు. ఈ ఆస్త్రిక్ మార్లు కొన్నారు. ఈ ఆస్త్రిక్ మార్లు కొన్నారు. ఈ ఆస్త్రిక్ మార్
16.00-16.22 16.00	100	0	0		20,5/50 SPT(C) 50/70		_				0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	లో చెంది చేస్తారి అల్లోంటి చెల్లో చెల్లో అల్లోంటి చెల్లో చెల్లో అల్లోంటి చె అల్లెట్టింది. మాట్లెట్లి వ్యాప్తిక్కారు. మాట్లెట్లి వ్యాప్తిక్కి మాల్లెట్టింది. మాట్లెట్లి వ్యాప్తిక్కి వార్డా మాట్లా మాట్లెట్లి మాట్లెట్లి మాట్లా మాట్లెట్లి వ్యాప్తికి మాట్లెట్లి మాట్లెట్లి మాట్లెట్లి మాట్లెట్లి మాట్లెట
17.50-17.72	80	0	0		20,5/50 SPT(C) 50/65	46.71					20 C D C D C D C D C D C D C D C D C D C	()
17.50	100	38	11.33					Strong to very strong massive dark grey fine grained argillaceous LIMESTONE with rare white calcite veining and rare pyrite mineralisation. Partially weathered			0.02	ండి లక్ష్మింది. రాజక్స్ట్ లక్ష్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్
19.00	100	56	29.33	28						-	055, 470,070,070,075,070,070,070,070,070,070,0	00 00 00 00 00 00 00 00 00 00 00 00 00
Remarks									Scale (approx)		ogge y	
									1:50		GGR	
									Figure N 13061-08		4).BI	H04

		Groui	nd In		igations Ire vw.gii.ie	land	Ltd	Site Housing Bundle_Ballymun		N	Borehole lumber 3H04
Flush :	aretha T-4	and 1	20	Diamete			Level (mOD) 64.21	Client National Development Finance Agency		N	ob lumber 61-08-23(4)
			Locatio 71		40317.3 N		0/11/2023- 8/02/2024	Engineer		s	Sheet 3/3
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
20.50	100	42	23.33	25				as previous			
22.00	100	56.67	28.66	25	-		(10.50)				A CONTRACTOR CONTRACTO
23.50	100	74.67	46.66	21				17.50m to 28.00m BGL: Sequence consists of three fracture sets. F1: Dipping 0-30 degrees, very close to medium spaced, undulating to planar smooth, with brown staining. F2: Dipping 70-90 degrees, medium to wide spaced, undulating smooth to planar rough with clay smearing. F3: Dipping 40-60 degrees, medium to very wide spaced, planar			
25.00 26.50	90	45.33	25.33	18				rough.			2 - 1
	100	69.33	69.33	22		36.21					
28.00						33.21	20.00	Terminated at 28.00m			
Remarks	I	I	I		1	I		I	Scale (approx)		ogged Sy
									1:50 Figure I	No.	GGR (4).BH04

	Grou	nd In		gations Irel w.gii.ie	land I	Ltd		Site Housing Bundle_Ballymun	Borehole Number BH05
Machine : D	Pando 2000 Cable Percussion		Diamete			Level (mO l	1	Client National Development Finance Agency	Job Number 13061-08-23(4)
		Locatio 71		740381.3 N	Dates 11	/12/2023	1	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thicknes	s)	Description	Legend Nate
0.50	B1				65.03 64.83	(0.20 - 0.20 - (0.20 - 0.40		Brown slightly sandy slightly gravelly TOPSOIL with rootlets. Gravel is subangular to subrounded fine to coarse. MADE GROUND (reworked): Brown slightly sandy gravelly Clay. Gravel is angular to subrounded fine to coarse.	0.10.0 6.0.0.0 .0.0.0
1.00-1.45 1.00	SPT(C) N=14 B2			1,2/4,3,3,4		(1.60		Firm to stiff brown slightly sandy slightly gravelly CLAY with occasional subrounded cobbles. Gravel is subangular to subrounded fine to coarse.	
2.00-2.45 2.00	SPT(C) N=22 B3			5,4/6,6,5,5	63.23 62.63	2.0	0)	Stiff brown slightly sandy slightly gravelly CLAY with occasional subrounded cobbles. Gravel is subangular to subrounded fine to coarse.	0 . 0 4 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0
3.00-3.45 3.00	SPT(C) N=35 B4			3,6/7,8,10,10	02.03	(1.40		Stiff grey to dark grey slightly sandy gravelly CLAY with occasional subrounded cobbles and boulders. Gravel is subangular to subrounded fine to coarse.	
4.00-4.45 4.00	SPT(C) N=49 B5			8,9/11,10,12,16	61.23	4.0	0 -	Very stiff grey to dark grey slightly sandy gravelly CLAY with occasional subrounded cobbles and boulders. Gravel is subangular to subrounded fine to coarse.	
5.00-5.20 5.00	SPT(C) 50/50 B6			8,10/17,13,17,3		(3.40	0)		
6.00-6.20 6.00	SPT(C) 50/50 B7			9,9/10,10,17,13					
7.00-7.23 7.00	SPT(C) 50/75 B8			10,17/19,31	57.83			Terminated at 7.40m	
Cable percu Borehole ba	rater encountered. Ission boring technique Ission to ompletion Ission to 5.50m for the second	n.	d out fror	n ground level to 7.40	m BGL.			Scale (approx) 1:50 Figure	CE
									3-23(4).BH05

	Grou	nd In		gations Irel w.gii.ie	land l	Ltd		Site Housing Bundle_Ballymun	Boreh Numb	er
Machine: D	ando 2000 Cable Percussion		Diamete			Level (mO)	D)	Client National Development Finance Agency	Job Numb 13061-08-	
		Locatio 71		740265.6 N	Dates 20	/11/2023	1	Engineer	Sheet	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thicknes	s)	Description	Legend	Water
0.50	B1				63.60 63.50 63.40	(0.11 - (0.11 - 0.2 - 0.3	5 5	TOPSOIL MADE GROUND: Brown slightly sandy slightly gravelly Clay MADE GROUND: Tarmac MADE GROUND: Brownish grey slightly sandy Clay with fragments of plastic and red brick		7
1.20-1.65 1.50	SPT(C) N=9 B2			2,4/2,2,2,3 Water strike(1) at 1.30m, rose to 1.15m in 20 mins.	62.45	1.3	0	Firm brown mottled grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded.		▼ 1 ∇ 1
2.00-2.45 2.50	SPT(C) N=12			2,2/2,3,3,4		(1.70))			
3.00-3.45	SPT(C) N=25			3,5/5,6,6,8	60.75	3.0	0 -	Stiff dark grey/black slightly sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded.		
3.404.00-4.45	B4 SPT(C) N=50			5,7/10,12,14,14	59.75	(1.00		Very stiff dark grey/black slightly sandy gravelly CLAY.		• • • •
4.50	B5							Gravel is fine to coarse sub-angular to sub-rounded.		
5.00-5.45 5.50	SPT(C) N=50			6,9/11,17,20,2		(2.10))			• • • •
6.00-6.45	SPT(C) N=50			10,19/50	57.65	6.1		Terminated at 6.10m		•
Remarks Cable percus Borehole ter Borehole ba	ssion boring technique minated at 6.1m bGL ckfilled on completion	ues carrie due to ol n.	d out fror ostructior	n ground level to 6.1n - possible boulder on	n bGL. bedrock.			Scale (approx)	Logge By	≟d
								Figure I 13061-08		H06

		Grou	nd In		gations Ire w.gii.ie	land	Ltc	I	Site Housing Bundle_Ballymun	Borehole Number BH07
Machine: Da Ba	aretha T-4	1	20		ed to 6.00m ased to 26.50m	Ground	Leve 62.84		Client National Development Finance Agency	Job Number 13061-08-23(4)
			Locatio 71		740298.8 N		/11/2 5/02/2		Engineer	Sheet 1/3
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Thi	epth (m) ckness)	Description	Vate Pund Pund Pund Pund Pund Pund Pund Pund
0.60 1.00-1.45 1.50 2.00-2.45 2.50 3.00-3.45	B1 SPT(C) B2 SPT(C) B3 90 SPT(C)	N=18 0	0		2,1/2,2,2,7 2,2/3,4,4,7 8,6/8,11,12,14	62.64 62.34 61.74 61.34		(0.20) 0.20 (0.30) 0.50 (0.60) 1.10 (0.40) 1.50 (1.50)	TOPSOIL MADE GROUND: Dark blue slightly sandy clayey fine to coarse angular to sub angular Gravel MADE GROUND: Brown sandy gravelly Clay with fragments of timber and red brick Firm brown slightly sandy gravelly CLAY gravel is fine to coarse angular to very angular. Stiff grey to black slightly sandy gravelly CLAY. Gravel is fine to medium angular. Very stiff grey to black slightly sandy gravelly CLAY. Gravel is fine to medium angular.	
3.50 4.00-4.45 4.50 5.00-5.45	B4 SPT(C) B5 SPT(C)				6,9/12,14,16,8 15,18/25,25 20,20/50			(3.00)		
6.00-6.45 6.00	TCR	SCR	RQD	FI	SPT(C) N=50 Water strike(1) at 6.00m, rose to 5.80m in 20 mins.	56.84		6.00	Very stiff dark grey slightly sandy gravelly CLAY with some sub angular to rounded cobbles and boulders	▼ 1
7.00-7.45 8.50-8.88	46.67	7 0	0	0	6,9/12,19,19 SPT(C) N=50 9,15/20,25,5 SPT(C) 50/225			(4.70)		
10.00	80	0	0							
Remarks Cable percus Rotary coring	ssion borin g technique	ng techniques carried	ues carrie out to 26.	d out fror .50m BGL	n ground level to 6.00)m BGL.			Scale (approx)	Logged By
Groundwater Borehole bad	r encounte ckfilled on	red at 6.0 completio	0m BGL n.						1:50 Figure 1 13061-08	JC & GGR No. 3-23(4).BH07

		Groui	nd In		igations Ire ww.gii.ie	land	Ltd	Site Housing Bundle_Ballymun	Borehole Number BH07
Flush :	aretha T-41	and	Casing 200 63.	Diamete			Level (mOD) 62.84	Client National Development Finance Agency	Job Number 13061-08-23(4)
Core Dia: m		ssion	Locatio		740298.8 N		./11/2023- 6/02/2024	Engineer	Sheet 2/3
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nater
10.00-10.30	100	0	0		SPT(C) 50/150 9,16/22,28 11,14/36,14 SPT(C)	52.14	10.70	as previous Very stiff brownish dark grey very sandy gravelly CLAY wit some sub angular to rounded cobbles and boulders	
11.50-11.50 11.50	100	0	0		19,6/50	51.34	E E E E	Very stiff dark grey slightly sandy gravelly CLAY with some sub angular to rounded cobbles and boulders	
13.00	100	0	0		SPT(C) 50/60 18,7/50 SPT(C) 50/70		(5.70)		
16.00-16.22	96.67	0	0		20,5/50 SPT(C) 50/65				
17.50-17.73	100	5.33	0	5	20,5/50 SPT(C) 50/75	45.64	17.20	Strong massive dark grey fine grained argillaceous LIMESTONE with rare calcite veins and rare pyrite mineralisation. Partially weathered.	
17.50	93.33	38.67	14	32			17.20	mineralisation. Fallitally weathered.	
19.00	100	52.67	8	43					
Remarks								Scale (appro	JC & GGR

		Groui	nd In	vesti wv	igations Ire	land	Ltd	Site Housing Bundle_Ballymun		Boreho Numbe	er
Machine : E Flush : Core Dia:	Baretha T-4		Casing 200 63	0mm cas	er sed to 6.00m ased to 26.50m		Level (mOD) 62.84	Client National Development Finance Agency		Job Numbe	
Method :		ıssion	Locatio 71		740298.8 N		:/11/2023- i/02/2024	Engineer		Sheet 3/3	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	.egend	Water
20.50	100	76.67	65.83	20				as previous			
22.00	100	73.33	62	15			(9.30)	17.20m to 26.50m BGL: Sequence consists of three fracture sets. F1: Dipping 0-30 degrees, very close to medium spaced, planar rough, with clay smearing. F2: Dipping 40-60 degrees, wide to very wide spaced, undulating rough. F3: Dipping 70-90 degrees, medium to wide spaced, undulating rough.			
25.00	100	36	21.33	29				to wide spaced, undulating rough.			
	93.33	3 49.33	38	21		36.34					
26.50						50.34	- 20.50	Terminated at 26.50m			
Remarks								Sca (appr		Logge By	
									ine No.		

	Grou	nd In		gations Ire w.gii.ie	land	Ltd		Site Housing Bundle_Ballymun	Boreho Numbe	er
Machine : D	Pando 2000 Cable Percussion		Diamete		Ground	Level (63.55	(mOD)	Client National Development Finance Agency	Job Numbe 13061-08-2	
		Locatio 71		740219 N	Dates 15	5/11/202	23	Engineer	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De (r (Thick	pth n) kness)	Description	Legend	Water
1.00 1.20-1.65 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.45 4.00 5.00-5.45 5.00 6.00-6.45 6.00	B1 SPT(C) N=11 SPT(C) N=12 B2 SPT(C) N=33 B3 SPT(C) N=50 B4 SPT(C) N=50 B5 SPT(C) N=50 B6			3,2/3,3,2,3 1,2/3,2,4,3 4,6/6,9,8,10 5,8/8,12,14,16 5,6/15,16,19 9,10/20,25,5	63.35 62.95 61.55 56.55		(0.20) (0.20) (0.20) (0.40) (0.60) (1.40) (1.00) (1.00) (4.00)	MADE GROUND: Brown slightly sandy slightly gravelly Clay with fragments of plastic. Firm dark grey/black mottled orange slightly sandy gravelly CLAY. Gravel is fine to coarse sub-angular to very angular. Stiff grey to black slightly sandy gravelly CLAY. Gravel is fine to medium angular. Very stiff grey to black slightly sandy gravelly CLAY. Gravel is fine to medium angular.		
Cable percu	minated at 7.00m B0 ssion boring techniq ckfilled on completio	ues carrie	obstructic d out fron	on - possible boulder n ground level to 7.00	or bedrocl 0m BGL.	k.		Scale (approx) 1:50 Figure N	Logge By	d
								13061-08		80h

	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site Housing Bundle_Ballymun	Borehole Number BH09
Machine : D	ando 2000 Cable Percussion		Diamete			Level (mO E 63.20	National Development Finance Agency	Job Number 13061-08-23(4)
		Locatio 71		740189.3 N	Dates 17	7/11/2023	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Mater Mater
0.50	B1				63.00 62.30	(0.70	MADE GROUND: Brown slightly sandy slightly gravelly Clay . Gravel is fine to coarse sub-angular to sub-rounded with plastic, red brick and glass fragments.	
1.20-1.65 1.50	SPT(C) N=8 B2			2,2/1,2,2,3		(1.80	Firm brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to angular.	
2.00-2.45	SPT(C) N=10			1,2/2,2,3,3	60.50	2.70	Very stiff Black/dark grey slightly sandy slightly gravelly CLAY gravel is medium to coarse angular to very angular with medium cobble content.	
3.00-3.45 3.00	SPT(C) N=41 B3			6,8/8,10,11,12			with mealum coddie content.	
4.00-4.45 4.00	SPT(C) N=50 B4			5,9/11,13,14,12				
5.00-5.45 5.00	SPT(C) N=50 B5			7,11/16,19,15				
6.00-6.45 6.00	SPT(C) N=50 B6			10,20/25,25				
					56.20	7.000	Terminated at 7.00m	14**·*.
Remarks Cable percu Borehole ter Borehole ba	ssion boring techniq minated at 7.00m BC ckfilled on completio	ues carrie GL due to n.	d out fror obstruction	n ground level to 7.00 on - possible boulder	Om BGL. or bedrock	k.	Scale (approx)	Logged By
							1:50 Figure N 13061-08-	JC lo. -23(4).BH09

	Grou	nd In	vesti ww	gations Ire w.gii.ie	land	Ltd	Site Housing Bundle_Ballymun	Boreho Number BH10	r
Machine : D	Pando 2000 Cable Percussion		Diamete			Level (mOD) 63.33	Client National Development Finance Agency	Job Number 13061-08-23	- 1
		Locatio		740175.3 N	Dates 16	6/11/2023	Engineer	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.50	B1					(1.00)	MADE GROUND: Brown sandy slightly gravelly Clay. Gravel is fine to coarse sub-angular to sub-rounded with fragments of steel, plastic and red brick		
1.20-1.65 1.20	SPT(C) N=11 B2			2,3/3,2,3,3	62.33	1.00	Firm to stiff brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded.	· · · · · · · · · · · · · · · · · · ·	
2.00-2.45 2.00	SPT(C) N=11 B3			1,3/2,3,3,3	61.33	2.00	Firm to stiff dark grey/black slightly sandy slightly gravelly CLAY. gravel is medium to coarse angular to very angular with medium cobble content.	· · · · · · · · · · · · · · · · · · ·	
3.00-3.45 3.00	SPT(C) N=30 B4			3,4/6,7,8,9	60.33	3.00	Very stiff dark grey/black slightly sandy slightly gravelly CLAY. gravel is medium to coarse angular to very angular with medium cobble content.		
4.00-4.45 4.00	SPT(C) N=50 B5			12,8/9,13,17,11				· · · · · · · · · · · · · · · · · · ·	
5.00-5.45 5.00	SPT(C) N=50 B6			8,12/15,17,18		(4.00)			
6.00-6.45 6.00	SPT(C) N=50 B7			12,25/50					
					56.33	7.00	Terminated at 7.00m		
Remarks							Scal	le Loaaed	i
Borehole ter Cable percu	minated at 7.00m BC ssion boring techniq ckfilled upon comple	ues carrie	obstruction d out fror	on - possible boulder n ground level to 7.00	or bedrocl Om BGL.	ζ.	Scal (appro		•
								re No. I-08-23(4).BH ²	10

	Grou	nd In		gations Irel w.gii.ie	land l	Ltd		Site Housing Bundle_Ballymun	Borel Numb	ber
Machine : D	ando 2000 able Percussion		Diamete			Level (m)	OD)	Client National Development Finance Agency	Job Numb 13061-08	
		Locatio 71		740165.4 N	Dates 10	/11/2023		Engineer	Sheet	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depti (m) (Thickne	h ess)	Description	Legend	Water
0.50 1.00-1.45 1.50 2.00-2.45 2.80 3.00-3.45 3.50 4.00-4.45 4.50 5.00-5.45 5.50 6.00-6.45 6.50	B1 SPT(C) N=7 B2 SPT(C) N=8 B3 SPT(C) N=31 B4 SPT(C) N=41 B5 SPT(C) N=48 B6 SPT(C) N=50 B7			1,1/2,1,2,2 1,2/2,2,2,2 3,3/6,8,8,9 4,6/8,10,10,13 5,6/11,13,13,11	62.90 62.30 61.10 56.10	(0.1)	20) .200 .600 .800 .000 .000 .000 .000 .000 .0	TOPSOIL MADE GROUND: Brown sandy gravelly Clay, Gravel is fine to coarse sub-angular to sub-rounded with plastic, plaster and mortar fragments. Soft to firm yellowish/brown slightly gravelly CLAY. Gravel is fine to coarse angular. Firm to stiff black/dark grey slightly sandy gravelly CLAY. Gravel is medium to coarse angular to very angular with high cobble content. Very stiff black/dark grey slightly sandy gravelly CLAY. Gravel is medium to coarse angular to very angular with high cobble content.		
Cable percus	ckfilled on completio ssion boring techniqu minated at 7.00m BC	ues carrie	d out from	n ground level to 7.00 n - possible boulder o	m BGL. or bedrock			Scale (approx)	JC	
								Figure 13061-0	No. 8-23(4).B	3H11

	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site Housing Bundle_Ballymun		Boreho Numbe	er
Machine : D	Pando 2000 Pable Percussion	1	Diameter			Level (mOD) 62.16	Client National Development Finance Agency		Job Numbe	
		Locatio 71		740205.9 N	Dates 15	5/11/2023	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
Remarks Borehole ba	ckfilled on completio andoned due to enco	n.			62.06 61.66 61.36	(0.40) 0.50 (0.30)	MADE GROUND: Brown gravelly Clay MADE GROUND: Brown slightly clayey Sand Abandoned at 0.80m	Scale (approx)	Logge	d
Borehole ab	andoned due to enco drilled at location BH	ountering v 12A.	water mai	n.				1:50 Figure N 13061-08-	JC o .	

	Grou	nd In		gations Ire w.gii.ie	land l	Ltd		Site Housing Bundle_Ballymun	Bore Num BH1	
Machine : D	Dando 2000 Cable Percussion		Diamete		Ground	Leve 62.12		Client National Development Finance Agency	Job Num 13061-0	ıber
		Locatio 71		740207.1 N	Dates 15	5/11/20	023	Engineer	Shee	et /1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	D (Thi	epth (m) ckness)	Description	Legen	Water
0.50	B1				61.92		(0.20) 0.20 (0.80)	TOPSOIL. MADE GROUND: Brown/Dark brown silty sandy Clay.		
1.00-1.45 1.00	SPT(C) N=7 B2			1,1/1,2,2,2	61.12		1.00	Soft to firm brown slightly sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded.		
2.00-2.45 2.00	SPT(C) N=9 B3			1,2/2,3,2,2	60.12		2.00	Firm greyish brown slightly sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded.		
3.00-3.45	SPT(C) N=15 B4			1,2/2,3,2,8	58.72		3.40	Terminated at 3.40m		
Remarks Cable percu Borehole ab Borehole ba	ssion boring techniq andoned at 3.40m B ckfilled on completio	ues carrie GL due to	d out fror possible	n ground level to 3.40 presence of services	Om BGL.			Scale (approx) 1:50 Figure	JC	
								13061-08		3H12A

	Grou	nd In		gations Ire	land	Ltd		Site Housing Bundle_Ballymun		Boreho Numbe	er
Machine : 0	Dando 2000 Cable Percussion		Diamete		Ground	Level 62.43		Client National Development Finance Agency	1	Job Numbe	
		Locatio		740236 N	Dates 21	/11/20	023	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	D (Thic	epth (m) ckness)	Description	ı	Legend	Water
0.50 1.00 1.20-1.65	B1 B2 SPT(C) N=11			2,2/3,2,3,3	62.23 61.43		(0.20) (0.80) 1.00 (0.90)	Brown slightly sandy slightly gravelly TOPSOIL with gras and rootlets MADE GROUND: Brown slightly slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded. Firm Brown slightly sandy slightly gravelly CLAY. Gravel in the to coarse sub-angular to sub-rounded.			▼ 1
2.00 2.00-2.45	B3 SPT(C) N=33			Water strike(1) at 1.80m, rose to 1.10m in 5 mins. 3,5/7,9,9,8	60.53		1.90	Very stiff dark grey/black slightly sandy slightly gravelly CLAY. Gravel is fine to coarse subangular to sub-rounder with low cobble content.	d. :		∇ 1
3.00-3.45 3.00	SPT(C) N=50 B4			6,9/12,16,22			(3.30)				
4.00-4.45 4.00	SPT(C) N=50 B5			7,11/14,17,19							
5.00-5.20	SPT(C) 50/0 B6			25/50	57.23		5.20	Terminated at 5.20m	\$ 6		
Inspection p	oit hand dug to 1.20m	n BGL etion		m ground level to 5.2 on - possible boulder				Sca (appr	rox)	Logged By	
Chiselling fr	om 2.60m to 3.00m	for 0.33 ho	ours. Chis	selling from 5.00m to	5.20m for	1 hour	-	Figu	ure No		

	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site Housing Bundle_Ballymun		Boreho Numbe	er
Machine : D	ando 2000	Casing	Diamete		Ground	Level (mOD)	Client		Job	
Method : C	Cable Percussion	20	0mm cas	ed to 2.30m		62.09	National Development Finance Agency		Number 13061-08-2	
		Locatio 71		740242.1 N	Dates 21	/11/2023	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description		Legend	Water
1.00 1.20-1.65 2.00-2.45 2.00	B1 SPT(C) N=50 SPT(C) N=50 B2			20,30/50 Water strike(1) at 1.55m, fell to 1.60m in 20 mins. 15,20/50	61.94 61.69	(0,15) = (0,25) = (0.25) = (0.40) = (1.90)	TOPSOIL MADE GROUND: Brown slightly sandy slightly grace Clay with red brick and plastic fragments MADE GROUND: Brownish grey slightly sandy slig gravelly Clayey with some sub angular to sub roun cobbles and fragments of concrete and mortar Terminated at 2.30m			₹1
Borehole ba Borehole ter	ckfilled on completion minated at 2.50m B0	n. GL due to		n ground level to 2.30 ot advancing. Possibl			shed buildings.	Scale (approx)	Logge By	:d
Borehole re	drilled at location BF	114A		elling from 2.30m to 2			-	1:50 Figure N	JC	
								13061-08-		1 14

		Grou	nd In		gations Ire ww.gii.ie	land	Ltd	Site Housing Bundle_Ballymun		Nu	orehole imber -114A
Method : 0	Dando 2000 Baretha T-4 Cable Percu with Rotary	1 Ission	200		r ed to 6.20m ased to 27.50m	Ground	Level (mOD)	Client National Development Finance Agency		l	b imber 1-08-23(4)
	Follow-on	0010	Locatio	n			1/11/2023- 6/02/2024	Engineer		Sh	1/3
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
1.00 1.20-1.65 1.20 2.00-2.45	B1 SPT(C) B2 SPT(C)				0,1/1,0,1,2 Water strike(1) at 1.70m, rose to 1.60m in 20 mins. 3,3/5,5,6,7		(0.20) 0.20 0.20 0.20 0.20 0.20 0.20 0.20	Brown slightly sandy slightly gravelly TOPSOIL. MADE GROUND: Brown slightly sandy slightly gravelly Clay with fragments of red bricks and pieces of timber Soft brown mottled grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to angular. Stiff dark grey/black slightly sandy slightly gravell CLAY. Gravel is fine to coarse sub-angular to angular. Very stiff dark grey/black slightly sandy slightly	y	1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	
2.50 3.00-3.45 3.50 4.00-4.45	SPT(C) B4 SPT(C)	0	0		4,6/9,10,11,11 6,7/12,15,14,9			gravelly CLAY. Gravel is fine to coarse sub-angular to angular.		ეგი მ ^ე მე ი მ ^ი მ მ ^ი მ მ ^ი მ ი მ მიმ მ ^ი მ ი მ მიმ მიმ მიმ მიმ მიმ მიმ მიმ მიმ	
4.50 5.00-5.45 5.50 6.00-6.45	SPT(C)				7,10/13,15,18,4 9,15/19,23,8 SPT(C) N=50		F			ა მიმ მ°00 გა ი მ°მიმ მ°00 გა ი ი°მიმ მ°00 გა ი ი°მიმ მ°0	
7.00-7.21 7.00	TCR 87.5	SCR 0	RQD 0	FI	20,5/50 SPT(C) 50/60		6.20	Very stiff dark grey slightly sandy gravelly CLAY with some sub angular to sub rounded cobbles and boulders		0° n 0 0° n 0 n 0 0° n 0 0° n 0 n 0 n 0	
8.50-8.72 8.50	100	0	0	0	20,5/50 SPT(C) 50/70		6.20			0. 190 190 190 190 190 190 190 190 190 190	A CALLED STATE OF THE STATE OF
10.00	100	0	0							"Band B"00" no 0 "Band B"00" no 0 "Band B"00" no 0 "	Process September 18 September
Remarks Cable perci Rotary corii	na carried o	ut to 27.5	0m BGL		· ·			ue to possible boulder or bedrock. vith a pea gravel surround. Plain standpipe	Scale (approx)		gged GGR
Borehole ba	ackfilled on	completio	wiui a beni on.	ionile sea	ai ailu a Ilusii Cover				Figure N 13061-08-	lo.	

		Grour	nd In		igations Ire vw.gii.ie	land	Ltd	Site Housing Bundle_Ballymun		N	orehole umber H14A
Flush :	aretha T-4		Casing 200 63.	Diamete		Ground	Level (mOD)	Client National Development Finance Agency		N	ob umber 61-08-23(4)
Core Dia: m Method : Ca wi Fo		ssion Core	Locatio	n		Dates 21 16	/11/2023- 6/02/2024	Engineer		SI	heet 2/3
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
11.50-11.73	100	0	0		SPT(C) 50/70 20,5/50 20,5/50 20,5/50 SPT(C) 50/75		(9.20)	as previous			
11.50	100	0	0								
13.00	100	0	0				(9.20)				
14.50	100	14.67	14.67	10				Very strong massive dark grey to black argillaceous LIMESTONE with rare calcite veining and rare pyrite mineralisation. Partially weathered			ER, Card, All Conference of the Conference of th
17.50	100	42	14.67	26							
19.00	100	58	28.67	31							
Remarks	100	67.33	56.67	19					Scale		10.00000000000000000000000000000000000
									Scale (approx) 1:50 Figure N 13061-08-	lo.	GGR

		Groui	nd In	vesti wv	igations Ire vw.gii.ie	land l	Ltd		Site Housing Bundle_Ballymun		Nι	orehole umber H14A
Machine : E Flush : Core Dia:	Baretha T-4	Diamete		Ground	Level (r	mOD)	Client National Development Finance Agency			ob umber 1-08-23(4)		
Method : C		ssion Core	Locatio	n		Dates 21 16	/11/202 /02/202	3- 4	Engineer			3/3
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Dep (m (Thick	oth 1) ness)	Description	Legend	Water	Instr
20.50	100	58.67	31.33	26			(**************************************	12.10)	as previous			
22.00	100	81.33	58	18					15.40m to 27.50m BGL: 2 Fracture sets - F1: Fractures are dipping 0 - 20 degrees, very close to medium spaced, smooth planar to smooth undulating, with slightl clay smearing. F2: Fracture are dipping 70 - 90 degrees, wide to very wide spaced, undulating rough, with slight clay smearing.			
23.50	100	64	36	26							10 4 00 A U U TARO A 00 A U A TARO A 44 A A A A A A A A	
25.00 26.50	93.33	3 68	32.67	19								
27.50	100	73	73	8				27.50	Terminated at 27.50m		ADD 18 AS A LET TO A REPORT OF A PROPERTY OF	
Remarks							<u> </u>			Scale (approx)		ogged /
										Figure N	lo.	

	Groui	nd In		gations Ire w.gii.ie	land l	Ltd		Site Housing Bundle_Ballymun	N	Boreho Numbe	er
Machine : Da	ando 2000 able Percussion		Diamete			Level (mOl 62.24	1	Client National Development Finance Agency	N	Job Numbe	
		Locatio 71		740210.2 N	Dates 22/11/2023			Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thicknes	s)	Description	Le	egend	Water
0.40	B1				62.09	(0,15)		Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets MADE GROUND: Brownish grey slightly sandy slightly gravelly Clay with fragments of steel, brick and plastic			
1.20-1.65 1.50	SPT(C) N=11 B2			5,3/3,2,1,5	60.94	1.30		Firm greyish brown slightly sandy gravelly CLAY with some sub angular to sub rounded cobbles and boulders			
2.00-2.45 2.50 3.00-3.45	SPT(C) N=13 B3 SPT(C) N=33			2,2/3,3,2,5 Water strike(1) at 2.50m, rose to 2.40m in 20 mins. 5,5/7,8,9,9	59.84	2.40	0 -	Very stiff dark grey slightly sandy gravelly CLAY with some sub angular to sub rounded cobbles and boulders	**************************************		▼ 1
3.50 4.00-4.45	B4 SPT(C) N=50			6,8/12,13,16,9			0)				
4.50 5.00-5.45	B5 SPT(C) N=50			7,9/13,15,22					100000000000000000000000000000000000000		
5.50 6.00-6.45	B6 SPT(C) N=50			6,15/22,28	56.24	6.00		Complete at 6.00m	50 - 60 - 50 -	4.0.0 0.04.0.0 0.04.0.0	1
Remarks								Scale		Loggo	
Cable percus Borehole teri	ssion boring techniq minated at 6.00 BGL ckfilled on completion	ues carrie due to ob n.	d out fror estruction	n ground level to 6.00 - possible boulder or	m BGL. bedrock.			1:50 Figure 13061-	No.		

	Grou	nd In		gations Irel w.gii.ie	land I	Ltd	Site Housing Bundle_Ballymun	Borehole Number BH16
Machine : D	ando 2000 Cable Percussion		Diamete			Level (mO E 62.09	National Development Finance Agency	Job Number 13061-08-23(4)
		Locatio 71		740183.5 N	Dates 13	/11/2023	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Kagend Name
0.50	B1				61.69	(0.40	raginerits of steel and plastic	
1.00-1.45 1.00	SPT(C) N=11 B2			1,1/2,3,3,3	60.59	(1.10 (1.10 (1.50		
2.00-2.45 2.00	SPT(C) N=14 B3			2,3/3,4,3,4	00.00	(1.30	sub angular to sub rounded cobbles and boulders	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00-3.45 3.00	SPT(C) N=33 B4			6,7/8,8,9,8	59.29	2.80	Very stiff black slightly sandy gravelly CLAY with some sub angular to sub rounded cobbles and boulders	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.00-4.45 4.00	SPT(C) N=45 B5			4,9/10,11,11,13				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.00-5.45 5.00	SPT(C) N=50 B6			7,10/12,16,16,6		(4.20		\$\frac{1}{2} \display \frac{1}{2} \display \din \display \display \display \display \din \display \display \dinploy \dinploy \din
6.00-6.45 6.00	SPT(C) N=50 B7			9,11/16,21,13				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.00-7.45 7.00	SPT(C) N=50 B8			30,20/50	55.09	7.00	Complete at 7.00m	
Remarks Cable percu Borehole ter Borehole ba	ssion boring techniq minated at 7.00 BGL ckfilled on completio	ues carrie due to ob	d out fror estruction	n ground level to 7.00 - possible boulder or	m BGL. bedrock.	<u> </u>	Scale (approx)	Logged By
							1:50 Figure N 13061-08-	JC o. 23(4).BH16

1.00-1.45 SPT(C) N=16 B2	ole er 7
1/11	
MADE GROUND: Soft brown sandy gravelly Clay, Gravel is fine to coarse sub-angular to sub-rounded with plastic and steel wire fragments. 1.00-1.45	
0.50 B1 1.00-1.45 SPT(C) N=16 B2 2.00-2.45 SPT(C) N=14 B3 3.00-3.45 SPT(C) N=32 B4 4.00-4.45 SPT(C) N=37 B5 5.00-5.45 SPT(C) N=50 B6 1.2/3,3,4,6 1.2/3,3,4,6 1.2/3,3,4,6 1.2/3,3,4,6 1.2/3,3,4,6 1.70 Film to stiff greyish brown slightly sandy gravelly CLAY. Gravel is fine to coarse sub-rounded to angular. 1.70 Film to stiff greyish brown slightly sandy gravelly CLAY. Gravel is fine to coarse sub-rounded to angular. 1.70 Film to stiff greyish brown slightly sandy gravelly CLAY. Gravel is fine to coarse sub-rounded to angular. 1.70 Film to stiff greyish brown slightly sandy gravelly CLAY. Gravel is fine to coarse sub-rounded to angular. 1.70 Film to stiff greyish brown slightly sandy gravelly clay. Gravel is fine to coarse sub-rounded to angular. 1.70 Film to stiff greyish brown slightly sandy gravelly clay. Gravel is fine to coarse angular to very angular with medium cobble content.	Water
2.00-2.45 SPT(C) N=14 B3	
3.00-3.45 SPT(C) N=32 B4 4,5/6,8,9,9 CLAY. Gravel is medium to coarse angular to very angular with medium cobble content.	
4.00 B5 SPT(C) N=50 P5,9/10,12,14,14 Sport B6 P5 P5,00-5.45 SPT(C) N=50 P6 P5 P5,9/10,12,14,14 P5,00 P6 P5 P5,00-5.45 P6 P5	
5.00 B6	
6.00-6.45 SPT(C) N=50 B7 5,10/13,15,19,3	
7.50-7.95 SPT(C) N=50 10,16/20,17,13	
54.59	
Remarks Cable percussion boring techniques carried out from ground level to 8.00 BGL. Borehole terminated at 8.00 BGL due to obstruction - possible boulder or bedrock. Borehole backfilled upon completion Scale (approx) By	d
1:50 JC Figure No. 13061-08-23(4).BH	117

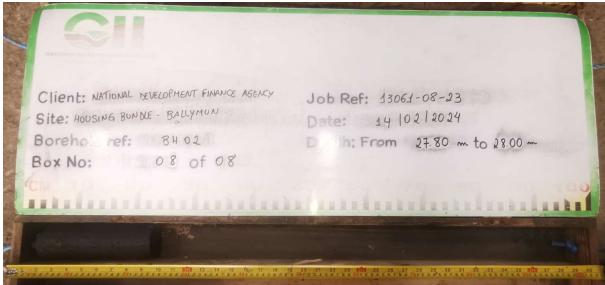
	Grou	nd In		gations Ire w.gii.ie	Site Housing Bundle_Ballymun		Borehol Number BH18			
Machine : D	Dando 2000 Cable Percussion		Diameter			Level (mOD) 62.56	Client National Development Finance Agency		Job Numb 13061-08-	
		Locatio		740193.6 N	Dates 14	/11/2023	Engineer		Sheet	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
(m) 0.50	B1	Deptri	Depth (m)	Field Records	62.46	0.10	TOPSOIL MADE GROUND: Brown slightly gravelly Clay wit cobble content. Terminated at 0.80m	Г	Legend	Wa
Remarks Cable percu Borehole tel Borehole re	ssion boring techniq minated at 0.80 BGI drilled as BH18A	ues carrie	d out from	n ground level to 0.8 - possible boulder o	0 BGL. or bedrock			Scale (approx)	Logge By	ed.
Borehole ba Chiselling fr	drilled as BH18A ckfilled on completic om 0.80m to 0.80m t	n. for 1 hour.						1:50 Figure N 13061-08-		

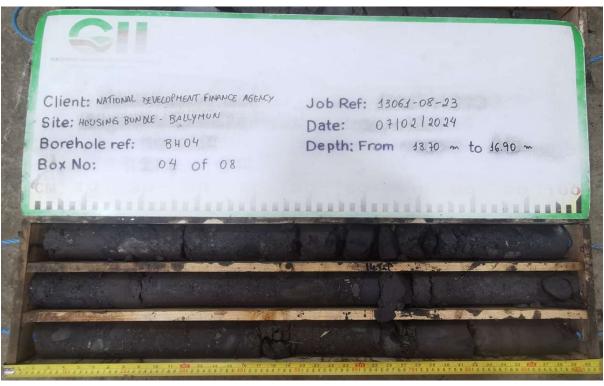
	Grou	nd In	vesti ww	gations Ire w.gii.ie	Site Housing Bundle_Ballymun	Borehole Number BH18A		
Machine : D	Dando 2000 Cable Percussion		Diamete			Level (mO l 62.65	National Development Finance Agency	Job Number 13061-08-23(4)
		Locatio		740189.4 N	Dates 14	1/11/2023	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thicknes	Description	Legend X
0.50	B1				61.95	(0.70		
1.00-1.45 1.00	SPT(C) N=13 B2			1,2/3,4,3,3	61.75	— (0.20	coarse sub-angular to sub-rounded with low cobble content	
2.00-2.45 2.00	SPT(C) N=16 B3			2,3/4,3,5,4	60.65	2.00	sub-angular to sub-rounded with low cobble content.	
3.00-3.45 3.00	SPT(C) N=39 B4			5,6/6,9,11,13	59.65	3.0	Very stiff dark grey/black slightly sandy gravelly CLAY. Gravel is fine to coarse sub-angular to angular.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.00-4.45 4.00	SPT(C) N=49 B5			5,7/9,11,14,15		(3.00		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.00-5.45 5.00	SPT(C) N=50 B6			6,10/13,16,19,2				
6.00-6.45 6.00	SPT(C) N=50 B7			9,12/14,36	56.65	6.0	Terminated at 6.00m	
Borehole ba	ickfilled on completio	n.		- possible boulder or n ground level to 6.00		<u> </u>	Scale (approx	Logged By
							Figure 13061-08	No. 3-23(4).BH18A

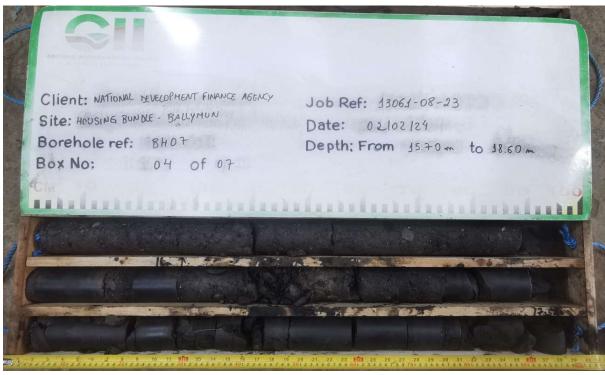
		Grou	nd In		gations Ire w.gii.ie	Site Housing Bundle_Ballymun				nole per		
Method : C	Baretha T-4	1 Ission	20		ed to 7.60m ased to 26.50m		Level (mOD) 62.95	Client National Development Finance Agency			Job Number 13061-08-23	
Follow-on			Location 715400.6 E 740162.9 N			Dates 08/11/2023		Engineer		Sh	Sheet 1/3	
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend	Water	Ins	str
0.50	B1					62.75	(0.20) 0.20 0.20	TOPSOIL MADE GROUND: Brown sandy gravelly Clay. Gravel is fine to coarse sub-angular to sub-rounded with fragments of concrete.				
1.00-1.45 1.00	SPT(C) B2	N=50			20,31/50	61.95	1.00	Very stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is medium to coarse sub-angular to sub-rounded.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A 0 0 00 00 00 00 00 00 00 00 00 00 00 0	200 200 200 200 200 200 200 200 200 200	30 00 00 00 00 00 00 00 00 00 00 00 00 0
2.00-2.45 2.00	SPT(C) B3	N=50			16,21/19,17,14	60.45		Very stiff dark grey slightly sandy gravelly CLAY. Gravel is fine to coarse angular to very angular		000000000000000000000000000000000000000	0 000000000000000000000000000000000000	0 a 2 05 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00-3.45 3.00	SPT(C) B4	N=34 0	0		3,5/7,8,9,10			with medium cobble content.		0,0000000000000000000000000000000000000	0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.00-4.45 4.00	SPT(C) B5	N=41			7,8/9,10,11,11					000000000000000000000000000000000000000	1,000 / 0,000	1908 000000 0010000000000000000000000000
5.00-5.45 5.00	SPT(C) B6	N=50			8,10/12,14,14,10		(5.10)			*0.00000000000000000000000000000000000	0.00 mm 0 mm 20 mm 0 mm 0 mm 0 mm 0 mm 0	ි ඉදිරි ර අද් ඉදිරි ඉදිරි ඉදිරි ඉදිරි මෙර දින් දින් දෙන කිරීම දින් දින් දින් දින් සේ ඉදිරි ඉදිරි දින් දින් දින් දින් දින් දින් දින් සේ ඉදිරි දින් දින් දින් දින් දින් දින් දින් දින
6.00-6.45 6.00	SPT(C) B7	N=50			9,12/16,19,15					000000000000000000000000000000000000000	80000000000000000000000000000000000000	00000000000000000000000000000000000000
7.00 7.00	TCR	SCR	RQD	FI	B8					000000000000000000000000000000000000000		
8.50-8.71	100	0	0		11,14/50 SPT(C) 50/60	55.35	7.60	Very stiff dark grey slightly sandy very gravelly CLAY with some sub angular to sub rounded cobbles and boulders		0.00 U U O O U U O O U U O O U U O O U U O	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	్త్రాల నిర్వహించి చెల్లినల్లో చెల్లినల్లో చెల్లినల్లో చెల్లినల్లో చెల్లినల్లో చెల్లినల్లో చెల్లినల్లో చెల్లినల్లో స్ట్రిప్ మార్క్ మార్క్ స్ట్రిప్ స్ట్రాన్స్ స్ట్రాన్స్ స్ట్రిప్ స్ట్రిస్త్ స్ట్రిస్ట్ స్ట్టిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్టిస్ట్ స్టిస్ట్ స్టిస్ట్ స్ట్రిస్ట్ స్టిస్ట్ స్టిస్ట్ స్టిస్ట్ స్టిస్ట్ స్టిస్ట్ స్టిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్టిస్ట్ స్టిస్ట్ స్టిస్ట్ స్ట్రిస్ట్ స్ట్టిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్ట్రిస్ట్ స్ట్స్ట్స్ స్ట్సిస్ట్ స్ట్స్ట్స్ట్స్ట్స్ట్స్ట్స్ట్స్ట్స్ట
8.50	53.30	В О	0	0	2. 1,2,23.00					T P = 0 AU U C = 0 AU	00 00 00 00 00 00 00 00 00 00 00 00 00	్ట్ లో స్ట్రాన్స్ రాష్ట్రాల్లో స్ట్రాన్స్ కార్ట్ స్ట్రాన్స్ కార్ట్ స్ట్రాన్స్ స్టాన్స్ స్ట్రాన్స్ స్టాన్స్ స్ట్రాన్స్ స్ట్రాన్స్ స్ట్రాన్స్ స్టాన్స్ స్టాన్స్ స్ట్రాన్స్ స్ట్రాన్స్ స్ట్రాన్స్ స్టాన్స్ స్ట్స్ స్ట్స్ స్టాన్స్స
Remarks Cable percu Rotary Follo	ussion borin ow-on carrie	g techniq ed out to 2	ues carrie 26.50m BG	d out from	m ground level to 7.6	0 BGL. Ob	estruction - du	e to possible boulder or bedrock. Om BGL with a pea gravel surround. Plain	Scale (approx)	Lo By	gge /	ed
standpipe ir Borehole ba	nstalled from ackfilled on	n 1.00m E completio	GL to GL on.	with a be	ntonite seal and a flu	ish cover.		Om BGL with a pea gravel surround. Plain	1:50 Figure N 13061-08	lo.	& G(4).BI	

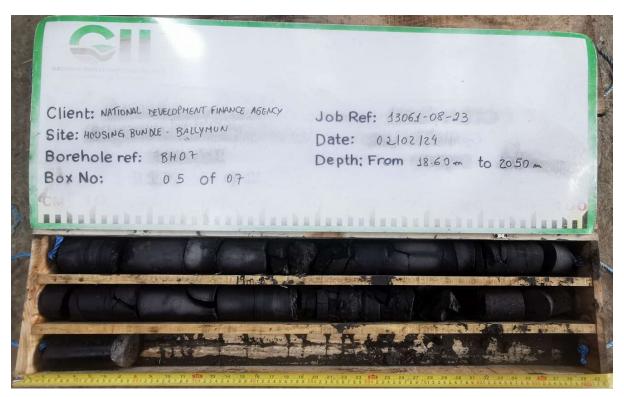

		Groui	nd In		igations Ire vw.gii.ie	land	Ltd	Site Housing Bundle_Ballymun	Borehole Number BH19				
Flush :	aretha T-41		Casing 200 63.	Diamete			Level (mOD) 62.95	Client National Development Finance Agency			ob umber 61-08-23(4)		
Core Dia: m		ssion	Locatio	n		Dates 08/11/2023		Engineer			heet		
W	ith Rotary Collow-on		71	5400.6 E	740162.9 N						2/3		
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr		
11.50-11.71	26.67	0	0		SPT(C) 50/60 20,5/50 20,5/50 20,5/50 SPT(C) 50/55		(6.30)	as previous					
11.50	20	0	0		20,5/50		(6.30)						
13.00-13.22 13.00	56	0	0		20,5/50 SPT(C) 50/65	49.05	<u>-</u> -	Very stiff brownish dark grey slightly sandy gravelly CLAY with some sub angular to sub rounded cobbles and boulders					
14.50	100	0	0		20,5/50 SPT(C) 50/70		(3.60)						
17.50-17.72	100	0	0		20,5/50 SPT(C) 50/70	45.45	(3.60)						
17.50	78.67	12.67	6.67	9		44.15	(1.30)	Very stiff dark grey slightly sandy gravelly CLAY with some sub angular to sub rounded cobbles and boulders Strong to very strong massive dark grey to black					
19.00	76.67	17.33	17.33	17				fine grained argillaceous LIMESTONE with rare calcite veining and rare pyrite mineralisation. Distinctly to partially weathered.					
Remarks									Scale (approx)	Lo B	ogged Y		
									1:50 Figure N 13061-08	JC	& GGR		

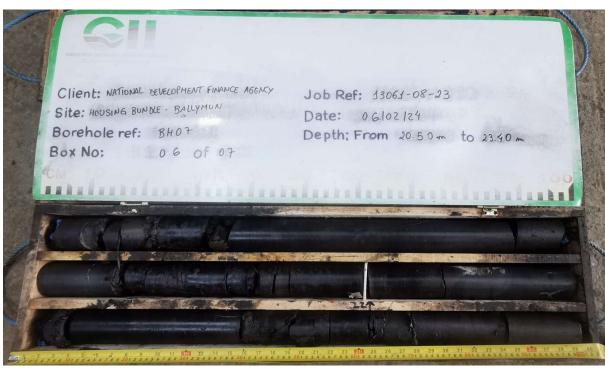
		Groui	nd In		igations Ire vw.gii.ie	Site Housing Bundle_Ballymun	Borehole Number BH19				
Flush :	aretha T-4		20	Diamete			Level (mOD) 62.95	Client National Development Finance Agency			ob lumber 61-08-23(4)
Core Dia: n Method : C			Location 715400.6 E 740162.9 N			Dates 08/11/2023		Engineer		S	heet 3/3
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
20.50	86.67	7 44	34.67	19				as previous			The state of the s
22.00	100	46	43.33	32			(7.70)	18.80m to 26.50m BGL: 3 Fracture sets - F1: Fracture are dipping 0 - 30 degrees, very close to medium spaced, planar smooth to undulating rough. F2: Fractures are 70 - 90 degrees, medium to wide spaced, planar to undulating smooth, with clay smearing. F3: Fracture are dipping 50 - 70 degrees, wide to very wide spaced, undulating smooth, with clay smearing.			
23.50	100	51.33	29.33	32							
25.00	86.67	7 54.67	29.33	25		00.45					
26.50						36.45	26.50	Terminated at 26.50m			NOTE OF STATE OF STA
Remarks									Scale (approx)		ogged y & GGR
									Figure N 13061-08		(4).BH19



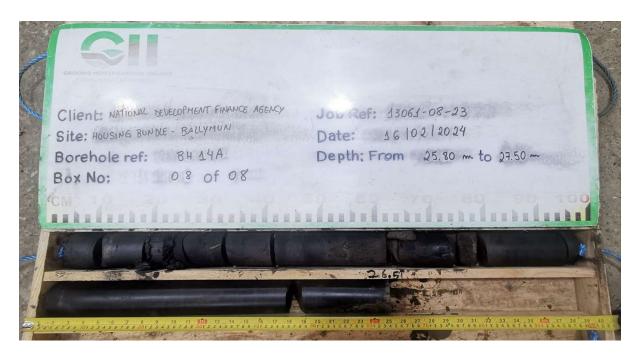








BH14A



Housing Bundle _ Ballymun

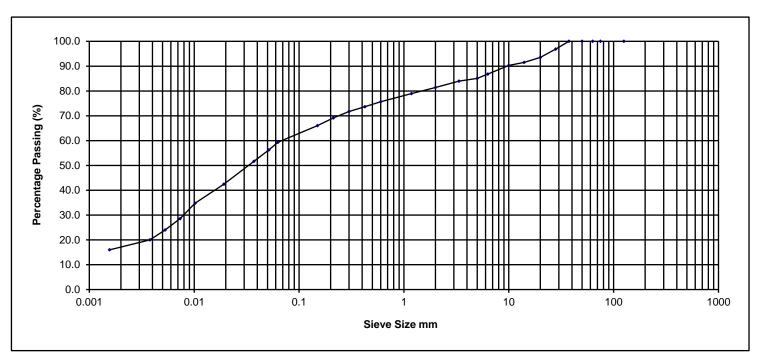
Housing Bundle _ Ballymun

Housing Bundle _ Ballymun

APPENDIX 6 – Laboratory Results

National Materials Testing Laboratory Ltd.

SUMMARY OF TEST RESULTS


				Particle			Index Pro	perties	Bulk	Cell	Undrained Tria	xial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
TP01	1.20	В	23.8		73.7	46	24	22						
TP01	2.00	В	15.4		51.0	32	19	13						
TP02	2.00	В	21.3		40.8	41	22	19						
TP02	3.30	В	13.5		60.6	29	16	13						
TP03	1.00	В	24.5		48.2	41	20	21						
TP03	2.00	В	21.9		56.2	37	21	16						
TP05	1.00	В	19.1		58.8	34	19	15						
TP05	2.00	В	24.4		70.1	37	22	15						
TP06	1.00	В	20.4		43.0	38	22	16						
TP07	2.00	В	15.9		58.9	31	18	13						
TP07	3.00	В	14.5		47.5	30	17	13						
TP08	1.00	В	26.7		68.5	40	22	18						
BH02	1.00	В	20.8		48.8	36	23	13						
BH04	1.00	В	15.8		53.3	34	19	15						
BH06	2.50	В	17.6		51.4	39	21	18						
BH07	1.50	В	13.4		64.1	34	18	16						
BH08	1.00	В	24.0		50.5	40	21	19						
BH08	3.00	В	10.7		49.1	29	17	12						
BH09	1.50	В	21.0		56.6	40	22	18						
BH10	1.20	В	24.7		93.7	36	20	16						
BH10	4.00	В	12.8		58.7	39	24	15						
BH12A	2.00	В	28.4		55.0	46	26	20						
BH14A	2.50	В	11.8		60.5	29	15	14						
BH17	2.00	В	12.9		58.6	30	16	14						
BH18A	1.00	В	14.0		46.6	31	18	13						
BH19	3.00	В	12.8		47.9	31	19	12						
NMTL		Notes :				_		_			Job ref No.	NMTL 3693	GII Project ID:	13061-08-23(5)
			1. All BS te	ests carried	out using p	referred (definitive) r	nethod ur	nless otherw	rise stated.	Location	Housing B	undle 4&5Ballyr	nun Lot 4

NMTL LTD Contract: Housing Bundle 4&5Ballymun Lot 4 Unit 18c, Tullow Industrial Estate Client: **Ground Investigations Ireland Itd** Tullow Engineer: Diarmaid maglochlainn GII Project ID 13061-08-23(5) **County Carlow** Date: 31/01/2024 Tel: 00353 59 9180822 Tested By: Js Checked: Bc Mob: 00353 872575508 Job ref No. **NMTL 3693** billa@nmtl.ie High 50-70 Very High Extremely High Low Intermediate 70 0-35 70-90 90 + 35-50 60 Plasticity Index 50 40 30 20 10 0 20 40 60 80 100 120 0 **Liquid Limit**

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	100.0		
37.500	100.0		
28.000	96.8		
20.000	93.5		
14.000	91.5		
10.000	90.3		
6.300	86.8		
5.000	85.0		
3.350	84.0		
2.000	81.4		
1.180	78.9		
0.600	75.7		
0.425	73.7		
0.300	71.7		
0.212	69.1		
0.150	66.1		
0.063	59.4		
0.052	56.3		
0.037	51.7		
0.019	42.4		
0.010	34.8		
0.007	28.6		
0.005	24.0		
0.004	20.0		
0.002	16.0		

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

ĺ	Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
	16.0	43.4	22.0	18.6	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Brown slightly gravelly slightly sandy silty CLAY.

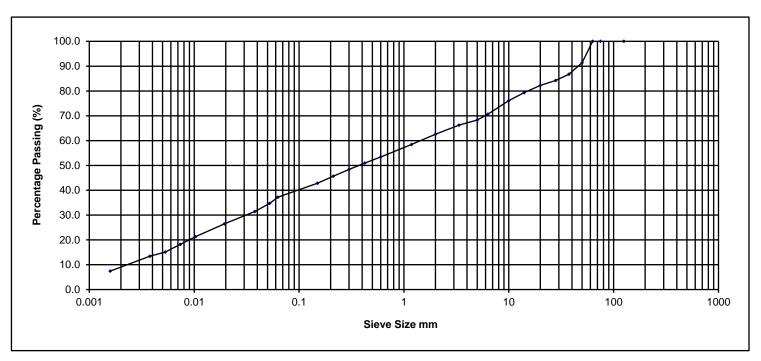
Project No. BH/TP No.

NMTL 3693 TP01

Project Bousing Bundle 4 & 5-Ballymun lot 4

Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.


Date sample tested 25/01/2024 Depth

B 1.20m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	91.4
37.500	86.7
28.000	84.2
20.000	82.2
14.000	79.3
10.000	76.1
6.300	70.6
5.000	68.3
3.350	66.2
2.000	62.6
1.180	58.4
0.600	53.4
0.425	51.0
0.300	48.4
0.212	45.7
0.150	42.9
0.063	37.2
0.052	34.7
0.038	31.4
0.019	26.5
0.010	21.3
0.007	18.2
0.005	15.1
0.004	13.4
0.002	7.4
NM	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

(Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
	7.4		29.8	25.4			37.4	0.0	0.0

Sample Description Light brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693

TL

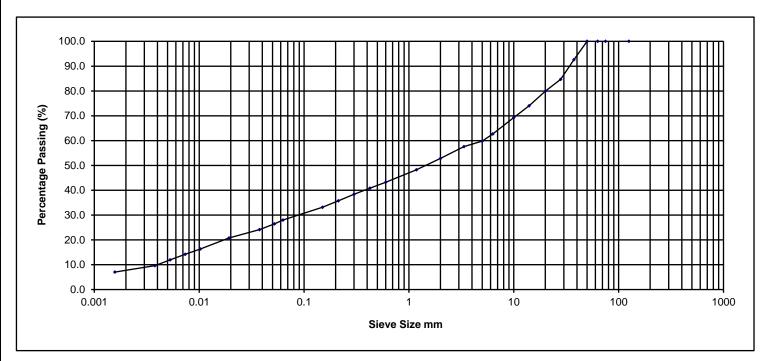
Ltd

Operator

Project		Bousing Bundle 4 & 5-Ballymun lot 4					
Sb	Checked	Nc	Approved	Вс			

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 25/01/2024 Depth


TP01 B 2.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	92.6
28.000	84.7
20.000	79.9
14.000	74.0
10.000	69.3
6.300	62.7
5.000	59.8
3.350	57.6
2.000	52.8
1.180	48.2
0.600	43.3
0.425	40.8
0.300	38.4
0.212	35.8
0.150	33.1
0.063	28.0
0.052	26.5
0.038	24.2
0.019	20.8
0.010	16.4
0.007	14.2
0.005	11.9
0.004	9.6
0.002	7.0
NM	

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

CI	ay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
	.0		21.0	24.8			47.2	0.0	0.0

Sample Description Brown/grey slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

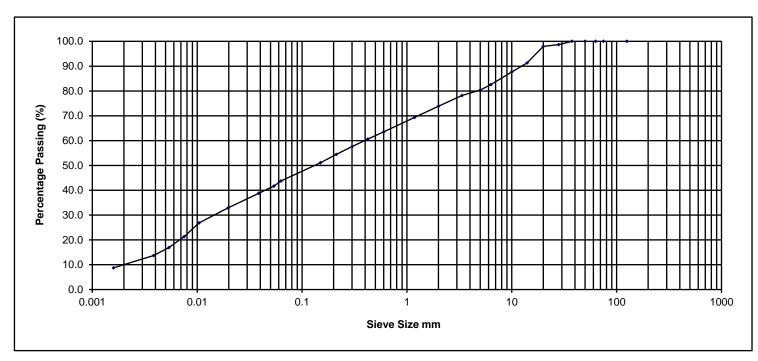
NMTL 3693 TP02

Project Bousing Bundle 4 & 5-Ballymun lot 4

Ltd Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 25/01/2024 Depth


B 2.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	98.7
20.000	98.0
14.000	91.3
10.000	87.7
6.300	82.5
5.000	80.4
3.350	78.2
2.000	73.8
1.180	69.3
0.600	63.5
0.425	60.6
0.300	57.6
0.212	54.5
0.150	51.1
0.063	43.7
0.054	41.7
0.039	38.8
0.020	32.9
0.010	26.8
0.007	21.3
0.005	16.9
0.004	13.7
0.002	8.7
NM	

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
8.7		35.0	30.1			26.2	0.0	0.0

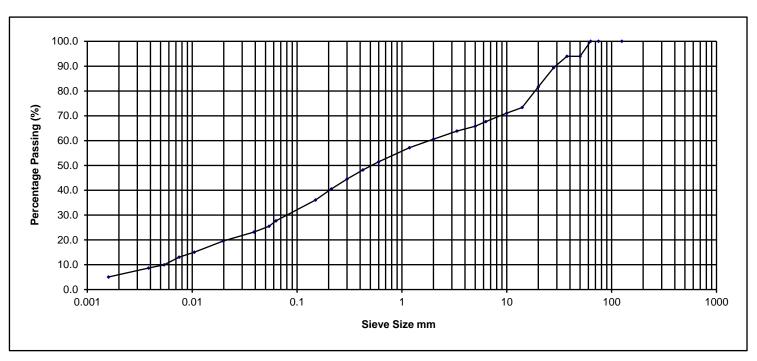
Sample Description Grey slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No. NMTL 3693 TP03

Project Bousing Bundle 4 & 5-Ballymun lot 4

Ltd Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.


Date sample tested 25/01/2024 Depth

B 3.30m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	94.0
37.500	94.0
28.000	89.4
20.000	81.7
14.000	73.3
10.000	71.1
6.300	67.6
5.000	65.8
3.350	63.8
2.000	60.6
1.180	57.2
0.600	51.5
0.425	48.2
0.300	44.5
0.212	40.5
0.150	36.1
0.063	27.7
0.054	25.5
0.039	23.2
0.020	19.5
0.010	15.0
0.008	13.0
0.005	10.0
0.004	8.7
0.002	5.1

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

С	Clay	Fine	Medium Coarse	Fine Medium Coar	e Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand		Gravel		
5	5.1		22.6	32.9		39.4	0.0	0.0

Operator

Ltd

TL

NM

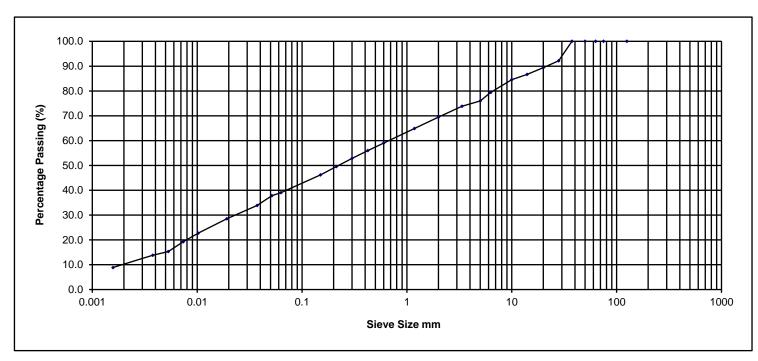
Sample Description Light brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693 TP03

Project	•	Bousing Bund	lle 4 & 5-Ballymun lot 4	
Sh	Checked	Nc	Approved Bc	

GII PROJECT ID:13061-08-23(5) Sample No.


Date sample tested 23/04/2024 Depth

B 1.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	92.1
20.000	89.4
14.000	86.7
10.000	84.5
6.300	79.4
5.000	76.0
3.350	73.9
2.000	69.5
1.180	64.9
0.600	59.0
0.425	56.0
0.300	52.8
0.212	49.5
0.150	46.2
0.063	39.0
0.052	37.8
0.037	33.9
0.019	28.5
0.010	22.7
0.007	19.2
0.005	15.3
0.004	13.8
0.002	8.9
NI/I	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium (Coarse Fine	Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
	Silt		Sand			Gravel		
8.9	30.2		30.4			30.5	0.0	0.0

NM

TL

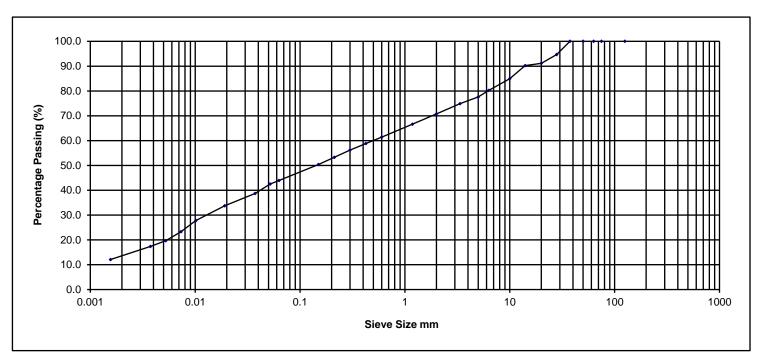
Ltd

Operator

Sample Description Dark grey/brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No. NMTL 3693

Project	oject Bousing Bundle 4 & 5-Ballymun lot 4		4 GII PROJE	ECT ID:13061-08-23(5) Sample No.	
Sb	Checked	Nc	Approved Bc	Date sample tested	23/01/2024 Depth


TP03 B 2.00m

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	100.0		
37.500	100.0		
28.000	94.7		
20.000	91.1		
14.000	90.3		
10.000	84.9		
6.300	80.2		
5.000	77.6		
3.350	74.9		
2.000	70.8		
1.180	66.6		
0.600	61.4		
0.425	58.8		
0.300	56.2		
0.212	53.3		
0.150	50.3		
0.063	43.9		
0.052	42.5		
0.037	38.7		
0.019	33.7		
0.010	27.8		
0.007	23.3		
0.005	19.7		
0.004	17.3		
0.002	12.1		
NM			

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
12.1	31.8	26.9	29.2	0.0	0.0

Sample Description Grey/brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693 TP05

Ltd	Operator

Project		Bousing Bundle 4 & 5-Ballym			
Sb	Checked	Nc	Approved	Вс	

GII PROJECT	ID:13061-08-23(5)	Sample No.
Date sample tested	23/01/2024	Depth

B 1.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	95.3
28.000	89.9
20.000	84.9
14.000	84.9
10.000	84.9
6.300	84.9
5.000	83.8
3.350	81.1
2.000	78.9
1.180	76.5
0.600	72.9
0.425	70.1
0.300	66.6
0.212	62.5
0.150	58.2
0.063	50.6
0.055	48.7
0.039	44.1
0.020	35.4
0.011	27.8
0.008	22.1
0.005	17.9
0.004	13.7
0.002	9.5
NM	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
9.5		41.1	28.3			21.1	0.0	0.0

TL

Ltd

Operator

Sample Description Brown grey slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No.

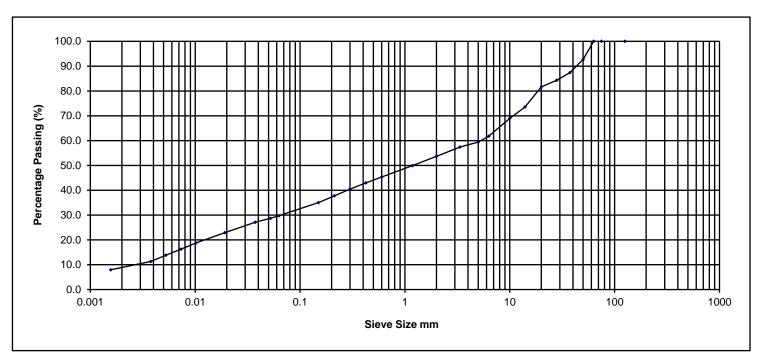
NMTL 3693

Project Bousing Bundle 4 & 5-Ballymun lot 4

Sb Checked Nc Approved Bc [

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 25/01/2024 Depth


TP05 B 3.00m

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	92.7		
37.500	87.4		
28.000	84.3		
20.000	81.6		
14.000	73.6		
10.000	69.0		
6.300	61.8		
5.000	59.4		
3.350	57.4		
2.000	53.6		
1.180	50.0		
0.600	45.3		
0.425	43.0		
0.300	40.4		
0.212	37.8		
0.150	35.0		
0.063	29.7		
0.052	28.7		
0.037	27.1		
0.019	22.9		
0.010	18.8		
0.007	16.3		
0.005	13.8		
0.004	11.3		
0.002	8.0		
NM			

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
L	8.0		21.8	23.9			46.4	0.0	0.0

Sample Description Brown grey slightly sandy gravelly silty CLAY.

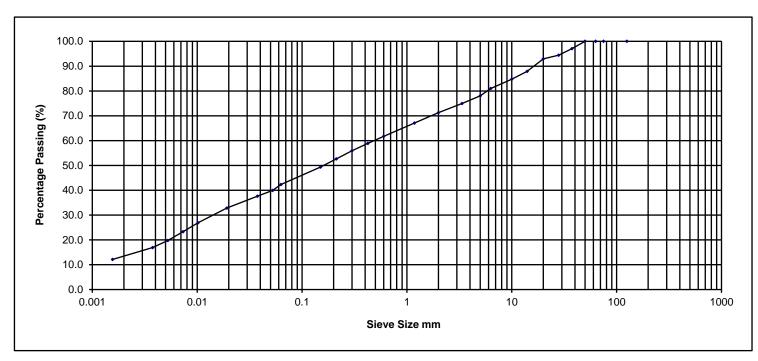
Project No. BH/TP No. NMTL 3693 TP06

		Project	t	Bousing Bundle 4 & 5-Ballymun lot 4				
Ltd	Operator	Sb	Checked	Nc	Approved Bc			

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 25/01/2024 Depth

B 1.00m


Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	97.1
28.000	94.4
20.000	93.0
14.000	87.9
10.000	84.8
6.300	81.0
5.000	78.0
3.350	75.0
2.000	71.3
1.180	67.1
0.600	61.7
0.425	58.9
0.300	55.9
0.212	52.7
0.150	49.3
0.063	42.3
0.052	40.0
0.038	37.6
0.019	32.8
0.010	26.9
0.007	23.3
0.005	19.7
0.004	16.9
0.002	12.1
NM	

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	/ Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
12.		30.2	28.9			28.7	0.0	0.0

Sample Description Brown grey slightly sandy slightly gravelly silty CLAY.

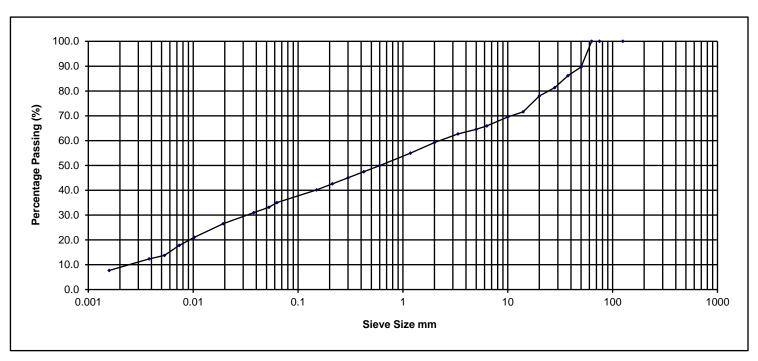
Project No. BH/TP No.

NMTL 3693 TP07

Project Bousing Bundle 4 & 5-Ballymun lot 4

Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.


Date sample tested 25/01/2024 Depth

B 2.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	89.7
37.500	86.2
28.000	81.4
20.000	77.9
14.000	71.6
10.000	69.6
6.300	65.9
5.000	64.6
3.350	62.7
2.000	59.2
1.180	54.9
0.600	49.9
0.425	47.5
0.300	45.0
0.212	42.6
0.150	40.1
0.063	35.0
0.053	33.2
0.038	31.0
0.019	26.5
0.010	21.0
0.007	17.8
0.005	13.8
0.004	12.3
0.002	7.7

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
7.7		27.3	24.2			40.8	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Dark brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

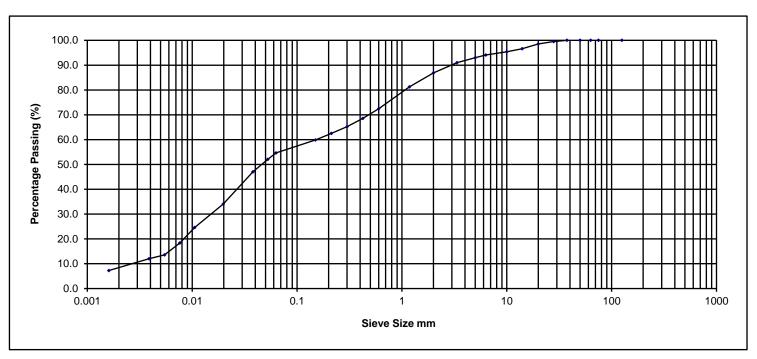
NMTL 3693

Project Bousing Bundle 4 & 5-Ballymun lot 4

Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 23/01/2024 Depth


TP07 B 3.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	99.5
20.000	98.5
14.000	96.6
10.000	95.4
6.300	94.1
5.000	93.0
3.350	91.0
2.000	86.9
1.180	81.2
0.600	72.5
0.425	68.5
0.300	65.2
0.212	62.5
0.150	59.9
0.063	54.6
0.053	52.1
0.038	47.0
0.020	34.1
0.011	24.6
0.008	18.3
0.005	13.6
0.004	12.0
0.002	7.3
NM	

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

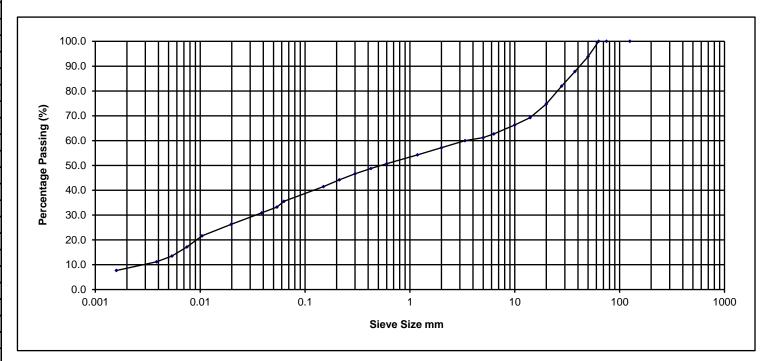
Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
7.3		47.3	32.3			13.1	0.0	0.0

Sample Description Brown slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No. NMTL 3693 TP08

		Project	t	Bousing Bundle 4 & 5-Ballymun lot 4				
Ltd	Operator	Sb	Checked	Nc	Approved Bc			

GII PROJECT ID:13061-08-23(5) Sample No.


Date sample tested 25/01/2024 Depth

B 1.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	93.9
37.500	87.9
28.000	82.0
20.000	74.8
14.000	69.3
10.000	66.3
6.300	62.7
5.000	61.2
3.350	60.0
2.000	57.1
1.180	54.2
0.600	50.7
0.425	48.8
0.300	46.6
0.212	44.2
0.150	41.5
0.063	35.5
0.054	33.2
0.039	30.9
0.020	26.3
0.010	21.6
0.007	17.2
0.005	13.5
0.004	11.2
0.002	7.7
NM	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
7.7		27.9	21.6			42.9	0.0	0.0

Date sample tested

Ltd

Operator

TL

Sample Description Brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693

Bousing Bundle 4 & 5-Ballymun lot 4 Project Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No. 26/01/2024 Depth

BH02 В

1.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	91.1
28.000	84.5
20.000	80.3
14.000	80.3
10.000	77.6
6.300	73.4
5.000	70.5
3.350	68.0
2.000	64.4
1.180	60.5
0.600	55.8
0.425	53.3
0.300	50.9
0.212	48.3
0.150	45.8
0.063	40.6
0.053	38.2
0.038	35.6
0.019	31.2
0.010	24.1
0.007	21.8
0.005	17.8
0.004	15.2
0.002	10.5
NM	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium Coarse		Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand		Gravel			
10.5		30.0	23.8			35.6	0.0	0.0

TL

Ltd

Operator

Sample Description Dark brown slightly sandy gravelly silty CLAY.

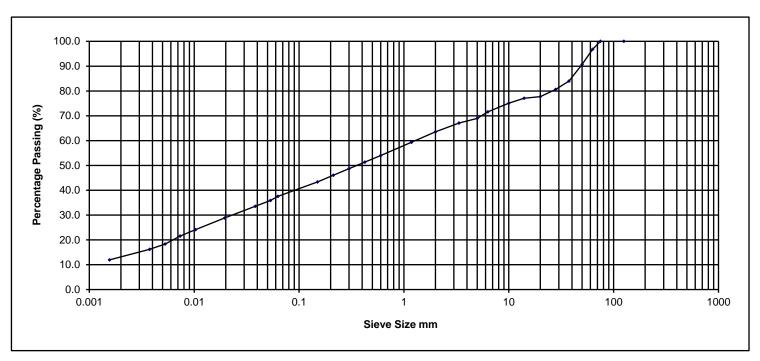
Project No. BH/TP No.

NMTL 3693

Project		Bousing Bundle 4 & 5-Ballymun lot 4				
Sb	Checked	Nc	Approved	Вс		

GII PROJECT ID:13061-08-23(5) Sample No.				
	Date sample tested	26/01/2024	Depth	

BH04 В


1.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	96.8
50.000	90.7
37.500	84.0
28.000	80.6
20.000	77.7
14.000	77.1
10.000	75.1
6.300	71.6
5.000	68.9
3.350	67.1
2.000	63.5
1.180	59.3
0.600	54.0
0.425	51.4
0.300	48.7
0.212	46.0
0.150	43.4
0.063	37.5
0.053	35.9
0.038	33.6
0.020	28.9
0.010	24.2
0.007	21.6
0.005	18.3
0.004	16.2
0.002	12.0
NM	

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	y Fine	Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
12.		25.6	26.0	33.3	3.2	0.0

Sample Description Grey brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693

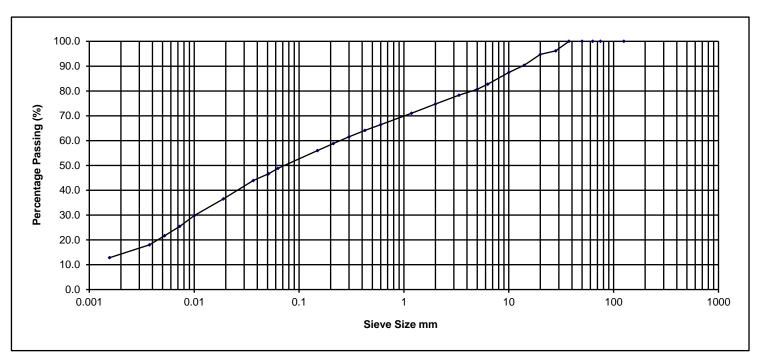
Project Bousing Bundle 4 & 5-Ballymun lot 4

Ltd Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 26/01/2024 Depth

BH06 B 2.50m


Sieve	%					
Size mm	Passing					
125.000	100.0					
75.000	100.0					
63.000	100.0					
50.000	100.0					
37.500	100.0					
28.000	96.2					
20.000	94.7					
14.000	90.3					
10.000	87.4					
6.300	82.8					
5.000	80.7					
3.350	78.3					
2.000	74.8					
1.180	71.0					
0.600	66.4					
0.425	64.1					
0.300	61.6					
0.212	58.8					
0.150	56.0					
0.063	48.8					
0.051	46.6					
0.037	43.9					
0.019	36.5					
0.010	29.8					
0.007	25.4					
0.005	21.7					
0.004	18.0					
0.002	12.8					
NM	NM					

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
12.8	36.0	25.9	25.2	0.0	0.0

Sample Description Light Grey brownslightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No.

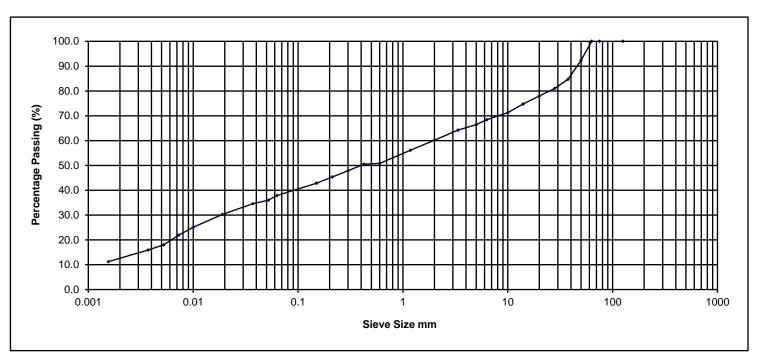
NMTL 3693

Project Bousing Bundle 4 & 5-Ballymun lot 4

Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 23/01/2024 Depth


BH07 B 1.50m

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	92.3		
37.500	84.7		
28.000	81.0		
20.000	77.9		
14.000	74.7		
10.000	71.3		
6.300	68.4		
5.000	66.4		
3.350	64.3		
2.000	60.2		
1.180	56.1		
0.600	50.8		
0.425	50.5		
0.300	47.9		
0.212	45.3		
0.150	42.8		
0.063	37.9		
0.052	36.0		
0.037	34.6		
0.019	30.3		
0.010	25.2		
0.007	21.9		
0.005	18.0		
0.004	16.0		
0.002	11.3		
NM			

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium Coarse		Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand		Gravel			
11.3		26.6	22.4			39.8	0.0	0.0

Sample Description Grey brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693 BH08

Project Bousing Bundle 4 & 5-Ballymun lot 4

Ltd Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 23/01/2024 Depth

B 1.00m

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	100.0		
37.500	91.9		
28.000	84.0		
20.000	76.5		
14.000	76.0		
10.000	72.6		
6.300	69.0		
5.000	66.9		
3.350	63.8		
2.000	60.0		
1.180	56.3		
0.600	51.5		
0.425	49.1		
0.300	46.7		
0.212	44.2		
0.150	41.7		
0.063	36.5		
0.052	35.5		
0.037	33.5		
0.019	29.3		
0.010	24.3		
0.007	20.5		
0.005	18.5		
0.004	16.0		
0.002	12.6		
NM			

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine Me	edium Coarse	Fine Medium Coarse		Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
L	12.6		23.9	2	23.5		40.0	0.0	0.0

Sample Description Grey slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693

Project Bousing Bundle 4 & 5-Ballymun lot 4

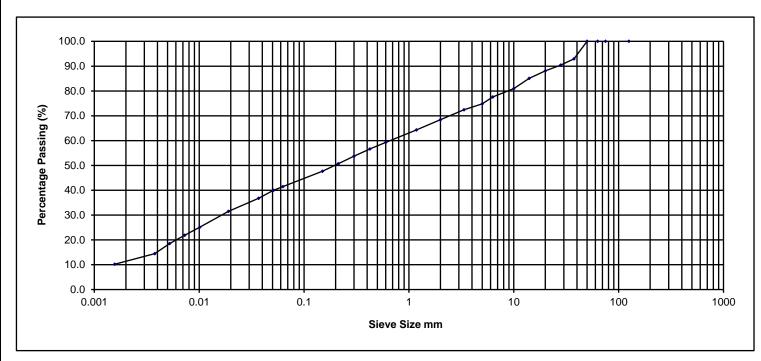
Ltd Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

BH08 B 3.00m

TL

r Sb Checked Nc Approved Bc Date sample tested 23/01/2024 Depth


Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	92.9
28.000	90.4
20.000	88.1
14.000	85.1
10.000	80.9
6.300	77.6
5.000	74.8
3.350	72.5
2.000	68.4
1.180	64.3
0.600	59.3
0.425	56.6
0.300	53.7
0.212	50.7
0.150	47.7
0.063	41.5
0.051	40.0
0.037	36.8
0.019	31.5
0.010	25.1
0.007	21.9
0.005	18.5
0.004	14.5
0.002	10.2
NM	

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

(Clay	Fine Mediu	n Coarse Fine	e Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		S	ilt	Sand			Gravel		
_	10.2	3	1.3	27.0			31.6	0.0	0.0

Sample Description Brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No. NMTL 3693 BH09

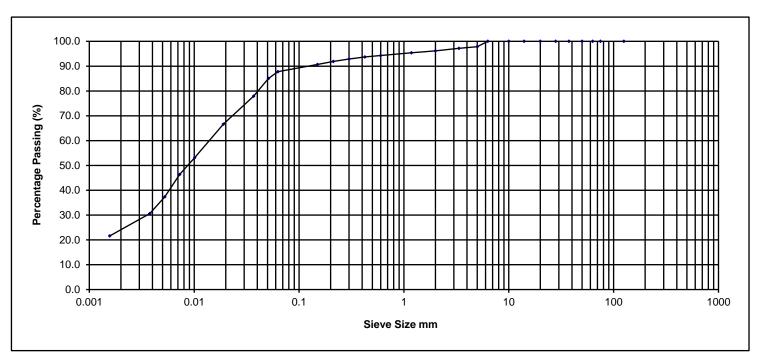
Project Bousing Bundle 4 & 5-Ballymun lot 4

Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 23/01/2024 Depth

B 1.50m


Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	100.0
20.000	100.0
14.000	100.0
10.000	100.0
6.300	100.0
5.000	97.9
3.350	97.2
2.000	96.2
1.180	95.4
0.600	94.3
0.425	93.7
0.300	92.9
0.212	91.9
0.150	90.7
0.063	87.8
0.051	85.1
0.037	77.9
0.019	66.6
0.010	53.1
0.007	46.4
0.005	37.4
0.004	30.6
0.002	21.6
NM	

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

(Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
2	21.6		66.2	8.4			3.8	0.0	0.0

Sample Description Grey/brown slightly gravelly slightly sandy silty CLAY.

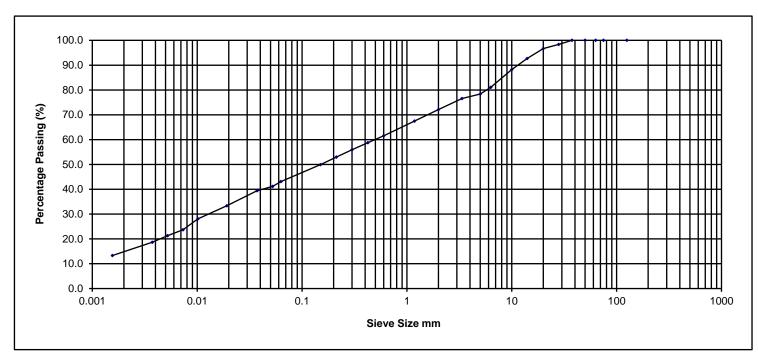
Project No. BH/TP No.

NMTL 3693 BH10

Project Bousing Bundle 4 & 5-Ballymun lot 4

Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.


Date sample tested 23/01/2024 Depth

B 1.20m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	98.3
20.000	96.7
14.000	92.7
10.000	88.2
6.300	81.1
5.000	78.4
3.350	76.5
2.000	72.1
1.180	67.5
0.600	61.6
0.425	58.7
0.300	55.9
0.212	53.0
0.150	49.9
0.063	43.1
0.052	41.1
0.037	39.4
0.019	33.4
0.010	28.1
0.007	23.7
0.005	21.3
0.004	18.6
0.002	13.3
NM	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine M	edium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
13.3		29.8	29.1			27.9	0.0	0.0

Ltd

Operator

TL

Sample Description Brown slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No.

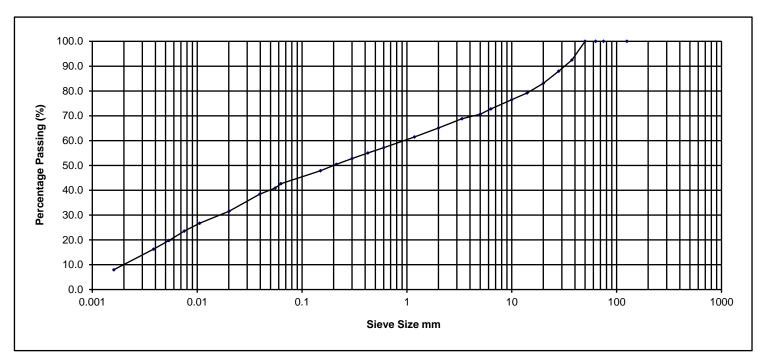
NMTL 3693

Project		Bousing Bundle 4 & 5-Ballymun lot 4						
Sb	Checked	Nc	Approved	Вс				

GII PROJECT I	Sample No.	
Date sample tested	23/01/2024	Depth

BH10 В

4.00m


Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	92.5
28.000	88.0
20.000	83.1
14.000	79.2
10.000	76.5
6.300	72.7
5.000	70.6
3.350	68.8
2.000	65.1
1.180	61.5
0.600	57.2
0.425	55.0
0.300	52.8
0.212	50.4
0.150	47.9
0.063	42.6
0.055	40.9
0.040	38.5
0.020	31.5
0.011	26.7
0.008	23.6
0.005	19.8
0.004	16.3
0.002	8.0
NM	

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Ī	Clay	Fine Medium Coars	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
L	8.0	34.7	22.5	34.9	0.0	0.0

Sample Description Brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693 BH12A

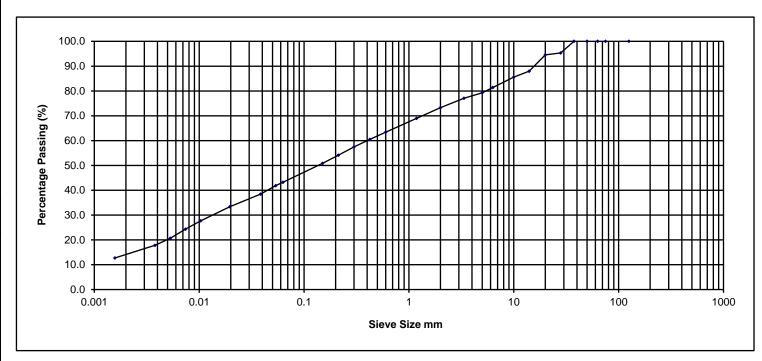
Project Bousing Bundle 4 & 5-Ballymun lot 4

Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 24/01/2024 Depth

B 2.00m


Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	95.3
20.000	94.5
14.000	88.0
10.000	85.6
6.300	81.4
5.000	79.2
3.350	77.1
2.000	73.2
1.180	68.9
0.600	63.4
0.425	60.5
0.300	57.5
0.212	54.2
0.150	50.8
0.063	43.3
0.054	41.8
0.038	38.4
0.020	33.4
0.010	27.7
0.007	24.3
0.005	20.6
0.004	17.8
0.002	12.7
NM	

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	/ Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
12.		30.5	30.0			26.8	0.0	0.0

Sample Description Grey slightly gravelly slightly sandy silty CLAY.

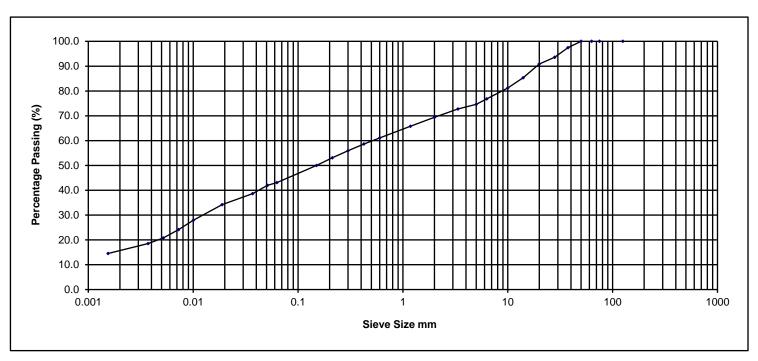
Project No. BH/TP No.

NMTL 3693 BH14A

	Project		Bousing Bundle 4 & 5-Ballymun lot 4				
Operator	Sb	Checked	Nc	Approved Bc			

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 24/01/2024 Depth


B 2.50m

Sieve	%				
Size mm	Passing				
125.000	100.0				
75.000	100.0				
63.000	100.0				
50.000	100.0				
37.500	97.5				
28.000	93.6				
20.000	90.9				
14.000	85.3				
10.000	81.2				
6.300	76.8				
5.000	74.6				
3.350	72.8				
2.000	69.4				
1.180	65.8				
0.600	61.1				
0.425	58.6				
0.300	55.9				
0.212	53.1				
0.150	50.0				
0.063	43.1				
0.051	42.0				
0.037	38.7				
0.019	34.2				
0.010	27.9				
0.007	24.1				
0.005	20.8				
0.004	18.5				
0.002	14.5				
NM					

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand		Gravel			
l	14.5		28.6	26.2			30.6	0.0	0.0

Sample Description Grey brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

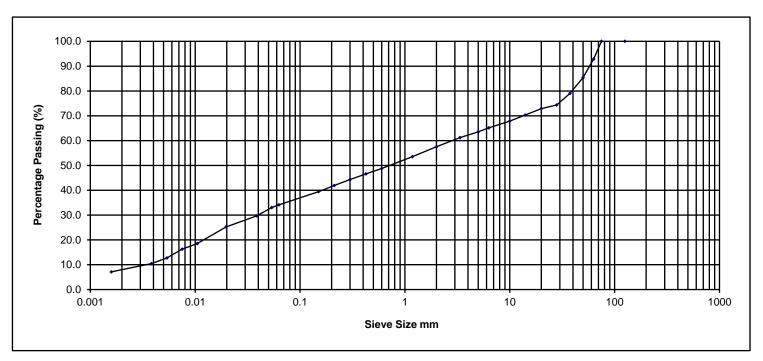
NMTL 3693 BH17

Project Bousing Bundle 4 & 5-Ballymun lot 4

Ltd Operator Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 24/01/2024 Depth


B 2.00m

Sieve	%				
Size mm	Passing				
125.000	100.0				
75.000	100.0				
63.000	92.9				
50.000	85.4				
37.500	79.0				
28.000	74.4				
20.000	72.9				
14.000	70.3				
10.000	67.9				
6.300	65.2				
5.000	63.6				
3.350	61.2				
2.000	57.6				
1.180	53.5				
0.600	48.8				
0.425	46.6				
0.300	44.3				
0.212	41.9				
0.150	39.4				
0.063	34.1				
0.054	33.0				
0.039	29.7				
0.020	25.2				
0.010	18.5				
0.007	16.3				
0.005	12.7				
0.004	10.5				
0.002	7.1				
NM					

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	ay Fine	Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
7.	1	27.0	23.4	35.3	7.1	0.0

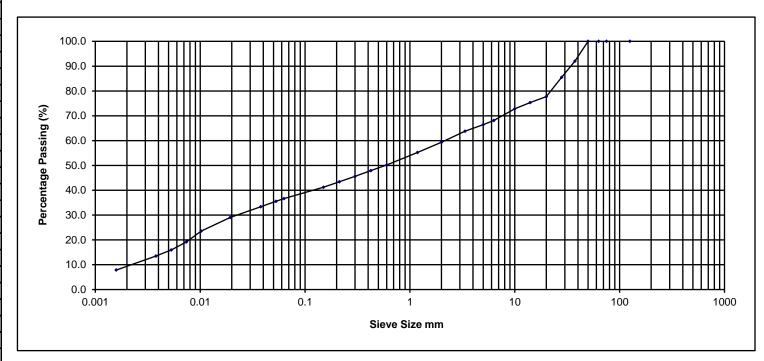
Sample Description Brown grey slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693 BH18A

		Project	t	Bousing Bund	dle 4 & 5-Ballyn	nun lot	4
Ltd	Operator	Sb	Checked	Nc	Approved	Вс	

GII PROJECT ID:13061-08-23(5) Sample No.


Date sample tested 25/01/2024 Depth

B 1.00m

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
50.000	100.0			
37.500	92.1			
28.000	85.5			
20.000	77.7			
14.000	75.4			
10.000	72.8			
6.300	68.1			
5.000	66.4			
3.350	63.8			
2.000	59.3			
1.180	55.2			
0.600	50.2			
0.425	47.9			
0.300	45.6			
0.212	43.4			
0.150	41.2			
0.063	36.7			
0.053	35.6			
0.038	33.4			
0.019	29.0			
0.010	23.6			
0.007	19.2			
0.005	15.9			
0.004	13.5			
0.002	7.9			

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand		Gravel			
L	7.9		28.8	22.7			40.7	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Grey brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3693

Project Bousing Bundle 4 & 5-Ballymun lot 4

Sb Checked Nc Approved Bc

GII PROJECT ID:13061-08-23(5) Sample No.

Date sample tested 25/01/2024 Depth

BH19 B

3.00m

LABORATORY REPORT

Contract Number: PSL24/1016

Report Date: 01 March 2024

Client's Reference: 13061-08-23(5)

Client Name: Ground Investigations Ireland Ltd

Catherinestown House Hazelhatch Road

Newcastle Co Dublin D22 YD52

For the attention of: Diarmaid MagLochlainn

Contract Title: Housing Bundle 4&5 - Lot 4 - Ballymun (AKA Ballymun PPP)

Date Received: 8/2/2024
Date Commenced: 8/2/2024
Date Completed: 1/3/2024

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins R Berriman S Royle

(Managing Director) (Associate Director) (Laboratory Manager)

L Knight S Eyre T Watkins
(Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

5 – 7 Hexthorpe Road,

Hexthorpe,

Doncaster, DN4 0AR

Tel: 01302 768098

Email: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

LHA

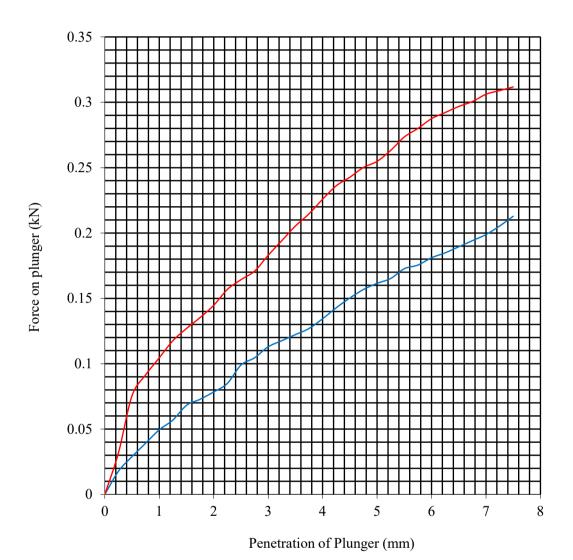
SUMMARY OF LABORATORY SOIL DESCRIPTIONS

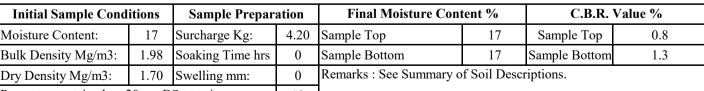
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP01		В	0.70		Brown sandy gravelly CLAY.
TP02		В	0.50		Brown sandy slightly gravelly CLAY.
TP02		В	1.20		Brown sandy gravelly CLAY.
TP03		В	0.50		Brown sandy gravelly CLAY.
TP04		В	0.50		Brown sandy gravelly CLAY.
TP10		В	0.50		Brown sandy slightly gravelly CLAY.
TP11		В	0.50		Brown sandy slightly gravelly CLAY.
TP12		В	0.50		Brown sandy gravelly CLAY.
TP12		В	1.00		Brown slightly sandy gravelly CLAY.

Housing Bundle 4 & 5 - Lot 4 - Ballymun (AKA Ballymun PPP)

Contract No:
PSL24/1016
Client Ref:
13061-08-23(5)

PSLRF011 Issue No.1 Approved by: L Pavey 03/01/2022


CALIFORNIA BEARING RATIO TEST


BS 1377: Part 4: 1990

Hole Number: Top Depth (m): **TP01** 0.70

Sample Number: Base Depth (m):

Sample Type: B

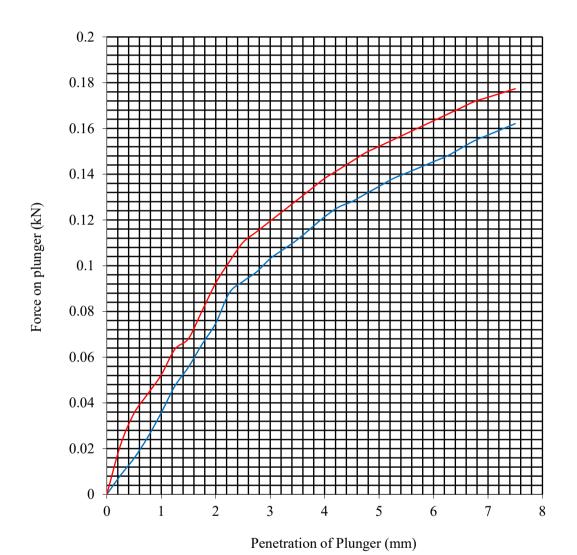
Тор

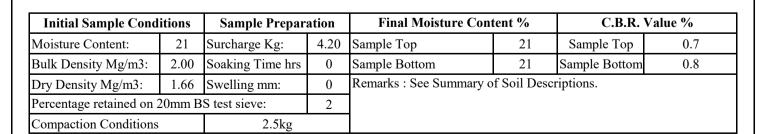
Bottom

Moisture Content: 17 S		Surcharge Kg:	4.20	Sample Top	17	Sample Top	0.8
Bulk Density Mg/m3: 1.98 Soa		Soaking Time hrs	0	Sample Bottom 17 Sar		Sample Bottom	1.3
Dry Density Mg/m3: 1.70 Swelling mm:		0	Remarks : See Summary of Soil Descriptions.				
Percentage retained on 20mm BS test sieve:							
Compaction Conditions 2.5kg							

Housing Bundle 4 & 5 - Lot 4 - Ballymun (AKA **Ballymun PPP)**

Contract No: PSL24/1016 **Client Ref:** 13061-08-23(5)


CALIFORNIA BEARING RATIO TEST


BS 1377: Part 4: 1990

Hole Number: TP02 Top Depth (m): 0.50

Sample Number: Base Depth (m):

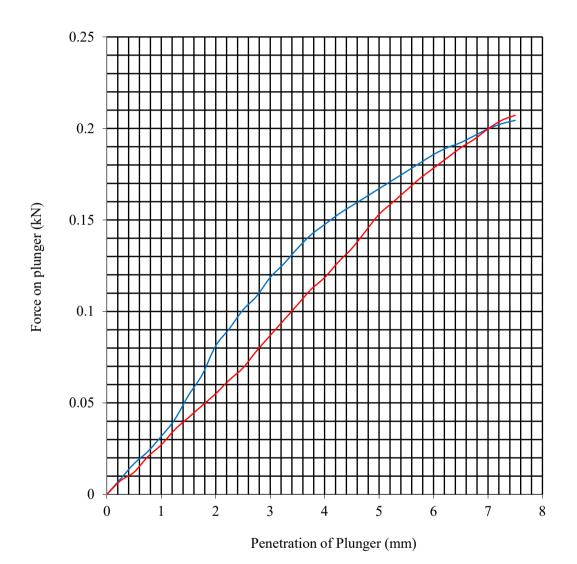
Sample Type: B

Тор

Bottom

Housing Bundle 4 & 5 - Lot 4 - Ballymun (AKA Ballymun PPP)

Contract No: PSL24/1016
Client Ref: 13061-08-23(5)


CALIFORNIA BEARING RATIO TEST

BS 1377: Part 4: 1990

Hole Number: TP04 Top Depth (m): 0.50

Sample Number: Base Depth (m):

Sample Type: B

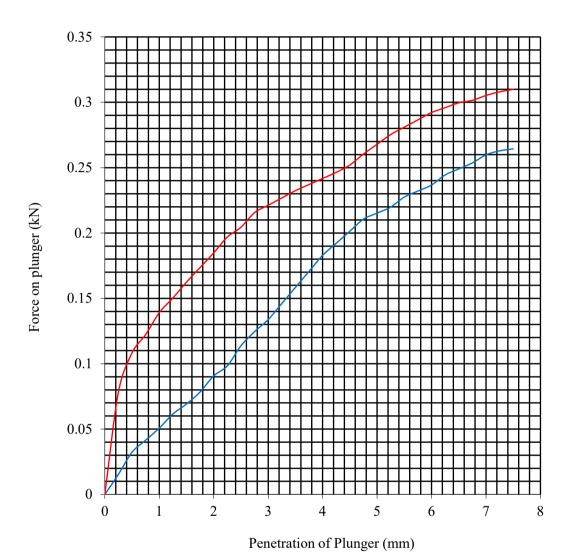
Initial Sample Cond	Sample Prepara	ation	Final Moisture Cont	C.B.R. Value %			
Moisture Content:	20	Surcharge Kg:	4.20	Sample Top	20	Sample Top	0.8
Bulk Density Mg/m3:	2.07	Soaking Time hrs	0	Sample Bottom	20	Sample Bottom	0.8
Dry Density Mg/m3:	1.72	Swelling mm:	0	Remarks : See Summary o	f Soil Descr	riptions.	
Percentage retained on 20mm BS test sieve:			11				
Compaction Conditions 2.5kg							

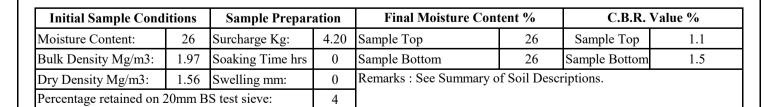
- Top

Bottom

Housing Bundle 4 & 5 - Lot 4 - Ballymun (AKA Ballymun PPP)

Contract No: PSL24/1016
Client Ref: 13061-08-23(5)


CALIFORNIA BEARING RATIO TEST


BS 1377: Part 4: 1990

Hole Number: TP10 Top Depth (m): 0.50

Sample Number: Base Depth (m):

Sample Type: B

Тор

Bottom

Compaction Conditions

2.5kg

Housing Bundle 4 & 5 - Lot 4 - Ballymun (AKA Ballymun PPP)

Contract No: PSL24/1016
Client Ref: 13061-08-23(5)

CALIFORNIA BEARING RATIO TEST

BS 1377: Part 4: 1990

Hole Number: TP12 Top Depth (m): 0.50

Sample Number: Base Depth (m):

Sample Type: B

Initial Sample Conditions Sample Prep			ation	Final Moisture Cont	C.B.R. Value %			
Moisture Content:	19	Surcharge Kg:	4.20	Sample Top	19	Sample Top	0.8	
Bulk Density Mg/m3:	2.02	Soaking Time hrs	0	Sample Bottom	Sample Bottom	1.1		
Dry Density Mg/m3:	1.69	Swelling mm:	0	Remarks : See Summary of Soil Descriptions.				
Percentage retained on 20mm BS test sieve: 1								
Compaction Conditions 2.5kg								

- Top

Bottom

Housing Bundle 4 & 5 - Lot 4 - Ballymun (AKA Ballymun PPP)

Contract No: PSL24/1016
Client Ref: 13061-08-23(5)

BS 1377: Part 3: 1990, Clause 10.3

Hole Number: TP02 Top Depth (m): 1.20

Sample Number: Base Depth (m):

Sample Type: B Sample Date:

Sample Description: See summary of soil descriptions

Length of test specimen (mm)	455					
Diameter of test specimen (mm)	102					
Method of Remoulding:	2.5kg effort at received					
Bulk Density	1.78					
Moisture Content (%)	33					
Dry Density (Mg/m3)	1.33					
Steel Probe Diameter (mm)	5					
Steel Probe Penetration (mm)	60					
Steel Probe Spacing (mm)	20					
Electrical Resistivity @ 20C =	13.433 Ohms.m					

DETERMINATION OF THE REDOX POTENTIAL OF SOIL

BS 1377: Part 3: 1990, Clause 11

Redox Potential (mV)	540
Testing Method.	Calomel Reference Probe
Temperature of specimen at time of test (°C)	NA
Reading B (mV)	200
Reading A (mV)	200
pH of sample:	8.5

Housing Bundle 4 & 5 - Lot 4 - Ballymun (AKA Ballymun PPP)

Contract No: PSL24/1016
Client Ref: 13061-08-23(5)

BS 1377: Part 3: 1990, Clause 10.3

Hole Number: TP03 Top Depth (m): 0.50

Sample Number: Base Depth (m):

Sample Type: B Sample Date:

Sample Description: See summary of soil descriptions

Length of test specimen (mm)	455
Diameter of test specimen (mm)	102
Method of Remoulding:	2.5kg effort at received
Bulk Density	2.00
Moisture Content (%)	22
Dry Density (Mg/m3)	1.63
Steel Probe Diameter (mm)	5
Steel Probe Penetration (mm)	60
Steel Probe Spacing (mm)	20
Electrical Resistivity @ 20C =	26.138 Ohms.m

DETERMINATION OF THE REDOX POTENTIAL OF SOIL

BS 1377: Part 3: 1990, Clause 11

Redox Potential (mV)	510
Testing Method.	Calomel Reference Probe
Temperature of specimen at time of test (°C)	NA
Reading B (mV)	171
Reading A (mV)	171
pH of sample:	8.5

Housing Bundle 4 & 5 - Lot 4 - Ballymun (AKA Ballymun PPP)

Contract No: PSL24/1016
Client Ref: 13061-08-23(5)

BS 1377: Part 3: 1990, Clause 10.3

Hole Number: TP11 Top Depth (m): 0.50

Sample Number: Base Depth (m):

Sample Type: B Sample Date:

Sample Description: See summary of soil descriptions

Length of test specimen (mm)	455					
Diameter of test specimen (mm)	102					
Method of Remoulding:	2.5kg effort at received					
Bulk Density	1.97					
Moisture Content (%)	22					
Dry Density (Mg/m3)	1.61					
Steel Probe Diameter (mm)	5					
Steel Probe Penetration (mm)	60					
Steel Probe Spacing (mm)	20					
Electrical Resistivity @ 20C =	17.316 Ohms.m					

DETERMINATION OF THE REDOX POTENTIAL OF SOIL

BS 1377: Part 3: 1990, Clause 11

Redox Potential (mV)	520
Testing Method.	Calomel Reference Probe
Temperature of specimen at time of test (°C)	NA
Reading B (mV)	175
Reading A (mV)	175
pH of sample:	8.5

Bundle 4 & 5 - Lot 4 - Ballymun (AKA Ballym

Contract No: PSL24/1016 Client Ref: 13061-08-23(5)

BS 1377: Part 3: 1990, Clause 10.3

Hole Number: TP12 Top Depth (m): 1.00

Sample Number: Base Depth (m):

Sample Type: B Sample Date:

Sample Description: See summary of soil descriptions

Electrical Resistivity @ 20C =	22.418 Ohms.m					
Steel Probe Spacing (mm)	20					
Steel Probe Penetration (mm)	60					
Steel Probe Diameter (mm)	5					
Dry Density (Mg/m3)	1.55					
Moisture Content (%)	24					
Bulk Density	1.93					
Method of Remoulding:	2.5kg effort at received					
Diameter of test specimen (mm)	102					
Length of test specimen (mm)	455					

DETERMINATION OF THE REDOX POTENTIAL OF SOIL

BS 1377: Part 3: 1990, Clause 11

Redox Potential (mV)	520
Testing Method.	Calomel Reference Probe
Temperature of specimen at time of test (°C)	NA
Reading B (mV)	175
Reading A (mV)	175
pH of sample:	8.5

Housing Bundle 4 & 5 - Lot 4 - Ballymun (AKA Ballymun PPP)

Contract No: PSL24/1016
Client Ref: 13061-08-23(5)

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

ark W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland D22 K5P8

Attention: Diarmaid MagLochlainn

Date: 3rd January, 2024

Your reference: 13061-08-23

Our reference : Test Report 23/21539 Batch 1

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun

Date samples received: 18th December, 2023

Status : Final Report

Issue: 202401031332

Twenty one samples were received for analysis on 18th December, 2023 of which twenty one were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon – Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 102.446 kg of CO2

Scope 1&2&3 emissions - 242.107 kg of CO2

Authorised By:

Liza Klebe

Project Co-ordinator

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : Solid

EMT Job No:	23/21539										_			
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40				
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	TP-03	TP-04	TP-05	TP-05				
Depth	0.70	2.00	1.20	3.00	0.50	2.00	3.50	0.50	1.00	3.00	Please see attached notes for all abbreviations and acronyms			
COC No / misc														
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1	1	1				
Date of Receipt			18/12/2023		18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	LOD/LOR	Units	Method No.	
Antimony	2	2	4	2	2	2	2	2	2	2	<1	mg/kg	TM30/PM15	
Arsenic#	11.4	9.3	15.5	13.3	13.7	12.3	12.1	11.3	9.3	14.1	<0.5	mg/kg	TM30/PM15	
Barium#	92	47	142	81	83	79	115	82	73	44	<1	mg/kg	TM30/PM15	
Cadmium#	1.6	1.8	1.1	1.1	1.3	2.0	1.9	1.6	3.1	1.3	<0.1	mg/kg	TM30/PM15	
Chromium #	20.2	14.0	42.1	16.5	24.6	26.8	31.0	21.9	54.2	21.4	<0.5	mg/kg	TM30/PM15	
Copper#	28	23	56	26	39	34	30	26	26	23	<1	mg/kg	TM30/PM15	
Lead #	56	14	72	27	42	34	26	32	21	19	<5	mg/kg	TM30/PM15	
Mercury#	0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15	
Molybdenum#	2.7	2.9	4.6	2.0	2.9	3.3	5.0	2.4	6.2	3.5	<0.1	mg/kg	TM30/PM15	
Nickel [#]	33.7	32.7	39.4	29.2	40.2	44.1	41.3	33.3	34.8	40.9	<0.7	mg/kg	TM30/PM15	
Selenium#	1	1	2	1	1	1	3	2	2	<1	<1	mg/kg	TM30/PM15	
Zinc [#]	89	73	226	82	129	167	86	94	87	89	<5	mg/kg	TM30/PM15	
PAH MS														
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8	
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8	
Fluorene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Phenanthrene #	0.11	<0.03	<0.03	0.06	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8	
Anthracene #	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Fluoranthene #	0.20	<0.03	0.05	0.07	0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8	
Pyrene#	0.29	<0.03	0.04	0.06	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8	
Benzo(a)anthracene#	0.13	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8	
Chrysene #	0.19	<0.02	0.05	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8	
Benzo(bk)fluoranthene #	0.23	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8	
Benzo(a)pyrene #	0.07	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Indeno(123cd)pyrene#	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
PAH 6 Total #	0.55	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	mg/kg	TM4/PM8	
PAH 17 Total Benzo(b)fluoranthene	1.33 0.17	<0.64 <0.05	mg/kg	TM4/PM8 TM4/PM8										
Benzo(k)fluoranthene	0.17	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg mg/kg	TM4/PM8	
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8	
PAH Surrogate % Recovery	74	99	97	104	97	79	104	105	104	107	<0	// // // // // // // // // // // // //	TM4/PM8	
1741 Currogate 70 1 Coovery	, ,	00	01	104	01	70	104	100	104	107	10	70	TWI-WIO	
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	51	<30	<30	35	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16	

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : Solid

EMT Job No:	23/21539										_			
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40				
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	TP-03	TP-04	TP-05	TP-05				
Depth	0.70	2.00	1.20	3.00	0.50	2.00	3.50	0.50	1.00	3.00	Please see attached notes for all abbreviations and acronyms			
COC No / misc														
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	Ì			
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	i			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.	
Date of Receipt	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023			110.	
TPH CWG														
Aliphatics #						sv	sv							
>C5-C6 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>C6-C8 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>C8-C10 (HS_1D_AL) >C10-C12 (EH CU 1D AL)#	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 1.1	<0.1 <0.2	<0.1 sv	<0.1 ^{SV}	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	mg/kg	TM36/PM12 TM5/PM8/PM16	
>C10-C12 (EH_CU_1D_AL)* >C12-C16 (EH_CU_1D_AL)*	<0.2	<0.2	<0.2	9	<0.2	<0.2	8	<0.2	<0.2	<0.2	<0.2	mg/kg mg/kg	TM5/PM8/PM16	
>C16-C21 (EH_CU_1D_AL)#	<7	<7	<7	41	<7	<7	26	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16	
>C21-C35 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16	
>C35-C40 (EH CU 1D AL)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16	
Total aliphatics C5-40 (EH_CU+HS_1D_AL)	<26	<26	<26	51	<26	<26	35	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16	
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1 sv	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>C10-C25 (EH_CU_1D_AL)	<10	<10	<10	50	<10	<10	35	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16	
>C25-C35 (EH_CU_1D_AL) Aromatics	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16	
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>EC7-EC8 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1 sv	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1 sv	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16	
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16	
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16	
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7	72	70	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16	
>EC35-EC40 (EH_CU_1D_AR)	<7	<7	14	21	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16	
Total aromatics C5-40 (EH_CU+HS_1D_AR)	<26	<26	86	91	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16	
Total aliphatics and aromatics(C5-40) (EH_CU+HS_1D_Total)	<52	<52	86	142	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM36/PM8/PM12/PM16	
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1 sv	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>EC10-EC25 (EH_CU_1D_AR)	<10 <10	<10 <10	<10 67	<10 65	<10	<10	<10 <10	<10 <10	<10 <10	<10 <10	<10	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16	
>EC25-EC35 (EH_CU_1D_AR)	<10	<10	67	65	<10	<10	<10	<10	<10	<10	<10	mg/kg	TWS/FWO/FWTO	
MTBE#	<5	<5	<5	<5	<5	<5 ^{sv}	<5 ^{sv}	<5	<5	<5	<5	ug/kg	TM36/PM12	
Benzene#	<5	<5	<5	<5	<5	<5 ^{sv}	<5 ^{sv}	<5	<5	<5	<5	ug/kg	TM36/PM12	
Toluene#	<5	<5	16	<5	<5	<5 ^{sv}	<5 ^{sv}	<5	<5	<5	<5	ug/kg	TM36/PM12	
Ethylbenzene #	<5	<5	<5	<5	<5	<5 ^{sv}	<5 sv	<5	<5	<5	<5	ug/kg	TM36/PM12	
m/p-Xylene #	<5	<5	<5	6	<5	<5 ^{SV}	<5 ^{sv}	<5	<5	<5	<5	ug/kg	TM36/PM12	
o-Xylene#	<5	<5	<5	<5	<5	<5 ^{SV}	<5 ^{SV}	<5	<5	<5	<5	ug/kg	TM36/PM12	
PCB 28 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 52#	<5	<5	11	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 101 #	<5	<5	15	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 118#	<5	<5	10	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 138#	<5	<5	10	6	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 153#	<5	<5	6	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 180 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
Total 7 PCBs#	<35	<35	52	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8	

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : Solid

EMT Job No:	23/21539												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	TP-03	TP-04	TP-05	TP-05			
Depth	0.70	2.00	1.20	3.00	0.50	2.00	3.50	0.50	1.00	3.00		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023			
Sample Type	Soil		r										
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt				18/12/2023				18/12/2023					No.
Natural Moisture Content Moisture Content (% Wet Weight)	16.8 14.4	13.2 11.7	26.8 21.1	14.4 12.6	21.9 18.0	19.5 16.3	17.1 14.6	18.5 15.6	15.4 13.3	18.0 15.3	<0.1 <0.1	%	PM4/PM0 PM4/PM0
Mosture Content (% Wet Weight)	14.4	11.7	21.1	12.0	18.0	10.3	14.0	13.0	13.3	15.5	VO.1	70	FIVI4/FIVIO
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	-	0.0086	-	0.1734	-	0.1379	-	0.0148	-	0.0092	<0.0015	g/l	TM38/PM20
Chromium III	20.2	14.0	42.1	16.5	24.6	26.8	31.0	21.9	54.2	21.4	<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	0.83	0.31	2.19	0.52	1.17	1.02	0.93	1.11	0.77	0.40	<0.02	%	TM21/PM24
Organic Matter	-	0.5	-	0.9	-	1.8	-	1.9	-	0.7	<0.2	%	TM21/PM24
pH #	8.48	8.65	7.64	10.88	8.41	7.91	7.99	8.33	7.97	8.47	<0.01	pH units	TM73/PM11
										1			

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : Solid

EMT Job No:	23/21539										_		
EMT Sample No.	41-44	45-48	49-52	53-56	57-60	61-64	65-68	69-72	73-76	77-80			
Sample ID	TP-06	TP-07	TP-07	TP-08	TP-08	TP-09	TP-10	TP-11	TP-11	TP-12			
Depth	0.50	1.00	3.00	2.00	3.40	2.20	1.00	0.50	3.00	0.50	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Matteria
Date of Receipt			18/12/2023		18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	LOD/LOR	Units	Method No.
Antimony	2	2	2	2	1	2	2	3	2	2	<1	mg/kg	TM30/PM15
Arsenic#	14.3	12.3	8.1	10.7	8.2	11.1	10.7	14.9	8.9	12.6	<0.5	mg/kg	TM30/PM15
Barium#	120	84	54	64	102	63	88	114	88	89	<1	mg/kg	TM30/PM15
Cadmium#	2.2	2.2	1.3	1.8	1.2	1.8	1.0	2.0	1.7	1.4	<0.1	mg/kg	TM30/PM15
Chromium #	51.9	19.9	34.9	19.6	35.1	21.0	42.6	23.3	12.5	19.8	<0.5	mg/kg	TM30/PM15
Copper#	35	32	23	28	20	29	36	41	25	25	<1	mg/kg	TM30/PM15
Lead #	48	32	16	19	15	18	39	44	17	30	<5	mg/kg	TM30/PM15
Mercury [#]	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum#	5.4	3.2	3.7	3.4	4.5	3.6	2.2	3.4	3.5	2.7	<0.1	mg/kg	TM30/PM15
Nickel [#]	47.9	41.0	41.1	38.1	28.6	41.8	44.3	42.2	32.8	30.2	<0.7	mg/kg	TM30/PM15
Selenium#	1	1	2	<1	3	<1	<1	1	5	2	<1	mg/kg	TM30/PM15
Zinc#	128	89	79	77	56	92	112	113	69	80	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene #	0.06	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene #	0.08	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.05	<0.03	mg/kg	TM4/PM8
Pyrene#	0.07	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene#	0.07	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	0.12	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.07	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 6 Total #	0.27	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene	0.09	<0.05 <0.02	mg/kg	TM4/PM8									
Benzo(k)fluoranthene Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	104	108	105	109	108	109	110	107	111	109	<0	mg/kg %	TM4/PM8
PAH Sullogate % Recovery	104	100	105	109	100	109	110	107	111	109		70	TIVI4/FIVIO
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	38	<30	59	<30	<30	<30	45	61	<30	mg/kg	TM5/PM8/PM16
	•			•					•				

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : Solid

EMT Job No:	23/21539												
EMT Sample No.	41-44	45-48	49-52	53-56	57-60	61-64	65-68	69-72	73-76	77-80			
Sample ID	TP-06	TP-07	TP-07	TP-08	TP-08	TP-09	TP-10	TP-11	TP-11	TP-12			
Depth	0.50	1.00	3.00	2.00	3.40	2.20	1.00	0.50	3.00	0.50	Division		
COC No / misc												e attached n ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023			13/12/2023	13/12/2023	13/12/2023			
-													
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023			140.
TPH CWG													
Aliphatics													
>C5-C6 (HS_1D_AL)#	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1 sv	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4	7	<4	9	<4	<4	<4	6	7	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7	19	<7	21	<7	<7	<7	16	21	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	12	<7	29	<7	<7	<7	23	33	<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH_CU+HS_1D_AL)	<26	<26	38 sv	<26	59 sv	<26	<26	<26	45 sv	61	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 sv	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_CU_1D_AL)	<10	<10	38	<10	41	<10	<10	<10	34	40	<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_CU_1D_AL)	<10	<10	<10	<10	16	<10	<10	<10	<10	21	<10	mg/kg	TM5/PM8/PM16
Aromatics	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	ma/ka	TM36/PM12
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1	<0.1 sv	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1	<0.1	<0.1 sv	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg mg/kg	TM5/PM8/PM16
>EC10-EC12 (EH_CU_1D_AR)* >EC12-EC16 (EH_CU_1D_AR)*	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)*	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_ID_AR)*	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH_CU+HS_1D_AR)	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH_CU+HS_1D_Total)	<52	<52	<52	<52	59	<52	<52	<52	<52	61	<52	mg/kg	TM5/TM36/PM8/PM12/PM1
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1 sv	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_CU_1D_AR)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_CU_1D_AR)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5	<5 ^{sv}	<5	<5 ^{sv}	<5	<5	<5	<5sv	<5	<5	ug/kg	TM36/PM12
Benzene #	<5	<5	<5sv	<5	<5 ^{sv}	<5	<5	<5	<5 sv	<5	<5	ug/kg	TM36/PM12
Toluene #	<5	<5	<5sv	<5	<5 ^{sv}	<5	<5	<5	<5 <5	<5	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5 ^{sv}	<5	<5 ^{sv}	<5	<5	<5	<5 ^{sv}	<5	<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	<5 ^{sv}	<5	<5 ^{sv}	<5	<5	<5	<5 ^{sv}	<5	<5	ug/kg	TM36/PM12
o-Xylene#	<5	<5	<5 ^{sv}	<5	<5 ^{sv}	<5	<5	<5	<5 ^{SV}	<5	<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : Solid

EMT Job No:	23/21539												
EMT Sample No.	41-44	45-48	49-52	53-56	57-60	61-64	65-68	69-72	73-76	77-80			
Sample ID	TP-06	TP-07	TP-07	TP-08	TP-08	TP-09	TP-10	TP-11	TP-11	TP-12			
Depth	0.50	1.00	3.00	2.00	3.40	2.20	1.00	0.50	3.00	0.50		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	LOD/LOR	Units	No.
Natural Moisture Content	18.1	19.3	10.9	15.3	11.5	15.8	18.5	18.2	13.0	15.3	<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	15.3	16.2	9.9	13.3	10.3	13.6	15.6	15.4	11.5	13.3	<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	-	0.0160	-	0.0938	-	0.0081	-	0.0598	-	0.0976	<0.0015	g/I	TM38/PM20
Chromium III	51.9	19.9	34.9	19.6	35.1	21.0	42.6	23.3	12.5	19.8	<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	1.21	0.97	0.46	0.42	0.48	0.46	1.31	1.27	0.86	0.97	<0.02	%	TM21/PM24
Organic Matter	-	1.7	-	0.42	-	0.46	-	2.2	-	1.7	<0.02	%	TM21/PM24
pH [#]	8.27	8.44	8.71	8.42	8.59	8.58	8.30	8.31	8.73	8.54	<0.01	pH units	TM73/PM11

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : Solid

EMI JOD NO:										
EMT Sample No.	81-84									
Sample ID	TP-12									
Depth	1.00							Di		-4 fII
COC No / misc									e attached n ations and a	
Containers	VJT									
Sample Date	13/12/2023									
Sample Type	Soil									
Batch Number	1									Method
Date of Receipt	18/12/2023							LOD/LOR	Units	No.
Antimony	3							<1	mg/kg	TM30/PM15
Arsenic [#]	15.5							<0.5	mg/kg	TM30/PM15
Barium#	123							<1	mg/kg	TM30/PM15
Cadmium #	1.8							<0.1	mg/kg	TM30/PM15
Chromium #	47.2							<0.5	mg/kg	TM30/PM15
Copper [#]	40							<1	mg/kg	TM30/PM15
Lead #	51							<5	mg/kg	TM30/PM15
Mercury#	0.2							<0.1	mg/kg	TM30/PM15
Molybdenum#	4.9							<0.1	mg/kg	TM30/PM15
Nickel [#]	42.6							<0.7	mg/kg	TM30/PM15
Selenium [#]	1							<1	mg/kg	TM30/PM15
Zinc [#]	114							<5	mg/kg	TM30/PM15
PAH MS										
Naphthalene#	<0.04							<0.04	mg/kg	TM4/PM8
Acenaphthylene #	<0.03							<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05							<0.05	mg/kg	TM4/PM8 TM4/PM8
Fluorene # Phenanthrene #	<0.04 <0.03							<0.04 <0.03	mg/kg	TM4/PM8
Anthracene #	<0.03							<0.03	mg/kg mg/kg	TM4/PM8
Fluoranthene #	0.06							<0.04	mg/kg	TM4/PM8
Pyrene #	0.05							<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06							<0.06	mg/kg	TM4/PM8
Chrysene #	0.05							<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07							<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04							<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04							<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04							<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04							<0.04	mg/kg	TM4/PM8
Coronene	<0.04							<0.04	mg/kg	TM4/PM8
PAH 6 Total#	<0.22							<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64							<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05							<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02							<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1							<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	106							<0	%	TM4/PM8
Minaral Oil (O42 O42) (TV	-00							-00	h	
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30							<30	mg/kg	TM5/PM8/PM16
							l			1

Client Name: Ground Investigations Ireland

Reference: 13061-08-23 Location: Housing Bund

Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : Solid

EMT Job No:	23/21539	 						 	_		
EMT Sample No.	81-84										
Sample ID	TP-12										
Depth	1.00										
COC No / misc	1.00									e attached nations and a	
Containers	VJT										
Sample Date											
Sample Type	Soil										
Batch Number	1								LOD/LOR	Units	Method No.
Date of Receipt	18/12/2023										
TPH CWG Aliphatics											
>C5-C6 (HS_1D_AL)#	<0.1								<0.1	mg/kg	TM36/PM12
>C6-C8 (HS 1D AL)#	<0.1								<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1								<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2								<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4								<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7								<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7								<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7								<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH_CU+HS_1D_AL)	<26								<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1								<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_CU_1D_AL)	<10								<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_CU_1D_AL)	<10								<10	mg/kg	TM5/PM8/PM16
Aromatics	<0.1								-0.1		TMOC/DM40
>C5-EC7 (HS_1D_AR)# >EC7-EC8 (HS_1D_AR)#	<0.1								<0.1 <0.1	mg/kg mg/kg	TM36/PM12 TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1								<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2								<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4								<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7								<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7								<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR)	<7								<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH_CU+HS_1D_AR)	<26								<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH_CU+HS_1D_Total)	<52								<52	mg/kg	TM5/TM36/PM8/PM12/PM18
>EC6-EC10 (HS_1D_AR)#	<0.1								<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_CU_1D_AR)	<10								<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_CU_1D_AR)	<10								<10	mg/kg	TM5/PM8/PM16
MTBE#	<5								<5	ug/kg	TM36/PM12
Benzene#	<5 <5								<5	ug/kg	TM36/PM12
Toluene #	<5								<5	ug/kg	TM36/PM12
Ethylbenzene#	<5								<5	ug/kg	TM36/PM12
m/p-Xylene #	<5								<5	ug/kg	TM36/PM12
o-Xylene#	<5								<5	ug/kg	TM36/PM12
PCB 28 #	<5								<5	ug/kg	TM17/PM8
PCB 52 #	<5								<5	ug/kg	TM17/PM8
PCB 101 #	<5								<5	ug/kg	TM17/PM8
PCB 118#	<5								<5	ug/kg	TM17/PM8
PCB 138#	<5 -5								<5 -5	ug/kg	TM17/PM8
PCB 153#	<5 <5								<5 <5	ug/kg	TM17/PM8 TM17/PM8
PCB 180 # Total 7 PCBs#	<5 <35								<5 <35	ug/kg ug/kg	TM17/PM8
.5 / 1 0.00	50	I .	I .	1	ı	<u> </u>	ı		. 50	~9/119	

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : Solid

EMT Job No:	23/21539										_		
EMT Sample No.	81-84										1		
Sample ID	TP-12												
Depth	1.00												
COC No / misc											Please se abbrevi	e attached n ations and a	otes for all cronyms
Containers													
Sample Date													
Sample Type	Soil												
Batch Number											LOD/LOR	Units	Method No.
Date of Receipt													
Natural Moisture Content Moisture Content (% Wet Weight)	25.5										<0.1	%	PM4/PM0 PM4/PM0
Moisture Content (76 Wet Weight)	20.3										<0.1	70	FIVI4/FIVIU
Hexavalent Chromium#	<0.3										<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	-										<0.0015	g/l	TM38/PM20
Chromium III	47.2										<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	1.88										<0.02	%	TM21/PM24
Organic Matter	-										<0.02	%	TM21/PM24
-													
pH #	8.40										<0.01	pH units	TM73/PM11
	<u> </u>	I	1										

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report: CEN 10:1 1 Batch

EMT Job No:	23/21539												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	TP-03	TP-04	TP-05	TP-05			
Depth	0.70	2.00	1.20	3.00	0.50	2.00	3.50	0.50	1.00	3.00		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	100/100	Limita	Method
Date of Receipt	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	LOD/LOR	Units	No.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	0.0028	<0.0025	0.0094	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	0.028	<0.025	0.094	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium#	0.008	<0.003	0.051	0.015	0.008	0.078	0.029	0.011	0.082	0.012	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	0.08	<0.03	0.51	0.15	0.08	0.78	0.29	0.11	0.82	0.12	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	0.0017	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	0.017	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007	0.032	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) # Dissolved Lead #	<0.07 <0.005	<0.07 <0.005	<0.07 <0.005	0.32 <0.005	<0.07 <0.005	mg/kg	TM30/PM17 TM30/PM17						
Dissolved Lead (A10)#	<0.005	<0.005	<0.05	<0.005	<0.05	<0.005	<0.05	<0.005	<0.005	<0.005	<0.005	mg/l mg/kg	TM30/PM17
Dissolved Molybdenum#	0.015	0.021	0.009	0.009	0.016	0.015	0.019	0.014	0.016	0.009	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.15	0.21	0.09	0.09	0.16	0.15	0.19	0.14	0.16	0.09	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	0.011	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02	0.11	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003	0.025	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	0.25	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003	0.006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	0.06	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	0.5	<0.3	0.4	<0.3	0.6	0.5	0.4	0.5	0.3	0.4	<0.3	mg/l	TM173/PM0
Fluoride	5	<3	4	<3	6	5	4	5	3	4	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	1.4	1.8	25.0	32.8	6.1	43.3	103.1	4.3	37.5	2.4	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	14	18	250	328	61	433	1031	43	375	24	<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1059	0.1039	0.1183	0.1082	0.1121	0.1055	0.1039	0.1096	0.1056	0.1096		kg	NONE/PM17
Chloride #	0.4	<0.3	0.7	1.2	<0.3	0.4	<0.3	<0.3	0.4	0.5	<0.3	mg/l	TM38/PM0
Chloride #	4	<3	7	1.2	<3	4	<3	<3	4	5	<3	mg/kg	TM38/PM0
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17
Dissolved Organic Carbon	4	<2	<2	10	3	<2	<2	2	<2	2	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	40	<20	<20	100	30	<20	<20	<20	<20	<20	<20	mg/kg	TM60/PM0
-	8.14	8.03	8.16	10.45	8.08	8.08	7.91	8.20	8.26	8.34	<0.01	pH units	TM73/PM0
рН	8.14	8.03	8.16	10.45	8.08	8.08	7.91	8.20	8.26	8.34	<0.01		

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report: CEN 10:1 1 Batch

EMI JOD NO:	23/21539												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	TP-03	TP-04	TP-05	TP-05			
Depth	0.70	2.00	1.20	3.00	0.50	2.00	3.50	0.50	1.00	3.00	Dlagga sa	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	LOD/LOR	Offics	No.
Total Dissolved Solids #	71	51	200	177	76	161	216	73	157	74	<35	mg/l	TM20/PM0
Total Dissolved Solids#	710	510	2000	1769	760	1610	2161	730	1570	740	<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report: CEN 10:1 1 Batch

EMT Job No:	23/21539												
EMT Sample No.	41-44	45-48	49-52	53-56	57-60	61-64	65-68	69-72	73-76	77-80			
Sample ID	TP-06	TP-07	TP-07	TP-08	TP-08	TP-09	TP-10	TP-11	TP-11	TP-12			
Depth	0.50	1.00	3.00	2.00	3.40	2.20	1.00	0.50	3.00	0.50	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			
Date of Receipt			18/12/2023		18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	LOD/LOR	Units	Method No.
Dissolved Antimony#	0.002	0.002	0.003	<0.002	<0.002	0.003	<0.002	0.003	0.003	0.002	<0.002	ma/l	TM30/PM17
Dissolved Antimony (A10)#	0.002	<0.02	0.003	<0.002	<0.002	0.003	<0.002	0.003	0.003	0.002	<0.002	mg/l mg/kg	TM30/PM17
Dissolved Anamony (A10)	0.0029	0.0030	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.0030	0.0026	0.0037	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) #	0.029	0.030	<0.025	<0.025	<0.025	<0.025	<0.025	0.030	0.026	0.037	<0.025	mg/kg	TM30/PM17
Dissolved Barium#	0.011	0.008	0.007	0.006	0.018	0.009	0.010	0.010	0.008	0.011	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	0.11	0.08	0.07	0.06	0.18	0.09	0.10	0.10	0.08	0.11	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	0.0031	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.031	<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007	0.013	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07	<0.07	0.13	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	0.010	0.012	0.028	0.013	0.033	0.009	0.011	0.011	0.032	0.011	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.10	0.12	0.28	0.13	0.33	0.09	0.11	0.11	0.32	0.11	<0.02	mg/kg	TM30/PM17
Dissolved Nickel#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003	<0.003	0.006	<0.003	<0.003	<0.003	0.007	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03	0.06	<0.03	<0.03	<0.03	0.07	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF * Mercury Dissolved by CVAF *	<0.00001 <0.0001	<0.00001 <0.0001	<0.0001	<0.00001 <0.0001	<0.0001	<0.0001 <0.0001	<0.0001	<0.0001	<0.00001 <0.0001	<0.0001	<0.0001	mg/l mg/kg	TM61/PM0 TM61/PM0
Dhamal	40.04	40.04	±0.04	*0.04	-0.04	-0.04	-0.04	40.04	40.04	40.04	40.04		TMOC/DMO
Phenol Phenol	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	mg/l	TM26/PM0 TM26/PM0
Phenoi	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TIVI26/PIVIU
Fluoride	0.4	0.5	0.3	<0.3	0.4	0.7	0.4	0.5	0.4	0.3	<0.3	mg/l	TM173/PM0
Fluoride	4	5	3	<3	4	7	4	5	4	3	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	3.1	3.8	2.5	17.4	7.5	2.1	<0.5	10.9	5.0	5.1	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	31	38	25	174	75	21	<5	109	50	51	<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1062	0.1105	0.1062	0.1112	0.1042	0.1089	0.118	0.1066	0.1042	0.1081		kg	NONE/PM17
Chloride #	14.8	<0.3	0.3	2.7	0.5	<0.3	<0.3	<0.3	<0.3	0.4	<0.3	mg/l	TM38/PM0
Chloride #	148	<3	3	27	5	<3	<3	<3	<3	4	<3	mg/kg	TM38/PM0
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17
Dissolved Organic Carbon	3	2	<2	<2	<2	2	2	2	<2	3	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	<20	<20	<20	<20	20	<20	20	<20	30	<20	mg/kg	TM60/PM0
pН	7.87	8.11	8.01	7.97	7.97	8.02	8.07	8.03	7.95	8.01	<0.01	pH units	TM73/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report: CEN 10:1 1 Batch

EMT Job No:	23/21539												
EMT Sample No.	41-44	45-48	49-52	53-56	57-60	61-64	65-68	69-72	73-76	77-80			
Sample ID	TP-06	TP-07	TP-07	TP-08	TP-08	TP-09	TP-10	TP-11	TP-11	TP-12			
Depth	0.50	1.00	3.00	2.00	3.40	2.20	1.00	0.50	3.00	0.50	Please se	e attached n	otes for all
COC No / misc												ations and ad	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt					18/12/2023				18/12/2023				No.
Total Dissolved Solids # Total Dissolved Solids #	116 1161	73 730	46 460	76 760	53 530	56 560	67 670	83 830	46 460	82 820	<35 <350	mg/l mg/kg	TM20/PM0 TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report: CEN 10:1 1 Batch

EMT Job No:	23/21539	 	 	 	 	 Ī		
EMT Sample No.	81-84							
Sample ID	TP-12							
Depth	1.00					Diago so	o attached n	otos for all
COC No / misc							e attached n ations and a	
Containers	VJT							
Sample Date								
Sample Type	Soil							
Batch Number	1					LOD/LOR	Units	Method
Date of Receipt	18/12/2023					LOD/LOR	Units	No.
Dissolved Antimony#	0.002					<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	0.02					<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	0.0041					<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	0.041					<0.025	mg/kg	TM30/PM17
Dissolved Barium#	0.010					<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	0.10					<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005					<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005					<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015					<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015					<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007					<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07					<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005					<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05					<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.012					<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.12					<0.02	mg/kg	TM30/PM17
Dissolved Nickel#	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03					<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001					<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001					<0.0001	mg/kg	TM61/PM0
Phenol	<0.01					<0.01	mg/l	TM26/PM0
Phenol	<0.1					<0.1	mg/kg	TM26/PM0
Fluoride	0.5					<0.3	mg/l	TM173/PM0
Fluoride	5					<3	mg/kg	TM173/PM0
Sulphate as SO4 #	6.2					<0.5	mg/l	TM38/PM0
Sulphate as SO4#	62					<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1076						kg	NONE/PM17
Chloride #	<0.3					<0.3	mg/l	TM38/PM0
Chloride #	<3					<3	mg/kg	TM38/PM0
Mass of dried test portion	0.09						kg	NONE/PM17
n:						_		
Dissolved Organic Carbon	3					<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30					<20	mg/kg	TM60/PM0
pH	7.99					<0.01	pH units	TM73/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report: CEN 10:1 1 Batch

EMT Job No:	23/21539							
EMT Sample No.	81-84							
Sample ID	TP-12							
Depth	1.00					Diagona	e attached n	otoo for all
COC No / misc						abbrevi	ations and a	cronyms
Containers								
Sample Date	13/12/2023							
Sample Type								
Batch Number	1							Method
Date of Receipt	18/12/2023					LOD/LOR	Units	No.
Total Dissolved Solids#	79					<35	mg/l	TM20/PM0
Total Dissolved Solids #	790					<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report: EN12457_2

	20/2 1000															
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40						
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	TP-03	TP-04	TP-05	TP-05						
Depth	0.70	2.00	1.20	3.00	0.50	2.00	3.50	0.50	1.00	3.00				Please se	e attached n	otes for all
COC No / misc															ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023							
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1	1	Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023		reactive				No.
Solid Waste Analysis																
Total Organic Carbon #	0.83	0.31	2.19	0.52	1.17	1.02	0.93	1.11	0.77	0.40	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025 ^{sv}	<0.025 ^{sv}	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	0.052	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	51	<30	<30	35	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6#	0.55	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	1.33	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic #	<0.025	0.028	<0.025	0.094	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.08	<0.03	0.51	0.15	0.08	0.78	0.29	0.11	0.82	0.12	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	0.017	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	0.32	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Mercury #	0.15	0.21	0.09	0.09	0.16	0.15	0.19	0.14	0.16	0.09	0.5	10	30	<0.02		TM30/PM17
Molybdenum #	<0.02	<0.02	<0.02	0.09	<0.02	0.13	<0.02	<0.02	<0.02	<0.02	0.3	10	40	<0.02	mg/kg	TM30/PM17
Nickel #		<0.02		<0.05			<0.02				0.4		50		mg/kg	TM30/PM17
Lead#	<0.05 <0.02	<0.03	<0.05 <0.02	<0.03	<0.05 <0.02	<0.05 <0.02	<0.03	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	0.06	0.7	5	<0.05 <0.02	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.7	7	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	0.06	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Zinc#															mg/kg	
Total Dissolved Solids #	710	510	2000	1769	760	1610	2161	730	1570	740	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	40	<20	<20	100	30	<20	<20	<20	<20	<20	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1059	0.1039	0.1183	0.1082	0.1121	0.1055	0.1039	0.1096	0.1056	0.1096	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	84.6	87.0	76.4	82.8	80.4	85.6	86.3	82.0	84.8	82.1	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.884	0.887	0.872	0.881	0.878	0.885	0.886	0.88	0.884	0.88	-	-	-		- 1	NONE/PM17
Moisture Content 105C (% Dry Weight)	18.2	14.9	30.9	20.7	24.3	16.9	15.9	22.0	17.9	21.7	-	-	-	<0.1	%	PM4/PM0
pH#	8.48	8.65	7.64	10.88	8.41	7.91	7.99	8.33	7.97	8.47	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	5	<3	4	<3	6	5	4	5	3	4	10	150	500	<3	mg/kg	TM173/PM0
													-500			
Sulphate as SO4#	14	18	250	328	61	433	1031	43	375	24	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	4	<3	7	12	<3	4	<3	<3	4	5	800	15000	25000	<3	mg/kg	TM38/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Diarmaid MagLochlainn

Contact: EMT Job No:

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	23/21539									
EMT Sample No.	41-44	45-48	49-52	53-56	57-60	61-64	65-68	69-72	73-76	77-80
Sample ID	TP-06	TP-07	TP-07	TP-08	TP-08	TP-09	TP-10	TP-11	TP-11	TP-12
Depth	0.50	1.00	3.00	2.00	3.40	2.20	1.00	0.50	3.00	0.50
COC No / misc										
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Batch Number	1	1	1	1	1	1	1	1	1	1
Date of Receipt	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023
Solid Waste Analysis										
Total Organic Carbon #	1.21	0.97	0.46	0.42	0.48	0.46	1.31	1.27	0.86	0.97
Sum of BTEX	<0.025	<0.025	<0.025 ^{sv}	<0.025	<0.025 ^{sv}	<0.025	<0.025	<0.025	<0.025 ^{sv}	<0.025
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035
Mineral Oil	<30	<30	38	<30	59	<30	<30	<30	45	61
DALL C4 C#	0.27	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22

Please see attached notes for all abbreviations and acronyms

Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023	13/12/2023						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1	1		Stable Non-				Method
Date of Receipt	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	18/12/2023	Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis																
Total Organic Carbon #	1.21	0.97	0.46	0.42	0.48	0.46	1.31	1.27	0.86	0.97	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025 ^{sv}	<0.025	<0.025 ^{sv}	<0.025	<0.025	<0.025	<0.025 ^{sv}	<0.025	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	38	<30	59	<30	<30	<30	45	61	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	0.27	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic #	0.029	0.030	<0.025	<0.025	<0.025	<0.025	<0.025	0.030	0.026	0.037	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.11	0.08	0.07	0.06	0.18	0.09	0.10	0.10	0.08	0.11	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015 <0.07	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015 <0.07	0.031	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07 <0.0001	<0.007	<0.07 <0.0001	0.13	<0.07 <0.0001	<0.07	<0.07	<0.07		<0.07 <0.0001	2 0.01	50	100	<0.07	mg/kg	TM30/PM17 TM61/PM0
Mercury #	0.10	0.12	0.28	<0.0001	0.33	<0.0001	<0.0001 0.11	<0.0001 0.11	<0.0001 0.32	0.11	0.01	0.2 10	30	<0.0001 <0.02	mg/kg	TM30/PM17
Molybdenum * Nickel *	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.3	10	40	<0.02	mg/kg mg/kg	TM30/PM17
Lead#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.5	10	50	<0.02	mg/kg	TM30/PM17
Antimony#	0.02	<0.02	0.03	<0.02	<0.02	0.03	<0.02	0.03	0.03	0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	0.06	<0.03	<0.03	<0.03	0.07	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	1161	730	460	760	530	560	670	830	460	820	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	30	<20	<20	<20	<20	20	<20	20	<20	30	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1062	0.1105	0.1062	0.1112	0.1042	0.1089	0.118	0.1066	0.1042	0.1081	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	84.6	81.2	84.9	9072.1	86.7	83.0	76.0	84.0	86.7	83.2	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.884	0.879	0.884	0.9	0.886	0.882	0.871	0.883	0.886	0.882	-	-	-		1	NONE/PM17
Moisture Content 105C (% Dry Weight)	18.3	23.1	17.8	<0.1	15.4	20.5	31.7	19.1	15.3	20.3	-	-	-	<0.1	%	PM4/PM0
pH#	8.27	8.44	8.71	8.42	8.59	8.58	8.30	8.31	8.73	8.54	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
E		-		.0		-		_			40	450	500			T14470/D140
Fluoride	4	5	3	<3	4	7	4	5	4	3	10	150	500	<3	mg/kg	TM173/PM0
0.1.1004#	31	38	25	174	75	21	<5	109	50	51	1000	20000	50000	<5	malka	TM38/PM0
Sulphate as SO4 # Chloride #	148	<3	3	27	5	<3	<3	<3	<3	4	800	15000	25000	<3	mg/kg mg/kg	TM38/PM0
Chionae	140	~>	3	21	3	,,	,,		~>	7	000	13000	23000	,,	nig/kg	I WISO/F WIO

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No: 23/21539

Report : EN12457_2

EMI JOD NO:	23/21539										
EMT Sample No.	81-84										
Sample ID	TP-12										
Depth	1.00								Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and ad	cronyms
Containers	VJT										
Sample Date	13/12/2023										
Sample Type	Soil										
Batch Number	1						Stable Non-				Method
Date of Receipt	18/12/2023					Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis											
Total Organic Carbon #	1.88					3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025					6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035					1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30					500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22					-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64					100	-	-	<0.64	mg/kg	TM4/PM8
1711 5411 51 11	.0.01					100			.0.01	g.v.g	110111111111111111111111111111111111111
CEN 10:1 Leachate											
Arsenic #	0.041					0.5	2	25	<0.025	mg/kg	TM30/PM17
	0.10					20	100	300	<0.025	mg/kg	TM30/PM17
Barium#											TM30/PM17
Cadmium #	<0.005					0.04	1	5	<0.005	mg/kg	
Chromium #	<0.015					0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07					2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001					0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.12					0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel#	<0.02					0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead#	<0.05					0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	0.02					0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium#	<0.03					0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	<0.03					4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	790					4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	30					500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1076					_	_	_		kg	NONE/PM17
Dry Matter Content Ratio	84.0					-	_	-	<0.1	%	NONE/PM4
Leachant Volume	0.883					-	-	-	-0.1	ı	NONE/PM17
Leachant Volume	0.003					-	-	-			NONE/FWIT
Moisture Content 105C (% Dry Weight)	19.1					-	-	-	<0.1	%	PM4/PM0
pH #	8.40					-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1					1	-	-	<0.1	mg/kg	TM26/PM0
										, , ,	
Fluoride	5					10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4#	62					1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3					800	15000	25000	<3	mg/kg	TM38/PM0

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

Contact			agcocilialiii		
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
23/21539	1	TP-01	0.70	1-4	No Interpretation Possible
23/21539	1	TP-01	2.00	5-8	No Interpretation Possible
23/21539	1	TP-02	1.20	9-12	possible Naturally Occurring Compounds
23/21539	1	TP-02	3.00	13-16	possible Degraded Diesel, Naturally Occurring Compounds
23/21539	1	TP-03	0.50	17-20	No Interpretation Possible
23/21539	1	TP-03	2.00	21-24	No Interpretation Possible
23/21539	1	TP-03	3.50	25-28	trace of possible Degraded Diesel
23/21539	1	TP-04	0.50	29-32	No Interpretation Possible
23/21539	1	TP-05	1.00	33-36	No Interpretation Possible
23/21539	1	TP-05	3.00	37-40	No Interpretation Possible
23/21539	1	TP-06	0.50	41-44	No Interpretation Possible
23/21539	1	TP-07	1.00	45-48	No Interpretation Possible
23/21539	1	TP-07	3.00	49-52	trace of possible Degraded Diesel
23/21539	1	TP-08	2.00	53-56	No Interpretation Possible
23/21539	1	TP-08	3.40	57-60	trace of possible Degraded Diesel
23/21539	1	TP-09	2.20	61-64	No Interpretation Possible
23/21539	1	TP-10	1.00	65-68	No Interpretation Possible
23/21539	1	TP-11	0.50	69-72	No Interpretation Possible
23/21539	1	TP-11	3.00	73-76	trace of possible Degraded Diesel
23/21539	1	TP-12	0.50	77-80	trace of possible Degraded Diesel
23/21539	1	TP-12	1.00	81-84	No Interpretation Possible
					1

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/21539	1	TP-01	0.70	3	Bart Kuznicki	21/12/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	21/12/2023	Asbestos Fibres	Fibre Bundles
					Bart Kuznicki	21/12/2023	Asbestos ACM	Asbestos Cement
					Bart Kuznicki	21/12/2023	Asbestos Type	Chrysotile
23/21539	1	TP-01	2.00	7	Mathew Day	21/12/2023	General Description (Bulk Analysis)	brown soil
					Mathew Day	21/12/2023	Asbestos Fibres	NAD
					Mathew Day	21/12/2023	Asbestos ACM	NAD
					Mathew Day	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-02	1.20	11	Emily Anderton	21/12/2023	General Description (Bulk Analysis)	Brown soil with stones and vegetation
					Emily Anderton	21/12/2023	Asbestos Fibres	NAD
					Emily Anderton	21/12/2023	Asbestos ACM	NAD
					Emily Anderton	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-02	3.00	15	Emily Anderton	21/12/2023	General Description (Bulk Analysis)	Brown soil with stones
					Emily Anderton	21/12/2023	Asbestos Fibres	NAD
					Emily Anderton	21/12/2023	Asbestos ACM	NAD
					Emily Anderton	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-03	0.50	19	Charlotte Taylor	21/12/2023	General Description (Bulk Analysis)	brown soil/stones
					Charlotte Taylor	21/12/2023	Asbestos Fibres	NAD
					Charlotte Taylor	21/12/2023	Asbestos ACM	NAD
					Charlotte Taylor	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-03	2.00	23	Charlotte Taylor	21/12/2023	General Description (Bulk Analysis)	brown soil/stones
					Charlotte Taylor	21/12/2023	Asbestos Fibres	NAD
					Charlotte Taylor	21/12/2023	Asbestos ACM	NAD
					Charlotte Taylor	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-03	3.50	27	Bart Kuznicki	22/12/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	22/12/2023	Asbestos Fibres	NAD
					Bart Kuznicki	22/12/2023	Asbestos Fibres (2)	NAD
					Bart Kuznicki	22/12/2023	Asbestos ACM	NAD
					Bart Kuznicki	22/12/2023	Asbestos ACM (2)	NAD
					Bart Kuznicki	22/12/2023	Asbestos Type	NAD
					Bart Kuznicki	22/12/2023	Asbestos Type (2)	NAD

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

			Diamilaia					
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/21539	1	TP-04	0.50	31	Charlotte Taylor	22/12/2023	General Description (Bulk Analysis)	brown soil/stones
					Charlotte Taylor	22/12/2023	Asbestos Fibres	NAD
					Charlotte Taylor	22/12/2023	Asbestos ACM	NAD
					Charlotte Taylor	22/12/2023	Asbestos Type	NAD
					Chanotte rayion	22/12/2023	Asbestos Type	INAD
00/04=00		TD 05	4.00	0.5		0.4.4.0.100.00		D " " "
23/21539	1	TP-05	1.00	35	Emily Anderton	21/12/2023	General Description (Bulk Analysis)	Brown soil with stones
					Emily Anderton	21/12/2023	Asbestos Fibres	NAD
					Emily Anderton	21/12/2023	Asbestos ACM	NAD
					Emily Anderton	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-05	3.00	39	Mathew Day	21/12/2023	General Description (Bulk Analysis)	brown soil
					Mathew Day	21/12/2023	Asbestos Fibres	NAD
					Mathew Day	21/12/2023	Asbestos ACM	NAD
					Mathew Day	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-06	0.50	43	Emily Anderton	21/12/2023	General Description (Bulk Analysis)	Brown soil with stones
_0,_1000		••	0.00	10	Emily Anderton	21/12/2023	Asbestos Fibres	NAD
					-	21/12/2023	Asbestos ACM	NAD
					Emily Anderton			
					Emily Anderton	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-07	1.00	47	Bart Kuznicki	21/12/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	21/12/2023	Asbestos Fibres	NAD
					Bart Kuznicki	21/12/2023	Asbestos ACM	NAD
					Bart Kuznicki	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-07	3.00	51	Bart Kuznicki	21/12/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	21/12/2023	Asbestos Fibres	NAD
					Bart Kuznicki	21/12/2023	Asbestos ACM	NAD
					Bart Kuznicki		Asbestos Type	NAD
					Dart (tazmon	21/12/2020	Assested Type	
22/24520	4	TP-08	2.00	FF	Facility Anadom	04/40/0000	Cananal Bassintian (Bulk Analysis)	Durantus and with plant and atoms
23/21539	1	11-06	2.00	55	Emily Anderton	21/12/2023	General Description (Bulk Analysis)	Brown soil with clay and stones
					Emily Anderton	21/12/2023	Asbestos Fibres	NAD
					Emily Anderton	21/12/2023	Asbestos ACM	NAD
					Emily Anderton	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-08	3.40	59	Bart Kuznicki	21/12/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	21/12/2023	Asbestos Fibres	NAD
					Bart Kuznicki	21/12/2023	Asbestos ACM	NAD
					Bart Kuznicki	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-09	2.20	63	Charlotte Taylor	21/12/2023	General Description (Bulk Analysis)	brown soil/stones
500	•		0	- 55	Charlotte Taylor	21/12/2023	Asbestos Fibres	NAD NAD
					Charlotte Taylor	21/12/2023	Asbestos ACM	NAD
					Charlotte Taylor	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-10	1.00	67	Charlotte Taylor		General Description (Bulk Analysis)	brown soil/stones
					Charlotte Taylor	21/12/2023	Asbestos Fibres	NAD
					Charlotte Taylor	21/12/2023	Asbestos ACM	NAD
					Charlotte Taylor	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-11	0.50	71	Emily Anderton	21/12/2023	General Description (Bulk Analysis)	Brown soil with stones
					Emily Anderton	21/12/2023	Asbestos Fibres	NAD
					Emily Anderton		Asbestos ACM	NAD
					, , aldertoll	- 11 1212023	- 1000000 Aoiii	j

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

Contact			Diarmaid	9200				
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/21539	1	TP-11	0.50	71	Emily Anderton	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-11	3.00	75	Mathew Day	21/12/2023	General Description (Bulk Analysis)	brown soil
					Mathew Day	21/12/2023	Asbestos Fibres	NAD
					Mathew Day	21/12/2023	Asbestos ACM	NAD
					Mathew Day	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-12	0.50	79	Mathew Day	21/12/2023	General Description (Bulk Analysis)	brown soil
					Mathew Day	21/12/2023	Asbestos Fibres	NAD
					Mathew Day		Asbestos ACM	NAD
					Mathew Day	21/12/2023	Asbestos Type	NAD
23/21539	1	TP-12	1.00	83	Emily Anderton		General Description (Bulk Analysis)	Brown soil with stones
					Emily Anderton		Asbestos Fibres	NAD
					Emily Anderton		Asbestos ACM	NAD
					Emily Anderton	21/12/2023	Asbestos Type	NAD
							<u> </u>	

Reference: 13061-08-23

Location: Housing Bundle- Ballymun Lot 4 (AKA Ballymun PPP)

Contact: Diarmaid MagLochlainn

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 23/21539	
	-4- 414				and in this name of the angular and listed it is because your deviction. Only analyses whi	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/21539

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 23/21539

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

Age of Diesel

The age of release estimation is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al., (1996).

Age estimation should be treated with caution as it can be influenced by site specific factors of which the laboratory are not aware.

ABBREVIATIONS and ACRONYMS USED

ISO17025 (UKAS Ref No. 4225) accredited - UK.
ISO17025 (SANAS Ref No.T0729) accredited - South Africa
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
Analysis subcontracted to an Element Materials Technology approved laboratory.
Samples are dried at 35°C ±5°C
Suspected carry over
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
Matrix Effect
No Fibres Detected
AQC Sample
Blank Sample
Client Sample
Trip Blank Sample
Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 23/21539

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.			AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	РМ0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec. 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec. 1996; Modified EPA Method 3050B, Rev.2, Dec. 1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland D22 K5P8

Attention: Scott Graydon

Date: 19th December, 2023

Your reference: 13061-08-23

Our reference : Test Report 23/20297 Batch 1

Location : Housing Bundle Ballymum

Date samples received: 1st December, 2023

Status: Final Report

Issue: 202312191428

Eight samples were received for analysis on 1st December, 2023 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon – Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 32.508 kg of CO2

Scope 1&2&3 emissions - 76.824 kg of CO2

Authorised By:

Bruce Leslie

Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle Ballymum

Contact: Scott Graydon EMT Job No: 23/20297

Report : Solid

EMT Sample No.	1-4	5-8	9-12	13-16	21-24	25-28	29-32						
Sample ID	BH04	BH04	BH13	BH13	BH14A	BH15	BH15						
Depth	0.50	1.00	0.50	1.00	1.00	0.40	1.50				Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date			24/11/2023			24/11/2023							
Sample Type		Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023						
Antimony	2	2	2	2	1	3	2				<1	mg/kg	TM30/PM15
Arsenic#	10.9	12.0	13.7	14.0	8.9	14.6	8.8				<0.5	mg/kg	TM30/PM15
Barium#	81 2.2	65 1.8	66 0.7	85 1.2	74 1.1	149 9.4	79 2.0				<1 <0.1	mg/kg	TM30/PM15 TM30/PM15
Cadmium# Chromium#	25.3	38.1	26.8	20.3	35.2	37.1	22.6				<0.1	mg/kg mg/kg	TM30/PM15
Copper#	30	30.1	20.8	26	26	35	26				<1	mg/kg	TM30/PM15
Lead #	25	32	33	30	35	41	16				<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1				<0.1	mg/kg	TM30/PM15
Molybdenum#	4.0	4.6	2.3	2.7	3.0	4.9	3.9				<0.1	mg/kg	TM30/PM15
Nickel [#]	38.5	37.9	30.0	35.2	28.6	39.6	35.2				<0.7	mg/kg	TM30/PM15
Selenium #	2	2	<1	2	<1	1	<1				<1	mg/kg	TM30/PM15
Zinc#	96	87	106	104	73	110	71				<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Acenaphthylene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Acenaphthene # Fluorene #	<0.05 <0.04				<0.05 <0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8						
Phenanthrene #	<0.04	<0.04	<0.04	<0.04	<0.04	0.07	<0.04				<0.04	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03	<0.03	<0.03	0.11	<0.03				<0.03	mg/kg	TM4/PM8
Pyrene#	<0.03	<0.03	<0.03	<0.03	<0.03	0.09	<0.03				<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06	<0.06	<0.06	<0.06	0.09	<0.06				<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02	<0.02	<0.02	<0.02	0.08	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	<0.07	<0.07	0.13	<0.07				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	0.06	<0.04				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	0.06	<0.04				<0.04	mg/kg	TM4/PM8
Coronene PAH 6 Total #	<0.04 <0.22	<0.04 <0.22	<0.04 <0.22	<0.04 <0.22	<0.04 <0.22	<0.04 0.36	<0.04 <0.22				<0.04 <0.22	mg/kg mg/kg	TM4/PM8 TM4/PM8
PAH 6 Total	<0.22	<0.22	<0.22	<0.22	<0.22	0.36	<0.22				<0.22	mg/kg mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.04	<0.04	<0.04	<0.04	<0.04	0.09	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1				<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	92	96	94	94	94	93	92				<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30	<30				<30	mg/kg	TM5/PM8/PM16
	I .	<u> </u>	l .		I .	I .	I	I	I	ı	I		

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle Ballymum

Contact: Scott Graydon EMT Job No: 23/20297

Report : Solid

LINI JOB NO.	20/20201								_,		
EMT Sample No.	1-4	5-8	9-12	13-16	21-24	25-28	29-32				
Sample ID	BH04	BH04	BH13	BH13	BH14A	BH15	BH15				
Depth	0.50	1.00	0.50	1.00	1.00	0.40	1.50		Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023		i		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1				
									LOD/LOR	Units	Method No.
Date of Receipt	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023				
Aliphatics											
>C5-C6 (HS_1D_AL)#	<0.1 ^{sv}	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1 ^{sv}	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1 ^{sv}	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH_CU+HS_1D_AL)	<26	<26	<26	<26	<26	<26	<26		<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1 ^{sv}	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_CU_1D_AL)	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_CU_1D_AL)	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
Aromatics											
>C5-EC7 (HS_1D_AR)#	<0.1 ^{sv}	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1 sv	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1 ^{sv}	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7 <7	<7 <7	<7	<7 <7	<7 <7	<7 <7	<7 <7		<7 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR) Total aromatics C5-40 (EH_CU+HS_1D_AR)	<26	<26	<7 <26	<26	<26	<26	<26		<26	mg/kg	TMS/TMS6PM8PM12/PM16
Total aliphatics and aromatics(C5-40) (EH_CU+HS_1D_Total)	<52	<52	<52 <52	<52	<52	<52	<52		<52 <52	mg/kg mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1 ^{SV}	<0.1	<0.1	<0.1 sv	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_CU_1D_AR)	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_CU_1D_AR)	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
										99	
MTBE#	<5 ^{sv}	<5	<5	<5 ^{sv}	<5	<5	<5		<5	ug/kg	TM36/PM12
Benzene #	<5 ^{sv}	<5	<5	<5 ^{sv}	<5	<5	<5		<5	ug/kg	TM36/PM12
Toluene#	<5 ^{sv}	<5	<5	<5 ^{sv}	<5	<5	<5		<5	ug/kg	TM36/PM12
Ethylbenzene #	<5 ^{SV}	<5	<5	<5 ^{sv}	<5	<5	<5		<5	ug/kg	TM36/PM12
m/p-Xylene #	<5 ^{SV}	<5	<5	<5 ^{SV}	<5	<5	<5		<5	ug/kg	TM36/PM12
o-Xylene#	<5 ^{sv}	<5	<5	<5 ^{sv}	<5	<5	<5		<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 138 #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 153 #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 180 #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35	<35	<35	<35		<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle Ballymum

Contact: Scott Graydon EMT Job No: 23/20297

Report : Solid

EWI JOD NO:	23/2029/							 	 •		
EMT Sample No.	1-4	5-8	9-12	13-16	21-24	25-28	29-32				
Sample ID	BH04	BH04	BH13	BH13	BH14A	BH15	BH15				
Depth	0.50	1.00	0.50	1.00	1.00	0.40	1.50		Please se	e attached n	notes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date											
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1				
Date of Receipt									LOD/LOR	Units	Method No.
Natural Moisture Content	13.6	18.3	13.7	16.8	17.5	16.8	14.2		<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	12.0	15.5	12.1	14.4	14.9	14.4	12.4		<0.1	% %	PM4/PM0
3 /											
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	1.4924	-	-	0.0582	-	-	0.0260		<0.0015	g/l	TM38/PM20
Chromium III	25.3	38.1	26.8	20.3	35.2	37.1	22.6		<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.82	1.22	1.01	0.93	1.03	1.32	0.39		<0.02	%	TM21/PM24
Organic Matter	1.4	-	-	1.6	-	-	0.39		<0.02	%	TM21/PM24
pH #	7.69	7.46	8.07	8.28	8.06	8.13	8.32		<0.01	pH units	TM73/PM11
Asbestos Type*	NAD	NAD	NAD	NAD	NAD	NAD	NAD			None	Subcontracted

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle Ballymum

Contact: Scott Graydon EMT Job No: 23/20297

Report: CEN 10:1 1 Batch

EMT Job No:	23/20297								_		
EMT Sample No.	1-4	5-8	9-12	13-16	21-24	25-28	29-32				
Sample ID	BH04	BH04	BH13	BH13	BH14A	BH15	BH15				
Depth	0.50	1.00	0.50	1.00	1.00	0.40	1.50		Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023		İ		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1				
									LOD/LOR	Units	Method No.
Date of Receipt		01/12/2023	01/12/2023	01/12/2023	01/12/2023		01/12/2023		-0.000		TN400/DN447
Dissolved Antimony#	<0.002	<0.002 <0.02	<0.002	<0.002	<0.002 <0.02	<0.002	0.003		<0.002	mg/l	TM30/PM17 TM30/PM17
Dissolved Antimony (A10)#	<0.02		<0.02	<0.02		<0.02			<0.02	mg/kg	
Dissolved Arsenic#	<0.0025	<0.0025	<0.0025	<0.0025 <0.025	<0.0025	<0.0025	<0.0025 <0.025		<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025		<0.025	<0.025			<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.018	0.021	<0.003	<0.003	0.006	0.007	0.010		<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)* Dissolved Cadmium*	0.18 <0.0005	0.21 <0.0005	<0.03 <0.0005	<0.03 <0.0005	0.06 <0.0005	0.07 <0.0005	0.10 <0.0005		<0.03	mg/kg	TM30/PM17
	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.0005 <0.005	mg/l	TM30/PM17
Dissolved Cadmium (A10) Dissolved Chromium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/kg	TM30/PM17
Dissolved Chromium (A10)#	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015		<0.0015	mg/l	TM30/PM17
. ` ′	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013		<0.013	mg/kg	TM30/PM17
Dissolved Copper # Dissolved Copper (A10) #	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		<0.07	mg/l mg/kg	TM30/PM17
Dissolved Copper (A10) Dissolved Lead #	<0.005	<0.005	<0.07	<0.07	<0.005	<0.005	<0.005		<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.005	0.009	0.006	0.007	0.004	0.003	0.020		<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.005	0.003	0.06	0.007	0.004	0.03	0.20		<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001		<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	0.4	0.6	0.5	0.4	0.3	<0.3		<0.3	mg/l	TM173/PM0
Fluoride	<3	4	6	5	4	3	<3		<3	mg/kg	TM173/PM0
Sulphate as SO4 #	712.9	229.1	4.1	5.3	16.0	0.6	3.9		<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	7126	2290	41	53	160	6	39		<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1032	0.1106	0.111	0.1075	0.1186	0.113	0.1055			kg	NONE/PM17
Chloride #	0.7	1.0	0.5	0.6	0.4	0.5	0.5		<0.3	mg/l	TM38/PM0
Chloride #	7	10	5	6	4	5	5		<3	mg/kg	TM38/PM0
	0.09	0.00	0.09	0.09	0.00	0.09	0.09			ka	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09			kg	NOINE/PINIT/
Dissolved Organic Carbon	<2	<2	<2	<2	2	2	<2		<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	<20	<20	<20	20	20	<20		<20	mg/kg	TM60/PM0
pН	7.98	8.01	8.17	8.09	8.16	8.13	8.05		<0.01	pH units	TM73/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle Ballymum

Contact: Scott Graydon EMT Job No: 23/20297

Report: CEN 10:1 1 Batch

Date of Receipt 01/12/2023 01/12/2023 01/12/2023 01/12/2023 01/12/2023 01/12/2023 01/12/2023 01/12/2023 01/12/2023 01/12/2023	LINT JOB NO.	20/20201								_		
Depth 0.50 1.00 0.50 1.00 1.00 1.00 0.40 1.50 Please see attached notes for a abbreviations and acronyms	EMT Sample No.	1-4	5-8	9-12	13-16	21-24	25-28	29-32				
COC No / misc Containers	Sample ID	BH04	BH04	BH13	BH13	BH14A	BH15	BH15				
Containers VJT VJT VJT VJT VJT VJT VJT VJT Sample Date 24/11/2023	Depth	0.50	1.00	0.50	1.00	1.00	0.40	1.50		Please se	e attached n	otes for all
Sample Date 24/11/2023 24	COC No / misc									abbrevi	ations and ad	cronyms
Sample Type Soil	Containers	VJT										
Batch Number 1 1 1 1 1 1 1 1 1	Sample Date	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023				
Date of Receipt 01/12/2023 01	Sample Type	Soil										
Date of Receipt 01/12/2023 01	Batch Number	1	1	1	1	1	1	1		LOD/LOR	Units	Method
		01/12/2023	01/12/2023	01/12/2023		01/12/2023	01/12/2023	01/12/2023		LODILOIT	Onno	
Total Dissolved Sondes* 114/8 4/2/8 310 780 1000 880 800 3												TM20/PM0
	Total Dissolved Solids	11926	4228	910	780	1000	860	600		<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23 Location: Housing Bundle Ballymum

Contact: Scott Graydon EMT Job No: 23/20297

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	1-4	5-8	9-12	13-16	21-24	25-28	29-32		
Sample ID	BH04	BH04	BH13	BH13	BH14A	BH15	BH15		
Depth	0.50	1.00	0.50	1.00	1.00	0.40	1.50		
COC No / misc									
Containers	VJT								
Sample Date	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023		
Sample Type	Soil								
Batch Number	1	1	1	1	1	1	1		
Date of Bessint	04/43/3033	04/43/3033	04/43/3033	01/12/2022	01/12/2022	01/12/2022	01/12/2022		

Please see attached notes for all abbreviations and acronyms

Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT							
Sample Date	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023							
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil							
Batch Number	1	1	1	1	1	1	1							
		01/12/2023		01/12/2023		01/12/2023	01/12/2023		Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023							
Solid Waste Analysis	0.82	1.22	1.01	0.93	1.03	1.32	0.39		3	5	6	<0.02	%	TM21/PM24
Total Organic Carbon * Sum of BTEX	<0.025 ^{sv}	<0.025	<0.025	<0.025 ^{sv}	<0.025	<0.025	<0.025		6	5	-	<0.02		TM36/PM12
	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		1			<0.025	mg/kg mg/kg	TM17/PM8
Sum of 7 PCBs# Mineral Oil	<30	<30	<30	<30	<30	<30	<30		500			<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22	<0.22	<0.22	<0.22	<0.22	0.36	<0.22		300	-		<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	0.69	<0.64		100	-		<0.64	mg/kg	TM4/PM8
PAIT Sull of 17	\0.04	~0.04	V0.04	~0.04	V0.04	0.09	~0.04		100		-	V0.04	mg/kg	TIVI4/FIVIO
CEN 10:1 Leachate														
Arsenic #	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.18	0.21	<0.03	<0.03	0.06	0.07	0.10		20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015		0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.05	0.09	0.06	0.07	0.04	0.03	0.20		0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03		0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	11926	4228	910	780	1000	860	600		4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	<20	<20	<20	20	20	<20		500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1032	0.1106	0.111	0.1075	0.1186	0.113	0.1055		-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	86.8	81.5	81.2	83.9	76.2	80.0	85.2		-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.886	0.879	0.879	0.883	0.872	0.878	0.884		-	-	-		- 1	NONE/PM17
Moisture Content 105C (% Dry Weight)	15.2	22.8	23.1	19.3	31.3	24.9	17.4		-	-	-	<0.1	%	PM4/PM0
pH #	7.69	7.46	8.07	8.28	8.06	8.13	8.32		-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	4	6	5	4	3	<3		10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4#	7126	2290	41	53	160	6	39		1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	7	10	5	6	4	5	5		800	15000	25000	<3	mg/kg	TM38/PM0

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 13061-08-23

Location: Housing Bundle Ballymum

Contact: Scott Graydon

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
23/20297	1	BH04	0.50	1-4	No interpretation possible
23/20297	1	BH04	1.00	5-8	No interpretation possible
23/20297	1	BH13	0.50	9-12	No interpretation possible
23/20297	1	BH13	1.00	13-16	No interpretation possible
23/20297	1	BH14A	1.00	21-24	No interpretation possible
23/20297	1	BH15	0.40	25-28	No interpretation possible
23/20297	1	BH15	1.50	29-32	No interpretation possible
					I .

Notification of Deviating Samples

Matrix: Solid

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle Ballymum

Contact: Scott Graydon

		Depth	Sample No.	Analysis	Reason
1	BH04	0.50	1-4	GRO	Sample holding time exceeded
1	BH04	1.00	5-8	GRO	Sample holding time exceeded
1	BH13	0.50	9-12	GRO	Sample holding time exceeded
1	BH13	1.00	13-16	GRO	Sample holding time exceeded
1	BH14A	1.00	21-24	GRO	Sample holding time exceeded
1	BH15	0.40	25-28	GRO	Sample holding time exceeded
1	BH15	1.50	29-32	GRO	Sample holding time exceeded
1 1 1		BH13 BH13 BH14A BH15	BH13 0.50 BH13 1.00 BH14A 1.00 BH15 0.40	BH13 0.50 9-12 BH13 1.00 13-16 BH14A 1.00 21-24 BH15 0.40 25-28	BH13 0.50 9-12 GRO BH13 1.00 13-16 GRO BH14A 1.00 21-24 GRO BH15 0.40 25-28 GRO

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/20297

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 23/20297

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

Age of Diesel

The age of release estimation is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al.. (1996).

Age estimation should be treated with caution as it can be influenced by site specific factors of which the laboratory are not aware.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
ТМ5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.			AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EM Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
ТМ38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
Subcontracted	See attached subcontractor report for accreditation status and provider.					AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland D22 K5P8

Attention: Conor Finnerty

Date: 19th December, 2023

Your reference: 13061-08-23

Our reference : Test Report 23/20105 Batch 1

Location : Housing Bundle - Ballymum

Date samples received: 29th November, 2023

Status : Final Report

Issue : 202312191428

Fourteen samples were received for analysis on 29th November, 2023 of which fourteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon – Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 65.739 kg of CO2

Scope 1&2&3 emissions - 155.359 kg of CO2

Authorised By:

Bruce Leslie

Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report : Solid

EMT Job No:	23/20105												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	BH07	BH07	BH08	BH08	BH09	BH09	BH10	BH10	BH11	BH11			
Depth	0.60	1.50	1.00	2.00	0.50	1.50	0.50	1.20	0.50	1.50	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	1.00#.00	1.126	Method
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	LOD/LOR	Units	No.
Antimony	2	2	2	2	3	2	6	3	2	1	<1	mg/kg	TM30/PM15
Arsenic#	17.6	11.0	14.6	10.0	18.8	8.0	18.4	14.5	14.3	8.5	<0.5	mg/kg	TM30/PM15
Barium #	107	64	99	64	121	45	144	122	70	47	<1	mg/kg	TM30/PM15
Cadmium#	1.5	2.2	2.3	1.6	2.2	1.9	2.3	1.8	1.4	1.6	<0.1	mg/kg	TM30/PM15
Chromium #	24.0	17.7	21.5	19.7	24.2	13.1	35.9	30.1	18.1	11.3	<0.5	mg/kg	TM30/PM15
Copper [#]	42	32	39	26	52	27	51	36	37	24	<1	mg/kg	TM30/PM15
Lead #	55	17	40	17	83	13	83	21	58	15	<5	mg/kg	TM30/PM15
Mercury#	0.1	<0.1	0.1	0.1	0.2	<0.1	0.3	<0.1	0.2	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum #	2.4	4.1	3.4	3.6	3.9	3.0	3.8	3.2	2.5	3.1	<0.1	mg/kg	TM30/PM15
Nickel [#]	42.0	48.4	45.9	36.4	50.4	36.8	47.1	62.2	35.8	31.7	<0.7	mg/kg	TM30/PM15
Selenium#	1	<1	<1	1	2	1	2	1	<1	<1	<1	mg/kg	TM30/PM15
Zinc [#]	96	85	106	74	133	72	143	103	99	65	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.07	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03	<0.03	0.05	<0.03	0.07	<0.03	0.05	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene#	<0.03	<0.03	<0.03	<0.03	0.05	<0.03	0.07	<0.03	0.04	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.09	<0.06	0.09	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene#	<0.02	<0.02	<0.02	<0.02	0.05	<0.02	0.07	<0.02	0.12	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	0.14	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 6 Total#	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.10	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	95	91	97	95	104	98	94	97	97	100	<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30	3724	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16
		1			1	1	1	1	1	1	1		1

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	23/20105												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	ВН07	ВН07	BH08	BH08	ВН09	BH09	BH10	BH10	BH11	BH11			
Depth	0.60	1.50	1.00	2.00	0.50	1.50	0.50	1.20	0.50	1.50	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	LOD/LOR	Oille	No.
TPH CWG													
Aliphatics													
>C5-C6 (HS_1D_AL)#	<0.1 ^{sv}	<0.1	<0.1 ^{sv}	<0.1	<0.1 sv	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	_{0.8} sv	<0.1	<0.1 ^{sv}	<0.1	<0.1 ^{sv}	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1 ^{sv}	<0.1	<0.1 ^{sv}	0.2	<0.1 ^{sv}	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH CU 1D AL)#	<4	<4	<4	<4	<4	<4	10	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH CU 1D AL)#	<7	<7	<7	<7	<7	<7	51	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	3501	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7	<7	<7	<7	<7	<7	162	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Fotal aliphatics C5-40 (EH_CU+HS_1D_AL)	<26	<26	<26	<26	<26	<26	3724	<26	<26	<26	<26		TM5/TM36/PM8/PM12/PM1
>C6-C10 (HS 1D AL)	0.8 sv	<0.1	<0.1 ^{sv}	0.2	<0.1 sv	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1	mg/kg	
, ,							-					mg/kg	TM36/PM12 TM5/PM8/PM16
>C10-C25 (EH_CU_1D_AL)	<10	<10	<10	<10	<10	<10	520	<10	<10	<10	<10	mg/kg	
>C25-C35 (EH_CU_1D_AL)	<10	<10	<10	<10	<10	<10	3044	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
Aromatics	01/		01/		01/		01/						
>C5-EC7 (HS_1D_AR)*	<0.1 ^{sv}	<0.1	<0.1 ^{sv}	<0.1	<0.1 ^{SV}	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12						
>EC8-EC10 (HS_1D_AR)#	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12						
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	241	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR)	<7	<7	<7	<7	<7	<7	25	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH_CU+HS_1D_AR)	<26	<26	<26	<26	<26	<26	266	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM1
Total aliphatics and aromatics(C5-40) (EH_CU+HS_1D_Total)	<52	<52	<52	<52	<52	<52	3990	<52	<52	<52	<52	mg/kg	TM5/TM36/PM8/PM12/PM1
>EC6-EC10 (HS_1D_AR)#	<0.1 sv	<0.1	<0.1 sv	<0.1	<0.1 ^{sv}	<0.1	<0.1 sv	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_CU_1D_AR)		<10	<10	<10	<10	<10	41	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_CU_1D_AR)	<10	<10	<10	<10	<10	<10	202	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE#	<5 sv	<5	<5 ^{sv}	<5	<5 ^{sv}	<5	<5 ^{sv}	<5	<5	<5	<5	ug/kg	TM36/PM12
Benzene#	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5	7sv	<5	<5	<5	<5	ug/kg	TM36/PM12
Toluene #	13 ^{sv}	<5	<5 <5	<5	<5 <5	<5	22 sv	<5 <5	<5 <5	<5 <5	<5 <5		TM36/PM12
	13 <5 sv		<5 <5	<5 <5	<5 <5 SV		<5 sv					ug/kg	TM36/PM12
Ethylbenzene #	<5" 8 sv	<5 <5				<5 <5		<5 <5	<5 <5	<5 <5	<5 <5	ug/kg	
m/p-Xylene #		<5	<5 ^{SV}	<5 40	<5 ^{SV}	<5 45	<5 ^{SV}	<5 45	<5 -5	<5	<5 -5	ug/kg	TM36/PM12
o-Xylene #	<5 sv	<5	<5 sv	10	<5 sv	<5	7 ^{sv}	<5	<5	<5	<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/1 M8
POD 100 #	.5	-5	-5	, s	.5	,,,	,,,	.5	 /E	,,,	-5	ug/kg	TM17/PM0

<5

<35

<5

<35

<5

<35

<5

<35

<5

<35

<5

<35

ug/kg

ug/kg

<5

<35

<5

<35

<5

<35

<5

<35

<5

<35

PCB 180#

Total 7 PCBs#

TM17/PM8

TM17/PM8

Ground Investigations Ireland Client Name:

13061-08-23 Reference:

Housing Bundle - Ballymum Location:

Contact: Conor Finnerty 23/20105

Report: Solid

ENIT JOD NO.	23/20103									
EMT Sample No	. 1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40
Sample ID	BH07	BH07	BH08	BH08	BH09	BH09	BH10	BH10	BH11	BH11
Depth	0.60	1.50	1.00	2.00	0.50	1.50	0.50	1.20	0.50	1.50
COC No / misc	:									
Containers	VJT									
Sample Date	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Sample Type	Soil									
Batch Number	1	1	1	1	1	1	1	1	1	1
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023

Sample ID	BH07	BH07	BH08	BH08	BH09	BH09	BH10	BH10	BH11	BH11			
Depth	0.60	1.50	1.00	2.00	0.50	1.50	0.50	1.20	0.50	1.50	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	LOD/LOR	Units	No.
Natural Moisture Content	20.6	14.8	23.5	13.1	31.9	14.4	24.9	20.0	23.6	12.4	<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	17.1	12.9	19.0	11.6	24.2	12.6	19.9	16.7	19.1	11.0	<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	0.0896	-	0.0405	-	0.0217	-	0.0279	0.0409	-	0.0141	<0.0015	g/l	TM38/PM20
Chromium III	24.0	17.7	21.5	19.7	24.2	13.1	35.9	30.1	18.1	11.3	<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#] Organic Matter	1.90 3.3	0.39	2.01 3.5	0.51	3.03 5.2	0.66	3.64 6.3	0.32	1.90	0.32	<0.02 <0.2	%	TM21/PM24 TM21/PM24
Organic Matter	3.3	-	3.5	-	5.2	-	0.3	0.6	-	0.6	<0.2	70	TIVIZ I/FIVIZ4
pH #	8.15	8.51	8.37	8.19	8.11	8.62	8.25	8.39	7.84	8.65	<0.01	pH units	TM73/PM11
Asbestos Type*	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD		None	Subcontracted

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report : Solid

EMT Job No:	23/20105									
EMT Sample No.	41-44	45-48	49-52	53-56						
Sample ID	BH17	BH17	BH19	BH19						
Depth	0.50	2.00	0.50	2.00				Diagon on	a attached n	otoo for all
COC No / misc									e attached nations and a	
Containers	VJT	VJT	VJT	VJT						
Sample Date										
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023						No.
Antimony	2	2	2	2				<1	mg/kg	TM30/PM15
Arsenic [#]	13.3	10.1	12.7	11.7				<0.5	mg/kg	TM30/PM15
Barium #	101 2.3	178 1.9	107 1.4	65 0.8				<1 <0.1	mg/kg	TM30/PM15
Cadmium # Chromium #	20.7	13.5	25.7	38.6				<0.1	mg/kg mg/kg	TM30/PM15
Copper#	36	28	28	17				<1	mg/kg	TM30/PM15
Lead #	38	18	32	22				<5	mg/kg	TM30/PM15
Mercury [#]	0.2	<0.1	0.2	<0.1				<0.1	mg/kg	TM30/PM15
Molybdenum#	3.2	3.5	3.2	1.5				<0.1	mg/kg	TM30/PM15
Nickel [#]	44.6	42.2	35.3	21.8				<0.7	mg/kg	TM30/PM15
Selenium#	1	<1	1	<1				<1	mg/kg	TM30/PM15
Zinc [#]	106	77	81	65				<5	mg/kg	TM30/PM15
PAH MS										
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Acenaphthene#	<0.05	<0.05	<0.05	<0.05				<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	0.05	<0.03				<0.03	mg/kg	TM4/PM8
Pyrene # Benzo(a)anthracene #	<0.03 <0.06	<0.03 <0.06	0.04 <0.06	<0.03 <0.06				<0.03 <0.06	mg/kg mg/kg	TM4/PM8
Chrysene #	<0.00	<0.02	<0.02	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07	<0.07	<0.07	<0.07				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
PAH 6 Total # PAH 17 Total	<0.22 <0.64	<0.22 <0.64	<0.22 <0.64	<0.22 <0.64				<0.22 <0.64	mg/kg mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1				<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	101	96	97	98				<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	109	<30				<30	mg/kg	TM5/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report : Solid

EMT Job No:	23/20105							_		
EMT Sample No.	41-44	45-48	49-52	53-56						
Sample ID	BH17	BH17	BH19	BH19						
Depth	0.50	2.00	0.50	2.00				Diamana		
COC No / misc									e attached n ations and a	
Containers	VJT	VJT	VJT	VJT				1		
Sample Date	23/11/2023	23/11/2023	23/11/2023	23/11/2023						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023						
TPH CWG										
Aliphatics "										
>C5-C6 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1 <0.2				<0.1	mg/kg	TM36/PM12 TM5/PM8/PM16
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4 <7	<4 <7	<4 <7	<4 <7				<4 <7	mg/kg mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)* >C21-C35 (EH_CU_1D_AL)*	<7	<7	86	<7				<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7	<7	23	<7				<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH_CU+HS_1D_AL)	<26	<26	109	<26				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_CU_1D_AL)	<10	<10	<10	<10				<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_CU_1D_AL)	<10	<10	82	<10				<10	mg/kg	TM5/PM8/PM16
Aromatics									0 0	
>C5-EC7 (HS 1D AR)#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4				<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7	298	126				<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR)	<7	<7	77	43				<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH_CU+HS_1D_AR)	<26	<26	375	169				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH_CU+HS_1D_Total)	<52	<52	484	169				<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_CU_1D_AR)	<10	<10	38	<10				<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_CU_1D_AR)	<10	<10	266	121				<10	mg/kg	TM5/PM8/PM16
_	_	_	_	_				_	_	
MTBE#	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
Benzene #	<5	<5	<5	<5 7				<5 <5	ug/kg	TM36/PM12
Toluene #	<5 <5	<5 <5	<5 <5	7				<5 <5	ug/kg	TM36/PM12 TM36/PM12
Ethylbenzene #	<5 <5	<5 <5	<5 <5	<5 <5				<5 <5	ug/kg	TM36/PM12
m/p-Xylene # o-Xylene #	<5 <5	<5 <5	<5 <5	<5 <5				<5 <5	ug/kg ug/kg	TM36/PM12
о дуюне	**	-5	-5	-5				-5	ug/kg	110100/1-10112
PCB 28 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 52#	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 138#	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 153#	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 180#	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35				<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report : Solid

ENT SOD NO.	20/20100							_		
EMT Sample No.	41-44	45-48	49-52	53-56						
Sample ID	BH17	BH17	BH19	BH19						
Depth	0.50	2.00	0.50	2.00				Please se	e attached n	otes for all
COC No / misc									ations and a	
Containers	VJT	VJT	VJT	VJT						
Sample Date	23/11/2023	23/11/2023	23/11/2023	23/11/2023						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1						Method
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023				LOD/LOR	Units	No.
Natural Moisture Content	23.6	12.2	18.8	14.1				<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	19.1	10.9	15.8	12.3				<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3				<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	-	0.0720	-	0.2287				<0.0015	g/l	TM38/PM20
Chromium III	20.7	13.5	25.7	38.6				<0.5	mg/kg	NONE/NONE
Total Organic Carbon * Organic Matter	1.17	0.40	0.99	1.24 2.1				<0.02 <0.2	%	TM21/PM24 TM21/PM24
S. garno matter		0.7		2.1				70.2	/0	/ 1/1 IVIZ4
pH [#]	7.95	8.48	9.45	11.53				<0.01	pH units	TM73/PM11
Asbestos Type*	NAD	NAD	NAD	NAD					None	Subcontracted

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report: CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

23/20105										_		
1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
BH07	BH07	BH08	BH08	ВН09	ВН09	BH10	BH10	BH11	BH11			
0.60	1.50	1.00	2.00	0.50	1.50	0.50	1.20	0.50	1.50	Please se	e attached n	otes for all
VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023			
										LOD/LOR	Units	Method No.
										<0.002	ma/l	TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM30/PM17
												TM61/PM0
												TM61/PM0
0.000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	99	111101711110
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
0.4	<0.3	0.3	<0.3	0.4	<0.3	0.3	<0.3	0.4	<n 3<="" td=""><td><0.3</td><td>ma/l</td><td>TM173/PM0</td></n>	<0.3	ma/l	TM173/PM0
												TM173/PM0
	Ů	J	J	·	J	Ū	v		Ü	Ü	9/1.9	
20.7	15.1	21.8	2.9	0.9	0.9	<0.5	10.1	116.7	2.7	<0.5	mg/l	TM38/PM0
207	151	218	29	9	9	<5	101	1167	27	<5	mg/kg	TM38/PM0
0.1132	0.1023	0.1177	0.1046	0.1209	0.1025	0.1154	0.1116	0.1152	0.1041		kg	NONE/PM17
0.4	<0.3	0.6	0.3	1.2	<0.3	1.8	4.5	0.8	<0.3	<0.3	mg/l	TM38/PM0
4	<3	6	3	12	<3	18	45	8	<3	<3	mg/kg	TM38/PM0
	0											
0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17
	1-4 BH07 0.60 V J T 23/11/2023 Soil 1 29/11/2023 <0.002 <0.0025 <0.0025 <0.003 <0.0015 <0.0015 <0.007 <0.007 <0.005 <0.005 <0.003 <0.003 <0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.	BH07 BH07 0.60 1.50 V J T V J T 23/11/2023 23/11/2023 Soil Soil 1 1 29/11/2023 29/11/2023 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.0015 <0.0015 <0.0015 <0.0015 <0.015 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.0015 <0.015 <0.015 <0.015 <0.015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0014 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003	BH07 BH08 0.60 1.50 1.00 V J T V J T V J T 23/11/2023 23/11/2023 23/11/2023 Soil Soil Soil 1 1 1 29/11/2023 29/11/2023 29/11/2023 <0.002	BH07 BH08 BH08 BH08 0.60 1.50 1.00 2.00 V J T V J T V J T V J T 23/11/2023 23/11/2023 23/11/2023 23/11/2023 Soil Soil Soil Soil 29/11/2023 29/11/2023 29/11/2023 29/11/2023 <0.002	BH07	BH07	BH07	BH07	BH07		Bear Bear	Deliver Del

<2

<20

8.09

4

40

8.33

<2

<20

7.93

<2

<20

7.92

<2

<20

8.07

<2

<20

<0.01

mg/l

mg/kg

pH units

Dissolved Organic Carbon

Dissolved Organic Carbon

2

<20

7.96

<2

<20

7.99

3

30

7.56

4

40

7.84

<2

<20

8.26

TM60/PM0

TM60/PM0

TM73/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report: CEN 10:1 1 Batch

2.11.1 000 110.	20,20.00												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	BH07	BH07	BH08	BH08	BH09	BH09	BH10	BH10	BH11	BH11			
Depth	0.60	1.50	1.00	2.00	0.50	1.50	0.50	1.20	0.50	1.50	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	Ì											
Sample Date	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	Ì		
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	1.00#.00	11-76-	Method
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	LOD/LOR	Units	No.
Total Dissolved Solids#	117	62	143	57	137	53	132	87	284	53	<35	mg/l	TM20/PM0
Total Dissolved Solids#	1170	620	1431	570	1369	530	1320	870	2841	530	<350	mg/kg	TM20/PM0
		l	l	l	l	l	l						

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report: CEN 10:1 1 Batch

EWI JOD NO:	23/20105				 		 			
EMT Sample No.	41-44	45-48	49-52	53-56		 				
Sample ID	BH17	BH17	BH19	BH19						
Depth	0.50	2.00	0.50	2.00				Di	#	
COC No / misc									e attached nations and a	
Containers	VJT	VJT	VJT	VJT						
Sample Date			23/11/2023							
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt			29/11/2023							
Dissolved Antimony#	<0.002	<0.002	0.003	<0.002				<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02	0.03	<0.02				<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025	0.0043	<0.0025				<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	0.043	<0.025				<0.025	mg/kg	TM30/PM17
Dissolved Barium # Dissolved Barium (A10) #	0.023	0.012 0.12	0.006	0.019 0.19				<0.003 <0.03	mg/l	TM30/PM17
Dissolved Barium (A10)* Dissolved Cadmium#	<0.0005	<0.0005	<0.0005	<0.0005				<0.03	mg/kg mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005				<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	0.0077				<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015	<0.015	0.077				<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	0.020	0.014				<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07	0.20	0.14				<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005				<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05				<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	0.008	0.012	0.015	0.007				<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.08	0.12	0.15	0.07				<0.02	mg/kg	TM30/PM17
Dissolved Nickel#	<0.002	<0.002	0.006	0.005				<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	0.06	0.05				<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003	<0.003				<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003	<0.003	<0.003				<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	0.00001	<0.00001				<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	0.0001	<0.0001				<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM26/PM0
Fluoride	0.3	<0.3	<0.3	<0.3				<0.3	mg/l	TM173/PM0
Fluoride	3	<3	<3	<3				<3	mg/kg	TM173/PM0
Sulphate as SO4 #	90.9	20.0	39.4	43.4				<0.5	mg/l	TM38/PM0
Sulphate as SO4#	909	200	394	434				<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1059	0.1037	0.112	0.1081					kg	NONE/PM17
Chloride #	0.5	<0.3	1.5	2.1				<0.3	mg/l	TM38/PM0
Chloride #	5	<3	15	21				<3	mg/kg	TM38/PM0
Mass of dried test portion	0.09	0.09	0.09	0.09					kg	NONE/PM17
Disselved Committee Combine	-0	-0	0	4					n	TMCO/DMC
Dissolved Organic Carbon	<2	<2 <20	8	4 40				<2	mg/l	TM60/PM0 TM60/PM0
Dissolved Organic Carbon	<20 7.05		80					<20	mg/kg	
pH	7.95	8.08	9.63	11.38				<0.01	pH units	TM73/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report: CEN 10:1 1 Batch

					 	 	 	-		
EMT Sample No.	41-44	45-48	49-52	53-56						
Sample ID	BH17	BH17	BH19	BH19						
Depth	0.50	2.00	0.50	2.00				Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT						
Sample Date	23/11/2023	23/11/2023	23/11/2023	23/11/2023						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023				LOD/LOR	Offics	No.
Total Dissolved Solids#	231	80	146	211				<35	mg/l	TM20/PM0
Total Dissolved Solids #	2311	800	1461	2109				<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23
Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No. 13-16 29-32 37-40 9-12 17-20 21-24 25-28 33-36 BH07 BH07 BH08 BH08 BH09 BH09 BH10 BH10 BH11 BH11 Sample ID Depth 0.60 1.50 1.00 2.00 0.50 1.50 0.50 1.20 0.50 1.50 COC No / misc

Please see attached notes for all abbreviations and acronyms

	V J T 3/11/2023 Soil	V J T 23/11/2023	V J T 23/11/2023	V J T 23/11/2023	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Type		23/11/2023	23/11/2023	00/44/0000												
	Coil			23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023						
Batch Number	3011	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
	1	1	1	1	1	1	1	1	1	1		Stable Non-				Method
Date of Receipt 29	9/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023	Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis																
Total Organic Carbon#	1.90	0.39	2.01	0.51	3.03	0.66	3.64	0.32	1.90	0.32	3	5	6	<0.02	%	TM21/PM24
-	<0.025 ^{sv}	<0.025	<0.025 ^{sv}	<0.025	<0.025 ^{sv}	<0.025	0.036 ^{sv}	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	3724	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic #	<0.025	<0.025	0.034	0.026	<0.025	<0.025	<0.025	<0.025	<0.025	0.037	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	<0.03	<0.03	0.34	0.03	0.06	<0.03	0.09	<0.03	0.13	<0.03	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury# <	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.03	0.14	0.10	0.20	0.04	0.12	0.09	<0.02	0.04	0.10	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	0.03	<0.02	0.03	<0.02	0.23	<0.02	<0.02	<0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	1170	620	1431	570	1369	530	1320	870	2841	530	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	<20	30	40	<20	<20	40	<20	<20	<20	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1132	0.1023	0.1177	0.1046	0.1209	0.1025	0.1154	0.1116	0.1152	0.1041	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	79.8	88.1	76.6	86.2	74.6	87.4	77.7	81.0	78.0	86.9	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.877	0.888	0.873	0.886	0.869	0.887	0.874	0.879	0.875	0.887	-	-	-		1	NONE/PM17
Moisture Content 105C (% Dry Weight)	25.4	13.5	30.5	16.0	34.0	14.4	28.7	23.5	28.2	15.0	-	-	-	<0.1	%	PM4/PM0
pH#	8.15	8.51	8.37	8.19	8.11	8.62	8.25	8.39	7.84	8.65	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	4	<3	3	<3	4	<3	<3	<3	4	<3	10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4#	207	151	218	29	9	9	<5	101	1167	27	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride#	4	<3	6	3	12	<3	18	45	8	<3	800	15000	25000	<3	mg/kg	TM38/PM0

Client Name: Ground Investigations Ireland

Reference: 13061-08-23 Location: Housing Bundle - Ballymum

Contact: Conor Finnerty EMT Job No: 23/20105

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No. 41-44 45-48 49-52 53-56 BH17 BH17 BH19 BH19 Sample ID

Depth	0.50	2.00	0.50	2.00								e attached r	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT									
Sample Date	23/11/2023	23/11/2023	23/11/2023	23/11/2023									
Sample Type	Soil	Soil	Soil	Soil									
Batch Number	1	1	1	1				Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt	29/11/2023	29/11/2023	29/11/2023	29/11/2023									
Solid Waste Analysis													
Total Organic Carbon #	1.17	0.40	0.99	1.24				3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025				6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035				1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	109	<30				500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22	<0.22	<0.22	<0.22				100	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64				100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate													
Arsenic #	<0.025	<0.025	0.043	<0.025				0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.23	0.12	0.06	0.19				20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005				0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	0.077				0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	0.20	0.14				2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001	0.0001	<0.0001				0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.08	0.12	0.15	0.07				0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel#	<0.02	<0.02	0.06	0.05				0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead#	<0.05	<0.05	<0.05	<0.05				0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	0.03	<0.02				0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03				0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc #	<0.03	<0.03	<0.03	<0.03				4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	2311	800	1461	2109				4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	<20	80	40				500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1059	0.1037	0.112	0.1081				-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	85.3	86.9	80.1	83.5				-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.885	0.886	0.878	0.882				-	-	-		I	NONE/PM17
	47.0	45.4	04.0	40.7							.0.4	0/	DIA A DIA G
Moisture Content 105C (% Dry Weight)	17.2	15.1	24.9	19.7				-	-	-	<0.1	%	PM4/PM0
pH#	7.95	8.48	9.45	11.53				-	-	_	<0.01	pH units	TM73/PM11
P1.	****											ç	
Phenol	<0.1	<0.1	<0.1	<0.1				1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	3	<3	<3	<3				10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4#	909	200	394	434				1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	5	<3	15	21				800	15000	25000	<3	mg/kg	TM38/PM0

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty

Contact		Conorrani			
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
23/20105	1	BH07	0.60	1-4	No interpretation possible
23/20105	1	BH07	1.50	5-8	No interpretation possible
23/20105	1	BH08	1.00	9-12	No interpretation possible
23/20105	1	BH08	2.00	13-16	No interpretation possible
23/20105	1	ВН09	0.50	17-20	No interpretation possible
23/20105	1	ВН09	1.50	21-24	No interpretation possible
23/20105	1	BH10	0.50	25-28	Lubricating oil, Possible PAH's & Possible trace of degraded diesel
23/20105	1	BH10	1.20	29-32	No interpretation possible
23/20105	1	BH11	0.50	33-36	No interpretation possible
23/20105	1	BH11	1.50	37-40	No interpretation possible
23/20105	1	BH17	0.50	41-44	No interpretation possible
23/20105	1	BH17	2.00	45-48	No interpretation possible
23/20105	1	BH19	0.50	49-52	Trace of PAH's, Trace of lubricating oil & Possible tarmac/bitumen
23/20105	1	BH19	2.00	53-56	Possible tarmac/bitumen
					ı

Notification of Deviating Samples

Matrix: Solid

Client Name: Ground Investigations Ireland

Reference: 13061-08-23

Location: Housing Bundle - Ballymum

Contact: Conor Finnerty

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
23/20105	1	BH07	0.60	1-4	EPH	Sample holding time exceeded
23/20105	1	BH07	1.50	5-8	EPH	Sample holding time exceeded
23/20105	1	BH08	1.00	9-12	EPH	Sample holding time exceeded
23/20105	1	BH08	2.00	13-16	EPH	Sample holding time exceeded
23/20105	1	BH09	0.50	17-20	EPH	Sample holding time exceeded
23/20105	1	BH09	1.50	21-24	EPH	Sample holding time exceeded
23/20105	1	BH10	0.50	25-28	EPH	Sample holding time exceeded
23/20105	1	BH10	1.20	29-32	EPH	Sample holding time exceeded
23/20105	1	BH11	0.50	33-36	EPH	Sample holding time exceeded
23/20105	1	BH11	1.50	37-40	ЕРН	Sample holding time exceeded
23/20105	1	BH17	0.50	41-44	ЕРН	Sample holding time exceeded
23/20105	1	BH17	2.00	45-48	EPH, GRO	Sample holding time exceeded
23/20105	1	BH19	0.50	49-52	EPH, GRO	Sample holding time exceeded
23/20105	1	BH19	2.00	53-56	EPH, GRO	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/20105

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 23/20105

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

Age of Diesel

The age of release estimation is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al., (1996).

Age estimation should be treated with caution as it can be influenced by site specific factors of which the laboratory are not aware.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
ТМ5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.			AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	РМ0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec. 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec. 1996; Modified EPA Method 3050B, Rev.2, Dec. 1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
Subcontracted	See attached subcontractor report for accreditation status and provider.					AR	

CMTL Ireland Limited Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois R32 W30Y Tel: 057 8664885

Laboratory Test Report Point Load Strength Index

Project: Housing Bundle, Ballymun Client:

Originator: Diarmaid MagLochlainn

Ground Investigations Ireland

Catherinestown House, Hazelhatch Road

Newcastle, Co. Dublin

Date Received Date Tested

Job Number

Lab Ref No

13061-08-23 ST 27728

29/02/2024 04/03/2024

Date Reported 05/03/2024

Point Load Strength Index

	ou engui mae											
Sample No:-	Depth (m)	Description	Туре	Orientation	W (mm)	D (mm)	P (KN)	А	De (mm)	l _s	F	I _{s(50)} MN/m²
BH02	27.09-27.25	1	D	1	63.0	63.0	20.00	3969	63.0	5.039	1.11	5.59
BH04	18.33-18.51	1	D	Т	63.0	64.0	14.00	4032	64.0	3.418	1.12	3.82
ВН07	17.97-18.08	1	D	Т	63.0	65.0	26.00	4095	65.0	6.154	1.13	6.93
BH14	17.10-17.25	1	D	Τ	63.0	64.0	11.00	4032	64.0	2.686	1.12	3.00
BH19	19.27-19.40	1	D	Τ	63.0	63.0	24.00	3969	63.0	6.047	1.11	6.71

Description 1 : Black/Grey

$I_{s(50)}MN/m^2$ for	I _{s(50)} MN/m ² for Description 1	
Min	3.00	
Mean	5.21	
Max	6.93	

Relationship to planes of weakness Test

 \perp = perpendicular A = axial IL = irregular lump

D = diametrical II = parallel

Mean Value

	$I_{s(50)}MN/m^2$	U.C.S. MN/m²
Extremely Weak	<0.05	0.6-1.0
Very Weak	0.05-0.20	1.0-5.0
Weak	0.20-0.50	5.0-25.0
Medium Strong	0.50-2.00	25-50
Strong	2.00-4.50	50-100
Very Strong	4.50-9.00	100-250
Extremely Strong	9.00 +	>250

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

JR Ward

Approved Signature James Ward, Operations Manager **CMTL Ireland Limited**

CMTL Ireland Limited
Unit D, Zone 5, Clonminam Business Park
Portlaoise, Co. Laois R32 W30Y
Tel: 057 8664885

Laboratory Test Report Uniaxial Compressive Strength

Project:	Housing Bundle, Ballymun	Job Number	13061-08-23
Client:	Ground Investigations Ireland	Lab Ref No	ST 27729
	Catherinestown House, Hazelhatch Road	Date Received	29/02/2024
	Newcastle. Co. Dublin	Date Tested	04/03/2024
Originator:	Diarmaid MagLochlainn	Date Reported	05/03/2024

Sample Reference	Moisture Content	Density (Mg/m³)	Uniaxial Compressive Strength (N/mm²)
BH02 27.25-27.50	1.1	2696	113.3
BH04 19.00-19.22	0.3	2675	87.3
BH07 20.85-21.38	0.3	2697	118.5
BH14A 18.30-18.47	3.2	2684	71.2
BH19 21.03-21.27	0.8	2700	109.3

Remarks: None

JR Ward

Approved Signature
James Ward, Operations Manager
CMTL Ireland Limited

APPENDIX 7 Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

GROUNDWATER MONITORING

Housing Bundle Ballymun

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
BH04	01/03/2024	11:20:00	7.20	
BH14A	01/03/2024	10:45:00	0.42	
BH19	01/03/2024			Couldn't find the BH due to snow
BH19	05/03/2024	09:55:00	3.10	