IGSL Ltd

NDFA Social Housing Bundles 4/5 Lot 2 – Collins Avenue

Ground Investigation Report

Project No. 25000-2

February 2024

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176 E: info@igsl.ie W: www.igsl.ie

Distribution	Report Status	Revision	Date of Issue	Prepared By:	Approved By:
MORCE	Draft PDF by email	0	22-02-2024	J. Lawler BSc MSc PGeo EurGeol FGS	P. Quigley BEng CEng MICE MIEI FGS RoGEP Adviser

DOCUMENT ISSUE REGISTER

TABLE OF CONTENTS

Foreword

- 1. Introduction
- 2. Fieldworks
 - 2.1 General
 2.2 Trial Pits & Foundation Inspection Pits
 2.3 Cable Percussion Boreholes
 2.4 Rotary Drilling
 2.5 Slit Trenching
 2.6 Soakaway Tests (to BRE 365)
 2.7 Surveying of Exploratory Hole Locations
- 3. Laboratory Testing
- 4. Desk Study
 - 4.1 GSI / OSI Database Information
- 5. Ground Conditions & Groundwater
 - 5.1 Ground Profile Superficial Deposits
 - 5.2 Bedrock
 - 5.3 Groundwater
- 6. Ground Assessment & Engineering Recommendations
 - 6.1 General
 - 6.2 Foundations
 - 6.3 Groundwater / Infiltration
 - 6.4 Slopes / Batters
 - 6.5 Buried Concrete
 - 6.6 Waste Acceptance Criteria [WAC] & Environmental Testing Soils destined for

Landfill

References

FIGURES

Figure 1	- Location Plan
Figure 2	- Tailte Éireann (OSI) Cassini drawing dated 1910's-1950's with more recent
	1995 and 2013-2018 images showing the evolution of the site.
Figure 3	 Quaternary Soils Plot for the Collins Avenue Site
Figure 4	 Bedrock Geological Map for the Stanley Street Site
Figure 5	- SPT Plot versus Depth for Cable Percussion Boreholes and Rotary Drillholes
Figures 6A & 6B	 Sidewall profiles photographed during trial pitting
Figure 7	 Bedrock cores in RC02 from 17.50-23.10m with transition from CLAY to ROCK at 19.40m bgl (28.61m OD)
Figure 8	- Is(50) strengths obtained from diametrial Point Load Strength Index testing

TABLES

Table 1	 Water measurements in on-site exploratory holes
Table 2	- Measured infiltration rates (f) expressed as exposed area (metre) per unit time (minute)
Table 2	 Measured infiltration rates (f) expressed as exposed area (metre) per unit t (minute)

APPENDICES

Appendix 1	- Trial Pit Logs & Photographs
Appendix 2	- Foundation Pit Logs
Appendix 3	- Cable Percussion Borehole Logs / SPT Calibration Sheet (Er)
Appendix 4	- Rotary Drillhole Logs & Core Photographs / SPT Calibration Sheet (Er)
Appendix 5	- Slit Trench Logs & Photographs
Appendix 6	- Soakaway Records
Appendix 7	- Geotechnical Laboratory Results (Soil)
Appendix 8	- Geo-Environmental & Chemical Laboratory Results (Soils)
Appendix 9	- Geotechnical Laboratory Results (Rock)
Appendix 10	- Exploratory Hole Location Plans

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project (**NDFA Social Housing Bundles 4/5 - Lot 2 – Collins Avenue**) have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as Engineers Ireland Specification for Ground Investigation (2nd Ed, 2016), BS 5930 (2015+A1:2020) and BS 1377 (Parts 1 to 9) and the following European Norms:

- EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- EN ISO 14688-1:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- EN ISO 14688-2:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Principles for a classification
- EN ISO 14689-1:2017 Geotechnical Investigation and Testing Identification, description & classification of rock

The Eurocode 7, Part 2 – Ground Investigation and Testing GI specification shall be read in conjunction with the Specification and Related Documents for Ground Investigation in Ireland, 2nd Edition, published by Engineers Ireland in 2016.

Reporting

No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations. The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for MORCE and the information should not be used without their prior written permission. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

Boring Procedures

Where required, 'shell and auger' or cable percussive boring technique is employed as defined by Section 6.3 of IS EN ISO 22475-1:2006. The boring operations, sampling and in-situ testing meet with the recommendations set out in IS EN 1997-2:2007 and BS 1377:1990 and EN ISO 22476-3:2005. The shell and auger boring technique allows for continuous sampling in clay and silt above the water table and sand and gravel below the water table (Table 2 of IS EN ISO 22475-1:2006).

It is highlighted that some disturbance and variation is unavoidable in particular ground (e.g. blowing sands, gravel / cobble dominant glacial deposits etc). Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

In-Situ Testing

Where required, Standard Penetration Tests (SPT's) are conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is

available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Soil Sampling

Three categories of sampling methods are outlined in EN ISO 22475-1:2006. The categories are referenced A, B and C for any given ground conditions and are shown in Tables 1 and 2 of EN ISO 22475-1:2006. Reference should be made to EN 1997-2:2002 for guidelines on sample class and quality for strength and compressibility testing. Samples of quality classes 1 or 2 can only be obtained by using Category A sampling methods.

Class 1 thin wall undisturbed tube samples (UT100) were obtained in fine grained soils and strictly meet the requirements of EN 1997-2:2002 and EN ISO 22475-1:2006. Soil samples for laboratory tests are divided into five classes with respect to the soil properties that are assumed to remain unchanged during sampling, handling transport and storage. The minimum sample quality required for testing purposes to Eurocode 7 compatibility (EN 1997-2:2002) is shown in Table A.

EN 1997 Clause	Test	Minimum Sample Quality Class
5.5.3	Water Content	3
5.5.4	Bulk Density	2
5.5.5	Particle Density	N/S
5.5.6	Particle Size Analysis	N/S
5.5.7	Consistency Limits	4
5.5.8	Density Index	N/S
5.5.9	Soil Dispersivity	N/S
5.5.10	Frost Susceptibility	N/S
5.6.2	Organic Content	4
5.6.3	Carbonate Content	3
5.6.4	Sulphate Content	3
5.6.5	pН	3
5.6.6	Chloride Content	3
5.7	Strength Index	1
5.8	Strength Tests	1
5.9	Compressibility Tests	1
5.10	Compaction Tests	N/S
5.11	Permeability	2

Table A – Details of Sample Quality Requirements

N/S – not stated. Presume a representative sample of appropriate size.

Samples recovered from trial pits or trenches meet the requirements of IS EN ISO 22475-1. It is highlighted that unforeseen circumstances such as variations in geological strata may lead to lower quality sample classes being obtained.

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible, drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2017 and IS EN ISO 14688-2:2017. Rock weathering classification conforms to IS EN ISO 14689-1:2017 along with discontinuities (bedding planes, joints, cleavages, faults etc) as classified in Section 6.4 of IS EN ISO 14689-1:2017 and Annex C of same. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Where peat has been encountered, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 and Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986.

Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material will be discarded. Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

1. INTRODUCTION

An investigation of subsoil conditions was undertaken by IGSL Limited at the site of a proposed social housing development at Collins Avenue Extension, Dublin 9. The works were undertaken for Malone O'Regan Consulting Engineers [MORCE] on behalf of the National Development Finance Agency (the "NDFA"). The site was formerly a Dublin City Council Depot being used also as a 'Bring Centre'. The site consists of a number of covered sheds and office buildings in an elongate site extending from Collins Avenue Extension in the south towards 'Milner's Square' multi-storey apartment complex to the north and Crestfield Road houses to the east. The industrial area comprising Shanowen Business Centre and Kaybee House, Shanowen Road form much of the northern boundary of the site (Figure 1).

Figure 1 - Location Plan

Retrieved from Google Earth Professional (Dated 04/2020)

The investigations comprised cable percussion boreholes, rotary drilling, machine-dug trial pits, foundation inspection pits, slit trenching and soakaway tests (to BRE365). The investigations were executed in accordance with BS 5930, Code of Practice for Site Investigations (2015+A1:2020) and EN 1997-2 Eurocode 7 Part 2 Ground Investigation & Testing and supervised by an IGSL geotechnical engineer.

Geotechnical, chemical and environmental laboratory testing was scheduled on a range of soil samples. The geotechnical soil testing included moisture contents, Atterberg Limits and particle size distribution [PSD] testing in addition to hydrometer testing. Suites of both chemical testing and environmental testing were undertaken on soils. This report presents an interpretation of the data and an assessment of the key geotechnical issues. The exploratory hole locations are plotted on the site plans in Appendix 10.

2. FIELDWORK

2.1 General

The fieldworks were undertaken during November and December 2023 and January 2024 and comprised the following:

- Trial Pit (11 No.) of which 4 no. are Foundation Inspection Pits
- Cable Percussion Boring (19 No.)
- Rotary Drilling (4 No.)
- o Slit Trenching (9 No.)
- Soakaway Tests (to BRE 365) (3 No.)
- Surveying of Exploratory Hole Locations

2.2 Trial Pits & Foundation Inspection Pits

Trial pitting was performed at eleven locations across the site. Four of the trial pits prefixed TP/FP were undertaken adjacent to existing structures to examine the depth of wall footings on site. All eleven trial pits were excavated, logged and sampled under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). Bulk disturbed samples (typically 20 to 30kg) were taken as the pits progressed.

The bulk samples were placed in heavy-duty polyethylene bags. The trial pits were backfilled with the as-dug arisings and reinstated to the satisfaction of IGSL's site geotechnical engineer. The trial pit logs and photos are presented in Appendix 1 and include descriptions of the soils encountered, groundwater conditions and stability of the pit sidewalls.

As mentioned, in order to establish the depth and projection of existing foundations associated with the wall marking the northern boundary of the site, foundation inspection pits were undertaken at four locations. As with pits, the inspection pits were excavated and logged under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). Machine-assisted hand digging was used at each location with pits ranging in depth from 0.65 to 2.60m bgl. The pit logs and photos are presented in Appendix 2 and include descriptions of the soils encountered, the foundations exposed and any groundwater conditions noted during the excavation, if observed.

2.3 Cable Percussion Boreholes

Cable percussive boring (200mm diameter) was conducted at nineteen locations [BH_] using a Dando 2000 rig. The boreholes extended to depths of between 4.50m and 6.30m. At each location, boring commenced through hand-dug service inspection pits. Disturbed bulk samples were recovered at 1m intervals or change of strata during boring and these are denoted 'B' on the engineering logs.

Standard Penetration Tests (SPT's) were performed in the boreholes and given the nature of the soils, a solid cone was used. It is noted that the SPT N-Values reported are the number of blows for 300mm increment penetration (e.g. BH01 at 2.0m where N=27). These exclude the seating blow values, which represent the initial 150mm depth of penetration. Where partial penetration was achieved during testing, the number of blows is shown for the actual penetration depth achieved (e.g. BH01 at 5.0m where N=50/225mm). It is highlighted that the SPT N-Values reported on the engineering logs are uncorrected for energy ratio. The SPT hammer energy ratio calibration certificate features in Appendix 3.

Descriptions of the soils encountered, in-situ tests undertaken and samples recovered are presented on the borehole records in Appendix 3. Details of groundwater strikes and hard strata boring (i.e. chiselling) are also presented on the aforementioned records.

2.4 Rotary Drilling

Rotary drilling was carried out (holes denoted RC_) at four locations using a tracked Beretta T44. Symmetrex drilling was utilised within the overlying superficial deposits (accompanied by SPT testing) with coring techniques used in the underlying bedrock when encountered. In both RC03 and RC04, open hole drilling was used solely given rock was not encountered to their respective end depth of 14.90m bgl. The rotary drilling in bedrock at both RC01 and RC02 produced 78mm diameter cores. Bedrock was described generally as fresh to slightly weathered weak to strong, medium to thinly bedded (to locally thinly laminated), light to dark grey/black, fine-grained LIMESTONE. The limestone was reported as being interbedded argillaceous/muddy layers with calci-silitie/sandy layers, local pyrite formation and very localised thin shale layers.

The cores were placed in 3m capacity timber boxes and logged by an IGSL engineering geologist. This included photography of the cores with a digital camera. Where rock core was recovered, a graphic fracture log is also presented alongside the mechanical indices. This illustrates the fracture state of the rock cores and allows easy identification of highly fractured / non-intact zones and discontinuity spacings. It should be noted that no correction for dip of the joints has been made and that the spacings shown are successive joint / core intersections within the core.

Groundwater monitoring standpipes were installed in two of the RC_ drillholes on site (RC01 & RC04). The standpipes consisted of 50mm diameter HDPE pipework with proprietary 1mm slots and incorporated a pea gravel filter pack and cement / bentonite grout seal. Headwork covers were concreted in place.

The core log records are presented in Appendix 4 and this includes engineering geological descriptions, details of the bedding / discontinuities and mechanical indices (TCR, SCR and RQD's) for each core run. Core photographs are also presented in Appendix 4 and these illustrate the structure and fracture state of the bedrock. The SPT hammer energy ratio calibration certificate also features in Appendix 4.

2.5 Slit Trenching

Slit trenching was undertaken at nine locations on the site (ST01 – ST09). The machine-assisted hand-dug trenches were opened to reveal the track of potential existing buried services.

Detailed records of the pit findings including depth, diameter and type of service (where found) are presented in Appendix 5. The soil profile provided on the slit trench logs describes the majority of the soils across the transverse trench. The location of trench extremities (X and Y) were surveyed to ITM using GPS techniques. Photographs taken during excavation are also presented on the logs as well as separately in Appendix 5.

2.6 Soakaway Tests (to BRE 365)

Three number infiltration tests were performed to assess the suitability of the sub-soils for dispersion of storm water through a soakaway system. The infiltration tests were each performed in accordance with BRE Digest 365 'Soakaway Design'. To obtain a measure of the infiltration rate of the sub-soils, water was poured into each test pit, with records taken of the fall in water level against time. Following the first soak cycle, the procedure was repeated to ensure saturation of the sub-soils. The infiltration rate is the volume of water dispersed per unit of exposed area per unit of time, and is generally expressed as metres / minute or metres / second. Designs are based on the slowest infiltration rate, which is generally calculated from the final soak cycle. The soakaway design logs are presented in Appendix 6.

2.7 Surveying of Exploratory Hole Locations

Following completion of the exploratory works, surveying was carried out using GPS techniques. Co-ordinates (x, y) were measured to Irish Transverse Mercator and ground levels (z) established to

Malin Head. The co-ordinates and ground levels are incorporated on the exploratory hole logs with locations shown on the exploratory hole plans in Appendix 10.

3. LABORATORY TESTING

Geotechnical laboratory testing was carried out at IGSL's INAB-accredited laboratory in accordance with the methods set out in BS1377; British Standard Methods of Test for Soils for Civil Engineering Purposes; British Standards Institute:1990. The laboratory applies best practice management systems as per International Standard IS EN ISO/IEC 17025. The geotechnical testing included moisture contents, Atterberg Limits, particle size distribution [PSD] and hydrometer testing. The results from geotechnical testing on selected trial pit and cable percussive borehole soil samples are presented in Appendix 7.

Chemical analysis incorporating BRE SD1 Suite B (Brownfield – Pyrite Present) was scheduled on recovered soils. The soil chemical results are presented in Appendix 8. A total of twenty-seven soil samples were selected for Waste Acceptance Criteria (WAC) analysis as per the *Rilta* Suite of testing. The results can be used to classify the material with regard to its potential for disposal to landfill. The results are enclosed in the report in Appendix 8.

Rock strength testing on selected core specimens comprised Point Load Strength Index [PLSI] testing. The tests were performed in accordance ISRM Suggested Methods for Rock characterization, Testing and Monitoring. The results are presented in Appendix 9.

4. DESK STUDY 4.1 GSI / OSI Database

Information Reference to the OSI drawings from the early twentieth century (Cassini 1910's-1950's drawing) shows vacant ground bound by watercourses to the north. There is little to indicate the development which would sprawl across the area in the mid 1900's. Collins Avenue was built in 1938 to replace a dirt-track known as "Puckstown Lane." (Dublin Dioceses, n.d.)

The late twentieth century orthophotograph from 1995 shows the thin area occupied currently by the Dublin City Council Depot.

Apart from changes to neighbouring buildings to the north, little if any change is noted at the site in the 2013-2018 aerial image.

Figure 2 – Tailte Éireann (OSI) Cassini drawing dated 1910's-1950's with more recent 1995 and 2013-2018 images showing the evolution of the site.

The Quaternary Soils plot for the area (Figure 3 - retrieved from GSI website) reaffirms the findings of the investigation and highlights the underlying clay-dominant till derived from the ubiquitous Carboniferous Limestone of the area.

Figure 3 – Quaternary Soils Plot for the Collins Avenue Site (Site area outlined)

Reference to the GSI map for the area (Figure 4, 1:100,000 Solid Geology series) shows that the site is underlain by Lower Carboniferous, Lucan Formation. The Lucan Formation (Nolan 1986, 1989) forms the bulk of the basinal rocks throughout the geologically termed 'Dublin Basin', and is characterised by graded, intraclastic skeletal packstone/grainstone interbedded with anoxic calcareous mudstone / black shale, laminated calcisiltite and argillaceous micrite (i.e. impure limestone with clay minerals).

Its base is defined by the first appearance of thick graded beds of limestone, and a marked decrease in the proportion of interbedded shale, compared with the underlying Tober Colleen Formation. The Lucan Formation is widely known as the Calp Limestone (Marchant and Sevastopulo, 1980) but is also referred to as the Upper Dark Limestone and has long been a source of building materials and aggregate for Dublin. The Calp is largely undifferentiated geologically.

Figure 4 - Bedrock Geological Map for the Stanley Street Site (retrieved from the GSI website)

5. GROUND CONDITIONS & GROUNDWATER

5.1 Ground Profile – Superficial Deposits

The following is a summary of the ground conditions encountered across the site.

MADE GROUND

- Given the layout of the site with its concrete paved yard areas and shed spaces, all trial pits and boreholes required removal of either concrete or tarmacadam pavement. The concrete ranged in thickness from 150mm to 250mm thick (as viewed in trial pit excavations). A concrete thickness of 200mm to 300mm was reported in the boreholes. Where tarmacadam was the finished surface, trial pits TP02 and TP05 noted thicknesses of 80mm. The boreholes positioned on tarmacadam were all located to the southwest of the site namely BH02, BH05, BH06 and BH09. They encountered between 100mm and 200mm of tarmacadam pavement.
- O Underlying the hardstanding pavement layer, there was a range of Made Ground types encountered. Overall, there was infrequent evidence of engineered backfill / gravel hardcore. In areas, the underlying Made Ground was described as grey to brownish grey clayey angular Gravel with cobbles and concrete fragments. A slight hydrocarbon odour was detected in this layer in a number of pits where anthropogenic constituents included timber fragments, old tarmacadam and concrete rubble (TP01, TP04, TP09). This layer extended to 1.0m bgl at TP04. In TP03, concrete rubble and old slabs were found extending to a depth of 1.30m. At TP07, the Made Ground also included rare plastic rubbish (<5%) and was logged to a depth of 1.50m bgl. The rare 'plastic rubbish' was also intercepted in TP08 to a depth of 0.85m bgl. In the case of TP11, The concrete was reported directly on an underlying stratum of grey to dark grey sandy slightly gravelly Silt/Clay with organic fragments and boulders.</p>
- Where an angular type granular Fill was reported, it extended to depths up to 600mm bgl and was described as a grey to brownish grey and black clayey angular Gravel and Cobbles. In the case of TP06, a sandy gravelly CLAY was also logged within the granular Fill layer suggesting a generally mixed quality fill.
- Across the eleven trial pits, the more appreciable thicknesses of Made Ground were found nearing the northern boundary (up to 1.50m depth). Figure 2 shows a watercourse marking this northern boundary. It may be the case that the site sloped naturally towards this watercourse and therefore the area would have likely required more infill to achieve a consistency in ground levels (ca. 48m OD).
- A granular-dominant Fill layer was evidenced in each of BH07, BH08, BH09, BH11 and BH13. In the case of BH09, BH11 and BH13 the sandy gravelly Fill with cobbles extends to a mere 0.30m and 0.40m bgl. This suggests engineered placement. Elsewhere, at both BH07 and BH08, the grey sandy Gravel (MADE GROUND) continues to 0.90m bgl. It contained pieces of tarmac at BH08 suggestive of rubble fill.
- At all fourteen other boreholes, the soil found immediately beneath the pavement was remarked as a SILT/CLAY, sometimes classed as a 'MADE GROUND' or 'Possible MADE GROUND' layer. This was frequently observed to be soft in consistency and grey or grey black in colour, irrespective of being Made Ground or not.

Possible ALLUVIUM / Glaciolacustrine Sediments

- There are repeated inferences made to 'organic remnants' and rarely to 'shell fragments' in the soils underlying the site. These constituents are reserved for near surface subsoils. In trial pits the 'organic'-containing layer is generally firm and grey brown to grey. The SILT/CLAY extends to depths ranging 0.90m (47.28m OD) to 1.30m bgl (47.05m OD).
- The layer containing 'occasional shells' was found in TP04 from 1.0m to 1.90m (46.09m OD). It was described as a firm grey slightly sandy SILT/CLAY. In TP04, it was in turn underlain by a soft to firm brown grey mottled slightly sandy gravelly CLAY with cobbles. Two water seepages occurred in this layer. This may have attributed to its being logged as a 'soft to firm' deposit to a depth of 3.0m (44.99m OD).
- With the exception of BH12 and BH13, soft and soft to firm grey brown soils were logged in each borehole across the site to depths up to 2.80m, but generally to ca. 1.60m to 1.80m bgl. The lack of a cobble- and gravel-sized coarse component to the soils suggests low energy depositional environment similar to the organic-containing and shelly deposits noted in trial pitting.
- No soft natural soils were intercepted in either BH12 or BH13. Instead, firm and firm to stiff colour-mottled Clays were met to 1.90m (46.11m OD) and 1.60m (46.44m OD).
- The gradational increase in strength of the upper soils is illustrated by the SPT plot in Figure 5. The standard penetration test [SPT] allows for an appraisal of the ground stiffness. The first SPT tests were undertaken at 1.0m bgl in cable percussion boreholes and at 1.50m in rotary drillholes. The increase in soil strength as profiled in the plot can be seen to be approximately linear from 1.0m, through 1.50m and on to 2.0m depth. Based on SPT results, a soft consistency is not seen beyond 1.50m depth. Therefore, it could be surmised that the occurrence of soft and soft to firm soil deposits (inclusive of Made Ground) is restricted to the upper metre to 1.50m. 'Low strength' deposits are those where N values of <10 blows are present.

Figure 5 – SPT Plot versus Depth for Cable Percussion Boreholes and Rotary Drillholes

GLACIAL DEPOSITS (Glacial Lodgement Till)

- There is a gradational change from firm to stiff brown grey mottled CLAY to that of the underlying very stiff dark grey sandy gravelly CLAY with cobbles and boulders.
- The firm to stiff brown grey colour-mottled CLAY and brown CLAY is noted in trial pits from 0.70m to 2.50m bgl (ca. 45.80m OD) underlain by the stiff to very stiff over-consolidated glacial till. Towards the northeast of the site, the stiff to very stiff dark grey CLAY till appears at ca. 44.90m OD (TP09 and TP10). This corresponds to a depth of ca. 1.90m bgl.
- At depth across all bores, without exception there was reported the underlying glacial till comprising stiff and very stiff black sandy gravelly silty CLAY with cobbles and boulders. The colour-mottled CLAY overlying the heavily over-consolidated till was reported as being stiff in consistency, more often than not from 1.50m bgl.
- Boreholes demonstrate the entry more succinctly of the stiff to very stiff CLAY flagged by the higher SPT N-values obtained in test drives. Figure 5 shows that from 2.0m, the higher SPT N-values were generally obtained typical of stiff CLAY deposits.
- Boreholes terminated in the stiff to very stiff CLAY across all holes. The bores terminating in the over-consolidated CLAY ended at depths of between 4.70m and 6.30m. The thickness of the basal stiff to very stiff CLAY prior to termination in the till ranged from 2.20m (BH14) to 4.10m (BH10).
- Rotary open hole drilling was deployed at four locations on the site. Very stiff CLAY was found to persist to rockhead in each of RC01 and RC02 at 19.0m bgl (29.36m OD) and 19.40m bgl (28.61) respectively.

Figures 6A & 6B – Sidewall profiles photographed during trial pitting. Fig 6A TP05 Gravelly Made Ground onto natural firm to stiff brown grey CLAY with occasional organic remnants to 1.0m underlain by firm to stiff greyish brown sandy gravelly CLAY to 2.20m. The stiff to very stiff dark brown till completes the pit to 3.0m (44.97m OD). Slow water ingress at 1.80m. **Fig 6B** At TP08, concrete over mixed Made Ground over firm to stiff slightly sandy SILT/CLAY. From 1.15m bgl, a firm to stiff greyish brown sandy very gravelly cLAY passes to the stiff to very stiff till from 2.50m (45.46m OD). The pit ended at 3.0m (44.96m OD).

Fig 6A

Fig 6B

5.2 Bedrock

As referenced earlier in Section 4.1, the GSI rock map for the area (Figure 4, 1:100,000 Solid Geology series) shows that the Lucan Formation underlies the site. The formation is comprised of argillaceous bioclastic limestones and interbedded shales.

Rotary drilling was conducted at four points on site. At two locations, drilling successfully penetrated the thick mantle of glacial till deposits and cored the underlying bedrock commencing at depths ranging 19.20m (RC01) and 19.40m bgl (RC02) ranging in elevation from 29.16m OD (RC01) deepening to 28.61m OD (RC02). Figure 7 depicts the core recovery in RC02. The transition from very stiff CLAY superficial deposits to underlying bedrock can be viewed at 19.40m bgl.

Recovered cores were logged as fresh to slightly weathered weak to strong, medium to thinly bedded (to locally thinly laminated), light to dark grey/black, fine-grained LIMESTONE. The limestone was reported as being interbedded argillaceous/muddy layers with calci-siltite/sandy layers, local pyrite formation and very localised thin shale layers.

Figure 7 – Bedrock cores in RC02 from 17.50-23.10m with transition from CLAY (Glacial Till) to ROCK at 19.40m bgl (28.61m OD).

Discontinuity spacings in the rotary cores generally ranged from medium (200 to 600mm) to closely spaced (60 to 200mm). The discontinuity surfaces are typically smooth to locally rough, planar to curviplanar with frequent incipient fractures. Apertures are tight to partly open, locally exhibiting clay smearing and rarely gravel fill. Iron-oxide staining and calcite veining were also remarked. Dips are 20° to 40°, locally 60° and irregular.

The point load strength index (PLSI) test data produced $I_s(50)$ values ranging from 0.60 to 4.82 MPa with a mean value of 2.52 MPa. The strengths form two distinct distributions on the PLSI chart (Figure 8), corroborating the variability in rock strength between the interbedded weaker shale / mudrock and the generally strong limestone recorded in core logging.

Figure 8 – I_s(50) strengths obtained from diametrial Point Load Strength Index testing

VW = Very Weak, W = Weak, MW = Moderately Weak, MS = Medium Strong, S = Strong, VS = Very Strong (ISO 14689:2017 (E))

Using a correlation factor (K) of 20 to assess compressive strength, this suggests a characteristic strength envelope in the order of 12 to 96.4 MPa and categorizes the bedrock as weak (5 to 12.5MPa) to strong (50 to 100MPa). The visual strength descriptors determined during engineering geological logging marry well with the overall plot scatter in Figure 8.

ISO 14689:2017 (E) rock strength parameters are drawn on Figure 8 to allow correlation between UCS and Point Load Strength tests. A correlation factor (K) of 20 was used to plot the ISO 14689:2017 (E) MPa strength divisions on the Point Load strength ($I_s(50)$) plot.

5.3 Groundwater

Water ingress was noted only infrequently in boreholes with seepages and moderate ingress observed during the boring of both BH08 and BH14. The ingress in BH14 was most charged with a water strike in the black till rising from an initial strike of 2.80m bgl (44.60m OD) to ca. 1.10m bgl. Only a seepage was recorded in BH08 in the same deeply buried black till at 6.30m bgl (41.70m OD). No strike was recorded in BH02 during boring but groundwater was recorded post-drilling in the hole at 5.40m bgl. Deep-seated groundwater was logged in two of the four drillholes. The "shallow" drillholes (base depths of 14.90m bgl) remained dry.

In open excavations, trial pits often recorded minor seepages with some moderate ingress also reported. The groundwater incursions were inconsistent in depth, suggestive of localised perched groundwater bodies sited largely on impermeable till layers.

Where groundwater was noted upon completion of boring/drilling (in borehole BH02 and drillhole RC01) it is likely to be a result of casing-off a water strike in the impermeable CLAY, thus preventing water entry along the length of the hole until casing was removed. Table 1 outlines where water was met in each of the exploratory holes. The potential does exist for there to be seasonal changes in groundwater level. The works were carried out during winter 2023/24. Ongoing monitoring of standpipes at both RC01 and RC04 would permit a fuller understanding of the long term water re-equilibration on site.

		Exploratory Hole No.	Water Struck m bgl (m OD)	Stratum Description	Rate of Flow	Remarks / Stratum of water ingress (m OD)	
	S	BH02	-	-	-	Water was noted at 5.40m bgl (42.92m OD) in the borehole upon removal of the drill casing. BH ended at 6.20m. (21-11-23)	
Cable Percussion Borehole	BH08	BH08 6.30 (41.70)		Seepage	No reported rise in water during a 20minute observation period		
	BH14	2.80 (44.60)	Stiff to very stiff black sandy gravelly CLAY with cobbles and boulders	Moderate – water rose to 1.40m in 20min	Water was noted at 1.40m bgl (46m OD) in the borehole after Day 1 (BH base depth 3.0m). (08-01-24) BH ended at 4.30m. (09-01-24) Upon removal of the drill casing, water was dipped at 1.10m bgl.		

Table 1 – Water measurements in on-site exploratory holes

Cont.

les	RC01	-	-	-	Water was noted at 15.40m bgl (32.96m OD) in the drillhole upon removal of the drill casing. RC ended at 22.20m. (10-01-24)		
Rotary Drillho	RC02	17.0 (31.01)	BOULDER	Slow	Water was noted at 9.0m bgl (39.01m OD) in the drillhole upon removal of the drill casing. RC ended at 23.10m. (31-01-24)		
	RC04	-	-	-	Hoel was dry upon removal of the drill casing. RC ended at 14.90m. (04-01-24)		
	TP02	2.50 (45.68)	Interface of upper firm to stiff brown sandy gravelly CLAY and lower very stiff dark grey sandy gravelly CLAY	Seepage	Trial Pit remarked as slightly unstable.		
Trial Pits	TP03	TP03	TP03	1.30 (46.84)	Interface of upper Made Ground and lower firm brown grey mottled slightly sandy gravelly cobbly CLAY	Seepage	Trial Pit unstable from 1.90m to 2.60m bgl
			1.90 (46.24)	Firm brown grey mottled slightly sandy gravelly cobbly CLAY	Slow		
	TP04	1.90 (46.09)	Interface of upper firm shelly CLAY/SILT and lower soft to firm brown grey mottled slightly sandy gravelly cobbly CLAY	Seepage	Trial Pit unstable from 1.90m to 3.0m bgl		
		2.70 (45.29)	Soft to firm brown grey mottled slightly sandy gravelly cobbly CLAY	Moderate			

Cont.

	TP05	1.80 (46.17)	Firm to stiff greyish brown sightly sandy gravelly cobbly	Slow	Good stability
	TP06	0.70 (47.39)	Interface of upper MADE GROUND and lower firm grey slightly sandy SILT/CLAY with rootlets	Seepage	Pit unstable to 2.50m
oits	TP07	1.50 (46.64)	Interface of upper MADE GROUND and lower firm to stiff greyish brown slightly sandy gravelly cobbly CLAY	Moderate	Pit unstable to 1.50m
Trial F	TP09	1.10 (45.60)	Interface of upper firm grey slightly sandy SILT/CLAY with organics and lower firm brownish grey sandy gravelly cobbly CLAY	Seepage	Pit slightly unstable from 1.10m to 1.80m
		1.80 (44.90)	Interface of upper firm brownish grey sandy gravelly cobbly CLAY and lower stiff to very stiff till	Slow	
	TP10	0.70 (46.14)	Firm to stiff greyish brown slightly sandy gravelly cobbly CLAY	Seepage	Good stabiity

6. GROUND ASSESSMENT & ENGINEERING RECOMMENDATIONS

6.1 General

In light of the ground investigation findings, the following geotechnical issues are developed and discussed:

- Foundations
- Groundwater / Infiltration
- Slopes / Batters
- Buried Concrete
- Waste Acceptance Criteria [WAC] & Environmental Testing
 Soils destined for Landfill

6.2 Foundations

The ground investigation findings demonstrate a variable sequence of shallow surficial soils mantling the site. The upper materials consist of MADE GROUND overlying natural / indigenous firm occasionally soft to firm organic soils transitioning to firm to stiff colour-mottled CLAY. The depth to the basal very stiff and stiff till was recorded in trial pits from 1.85m (TP09) to 3.0m (TP04) with boreholes suggesting its appearance from 1.80m (BH17) to 2.80m (BH01). From these depths, it can be surmised that the depth to the black boulder CLAY / over-consolidated till rises from west to east across the site.

Ahead of the grey very stiff brown to black CLAY, there exists both an upper firm to stiff grey slightly organic CLAY overlying a firm to stiff colour-mottled CLAY. Positioning conventional footings on the colour-mottled CLAY, an allowable bearing capacity of 150kPa would be recommended. However, if more substantial bearing capacities are envisaged, excavation of pads to the underlying dark grey brown to black 'boulder CLAY' would see capacities increase to 275kPa to 300kPa. At bearing pressures of this magnitude, settlement (immediate elastic and long-term consolidation) would be expected to be small and <10mm. If the higher strength soils are selected as the main bearing stratum these should be confirmed or validated by a competent geotechnical engineer or engineering geologist.

Floor slab loadings for the development are unknown but it may be possible, if the existing soils are rolled (compaction using a smooth drum roller without vibration with a mass per metre of roll of not less than 5400 kg) and capped with a layer of SR21 Annex E compliant granular material, an adequate support for floor slabs could be generated, unless unusually high pressures are envisaged. Plate bearing tests could be undertaken across the site to assess the performance of the existing Made Ground / upper subsoil layer and devise the thickness for a granular ground slab-supporting layer. Given the non-inert concentrations of total organic carbon detected in shallow soils, ground gas may be present on site. Measures should be incorporated in the ground slab design for the inclusion of a barrier to any such subterranean gases.

6.3 Groundwater / Infiltration

As noted in Section 5.3, shallow groundwater strikes were present in the open excavations ranging from slow to moderate ingress at depths ranging 0.70m to 2.70m. Discounting the uppermost seepages at 0.70m in both TP06 and TP10, the overall groundwater strike level was from ca. 1.50m bgl. The absence of water entry in two of the eleven pits may be attributed to the permeability of the natural CLAY (or lack thereof). This should limit the ingress of groundwater where excavations are formed solely in fine soils. Therefore, shallow temporary excavation should generally see an absence of water ingress in natural deposits. It should be noted that groundwater can exist in perched waterbodies often hosted in mixed Made Ground, most especially towards the Made Ground base. It should also be noted that seepages acted as precursors to more intense water ingress in both TP03, TP04 and TP09. The three pits lie in proximity to one another towards the southwest of the site. The ingress may therefore suggest some localised water body. The secondary strikes were noted as being of 'slow' ingress in two pits, observed as 'moderate' in TP04 (at 2.70m bgl / 45.29m OD).

Deeper-seated water entry was observed in three boreholes during their construction, the most intense reading being in BH14, where water struck at 2.80m rose to 1.10m. This appears to be a localised strike. The lack of permeability in the underlying cemented till implies where minor sand or gravel layers do exist, water will be encountered within these porous lenses. This may be the case with the strike in BH14.

Should water be encountered during deeper digs / excavations it is likely that de-watering will be required through a combination of strategic sump pumping and / or perimeter drains. As mentioned in Section 5.3, the potential does exist for there to be seasonal changes in groundwater level. The works were carried out during winter 2023/24. It may be the case that the various waterbodies at depth are subject to seasonal variations.

Three soakaway tests were conducted on the site. The tests were carried out in the natural overburden soils within open excavations. The impermeable nature of the soils may account for the low to negligible infiltration rates obtained.

It is likely that such soils would not be suitable for conventional soakaways being classified as offering only low natural infiltration (Table 2).

Table 2 –	Measured	infiltration	rates	(f)	expressed	as	exposed	area	(metre)	per	unit	time
(minute)												

Soakaway Test No.	Depth of Test (m bgl)	f (m/min)	f (m/sec)		
TP/SA01	1.70	0.000039 m/min	6.569E -07 m/sec		
TP/SA06	1.80	0 m/min	0 m/sec		
TP/SA10	1.70	0 m/min	0 m/sec		

6.4 Slopes / Batters

A maximum temporary slope angle of 1V to 1.5H (33°) is anticipated for batters constructed within the upper medium strength fine grained soils. A slope angle of 1V to 2H (26°) should be appropriate for long term batters in the same soils. Instability was noted during pitting with sidewall collapse and general instability displayed by the Made Ground and uppermost medium strength deposits. Where deep excavation works are required in the superficial deposits, the use of trench box support is advised. In addition, the uppermost fine subsoils will be susceptible to softening and degradation and surface water or groundwater ingress can lead to a significant reduction in shear strength. Perched water can exist locally and this should be considered in risk assessments for excavations. Presence of ground gas should also be a consideration given the drape of Made Ground on the site coupled with the hydrcarbon signature identified detected in some of the pits.

Site operatives or personnel should not enter unsupported excavations and should be informed of potential risks. Where site operatives or engineering staff work in close proximity to temporary slopes or batters, these should be inspected and approved by a suitably experienced civil engineer, preferably with geotechnical experience. Where there is a risk of spalling of battered slopes, the use of a geogrid is recommended. The geogrid should be anchored at the top and bottom of the ridge face to contain particles such as gravel, cobbles and / or boulders, anthropogenic materials that may become dislodged.

6.5 Buried Concrete

The chemical analysis tests on natural soil samples (BRE SD1 analysis suite) show pH (2.5:1) values ranging from 7.8 to 10. The sulphate aqueous extract (SO₄) results from borehole and trial pit samples determined values of <10 and 450mg/l. This would suggest the 'as-received' soil samples tested could be categorised as BRE Class DS-1.

Table C2 ACEC for brownfield sites in BRE SD 1 (2005) can be used in the selection and design of concrete. If mobile groundwater conditions prevail at the site and given the pH values obtained from the testing, then ACEC class AC-1 would be expected to be appropriate for buried concrete in the soils. In line with I.S. EN 206-1:2013, given the acid soluble sulphate contents reported (up to 1900mg/kg (SO₄²⁻), concrete could be manufactured to Class XA1 where founded or positioned in the upper soils (Class XA1 being ≥3000 and ≤ 3000 SO₄²⁻ mg/kg).

6.6 Waste Acceptance Criteria [WAC] & Environmental Testing – Soils destined for Landfill

Twenty-seven soil samples from boreholes and trial pits were analysed for their compliance to the criteria set out in the 2002 European Landfill Directive (2003/33/EC). The results from testing feature in Appendix 8.

It would be prudent, given the volume of analysis, that a waste characterisation assessment of the results would be carried out in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015). We would recommend that a specialist environmental consultant (e.g. O'Callaghan Moran Consultants) be engaged to undertake this assessment.

REFERENCES

- **1.0** BS 5930 (2015+A1:2020) Code of Practice for Site Investigation, British Standards Institution (BSI).
- 2.0 BS 1377 (1990) Methods of Testing of Soils for Civil Engineering Purposes, BSI.
- **3.0** Dublin Diocese (n.d.). The Parish of Larkhill, Whitehall and Santry History of the Parish The Great North Road. Retrieved February 20, 2024 from the Dublin Diocese website http://www.whitehall.dublindiocese.ie/history/
- **4.0** Eurocode 7, Part 2: Ground Investigation & Testing (EN 1997-2:2007)
- 5.0 Irish Standard IS 888:2016, NSAI (Published in March 2016)
- **6.0** Marchant T.R. and Sevastopulo G. D. (1980). The Calp of the Dublin District. Journal of Earth Sciences, 3(2), pp195-203
- **7.0** Nolan, S. C. (1986). The Carboniferous geology of the Dublin area. Unpublished Ph.D. Thesis, University of Dublin.
- **8.0** Site Investigation Practice: Assessing BS 5930 (1986), Geological Society Special Publication, No. 2.
- 9.0 Sowers, G.F. (1962) Shallow Foundations, Foundation Engineering, McGraw Hill
- 10.0SR21:2014+A1:2016 Guidance on the use of IS EN 13242+A1:2007
- **11.0**Terzaghi, K., Peck, R.B., & Mesri, G. (1996). Soil Mechanics in Engineering, 3rd Edition. New York, Wiley.

Appendix 1

Trial Pit Logs & Photographs

(Area)	
IGSL	/

TRIAL PIT RECORD

REPORT NUMBER

25000-2	5000-2	,
---------	--------	---

CON	TRACT NDFA Social Housing Bundles 4/5	- Lot 2 - Collins	s Avenue)			TRIAL PI SHEET	T NO.	TP0 Shee	9 1 9t 1 of 1	
LOG	GED BY IR	CO-ORDINAT	ES	716,03 738,88	38.64 E 35.28 N		DATE ST DATE CO	ARTED	08/1 ED 08/1	1/2023 1/2023	
CLIE ENGI	NT NDFA NEER MORCE	GROUND LEV	/EL (M)	48.35			EXCAVA METHOD	TION)	JCB		
								Samples		a)	neter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetron (KPa)
0.0	CONCRETE MADE GROUND comprising grey to brownis angular gravel, cobbles, old concrete slab - I slight HC contamination	sh grey clayey Possible		0.20	48.15		AA196364	В	0.50		
- - - -	Firm greyish brown slightly sandy slightly gra SILT/CLAY with rare organic remnants. Sand medium. Gravel is fine subangular to subrou	avelly d is fine to to inded.	× ~ × × × ×	0.90	47.45		AA196365	В	1.10		
	Firm to stiff brown/grey mottled slightly sand CLAY with a medium cobble content. Sand is coarse. Gravel is fine to coarse subangular subrounded. Cobbles are subangular to sub limestone.	y gravelly s fine to o rounded of	\$\D_1 \$\D_2 \$\D_	1.30	47.05						
-	Very stiff dark grey slightly sandy gravelly CL	AY with a		2.50	45.85		AA 196366	в	2.00		
	high cobble and low boulder content. Sand is coarse. Gravel is fine to coarse subangular t subrounded. Cobbles and boulders are suba subrounded of limestone (up to 300mm).	s fine to o angular to		3.00	45.35		AA196367	В	2.90		
-	End of That Pit at 3.00m										
Grou Dry	ndwater Conditions								<u> </u>		
Stab Good	ility J										
Gene Soak	eral Remarks away test SA01 carried out at TP01										

										REPORT N	UMBER	
	3SL	т	RIAL PIT	RECO	RD					250	00-2	
CON	ITRACT	NDFA Social Housing Bundles 4/5	- Lot 2 - Collin	s Avenue	9			TRIAL P	PIT NO.	TP()2 ∋t 1 of 1	
LOG	GED BY	IR	CO-ORDINAT	ËS	716,0 738,8	64.44 E 72.77 N		DATE S DATE C	TARTE	D 08/1	1/2023 1/2023	
CLIE	INT	NDFA	GROUND LEV	VEL (m)	48.18			EXCAVA		JCB		
ENG	INEER	MORCE										
									Sample	es	a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KF	Hand Penetro (KPa)
0.0	TARMA	CADAM			0.08	48.10						
-	MADE (angular	GROUND comprising grey to brownis gravel, cobbles	sh grey clayey		0.60	47.59		AA196368	B	0.50		
F	Firm gre organic	ey/brown mottled slightly sandy SILT/ remnants. Sand is fine to to medium	CLAY with	× <u>×</u> × -	0.60	47.50						
- 1.0	Firm to content subang	stiff brown sandy gravelly CLAY with Sand is fine to coarse. Gravel is fine ular to subrounded. Cobbles are sub	a high cobble e to coarse angular to		0.90	47.28		AA196369	B	0.80		
-	subrour	ided of limestone.										
2.0	1.70m -	60mm diameter clay land drain						AA196370) В	1.70		
-	Very sti high col coarse. subrour subrour	ff dark grey slightly sandy gravelly CL oble and medium boulder content. Sa Gravel is fine to coarse subangular t ided. Cobbles and boulders are suba ided of limestone (up to 350mm).	AY with a and is fine to to angular to		2.50	45.68	(Seepage)	AA196371	В	2.70		
3.0	End of	Frial Pit at 3.00m			3.00	45.18						
24												
Grou Seep	undwater page at 2.	Conditions 50m			I	1	1		<u> </u>		1	<u> </u>
Pit s	ility lightly uns	table										
Gen	eral Rema	rks										
20												

6	And									REPORT N	UMBER	
	JSL	т	RIAL PIT	RECO	RD					250	00-2	
CON	TRACT	NDFA Social Housing Bundles 4/5	- Lot 2 - Collin	s Avenue)			TRIAL P	IT NO.	TP0	3	
LOG	GED BY	IR	CO-ORDINAT	ËS	716,00 738,89	69.96 E 99.83 N		DATE S	TARTE	08/1 TED 08/1	1/2023 1/2023	
CLIEI ENGI	NT NEER	NDFA MORCE	GROUND LE	VEL (m)	48.14			EXCAVA METHO	ATION D	JCB		
			1						Sample	es	(1	leter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa	Hand Penetrom
0.0	CONCR	ETE										
	MADE G clayey a	ROUND comprising brown/grey mo ngular gravel and cobbles	ttled slightly		0.20	47.94						
1.0	MADE G gravel, c	ROUND comprising brown roundec concrete rubble/old slab	l sandy		0.80	47.34	1	AA196372	2 B	0.70		
-	Firm bro a medium is fine to subangu	wn/grey mottled slightly sandy grave wobble content. Sand is fine to co coarse subangular to subrounded. lar to subrounded.	elly CLAY with arse. Gravel Cobbles are	<u>\$\\</u> \$\\ \$\\\$\\\$\\\$\\\$\\\$\\\$\\\$\\\$\\\$\ \$\\\$\\	1.30	46.84	(Seepage)	AA196373	в	1.50		
2.0				+ + + + + + + + + + + + + + + + + + +	2 60	45.54	(Sīow)	AA196374	в	2.40		
	Stiff dark cobble c coarse s subangu	c grey slightly sandy gravelly CLAY v ontent. Sand is fine to coarse. Grav- ubangular to subrounded. Cobbles ilar to subrounded of limestone.	with a high el is fine to are		2.00	40.04						
3.0	End of T	rial Pit at 3.00m			3.00	45.14						
Grou Seep	ndwater C age at 1.3	<i>conditions</i> 30m; Slow water flow at 1.90m										
Stabi Pit ur	lity Istable fro	m 1.90m to 2.6m										
Gene	eral Remai	rks										

										REPORT N	UMBER	
	BSL	Т	RIAL PIT	RECO	RD					250	00-2	
CON	TRACT	NDFA Social Housing Bundles 4/5	i - Lot 2 - Collin	s Avenue	9			TRIAL P	IT NO.	TPO	4	
LOG	GED BY	IR	CO-ORDINAT	ËS	716,0 738,8	96.23 E 30.63 N		DATE ST	TARTEI OMPLE	Shee D 08/1 TED 08/1	et 1 of 1 1/2023 1/2023	
	NT	NDFA MORCE	GROUND LEV	VEL (m)	47.99			EXCAVA	TION	JCB		
			1						Sample	es	a)	leter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetron (KPa)
0.0	CONCF	RETE										
-	MADE (gravelly timber p contami	GROUND comprising brown/grey/bla Clay, angular gravel, cobbles, conci bieces, old tarmac) - Possible slight H ination	ick sandy rete rubble, IC		0.20	47.79						
- - - - -	Firm gre	ey slightly sandy SILT/CLAY with occ	asional shells		1.00	46.99		AA196375	В	0.80		
-	Soft to f	irm brown/grey mottled slightly sand	y gravelly		1.90	46.09	(Seepage)	AA196376	В	1.60		
2.0 	CLAY w coarse. subang	<i>i</i> th a medium cobble content. Sand i Gravel is fine to coarse subrounded ular. Cobbles are subangular to subr	s fine to to ounded.				2	AA196377	В	2.60		
- - - - -	Stiff dar cobble coarses	k grey slightly sandy gravelly CLAY v content. Sand is fine to coarse. Grav subangular to subrounded. Cobbles	with a high el is fine to are	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.00	44.99	(Moderate)					
-	subang End of	ular to subrounded of limestone. Trial Pit at 3.30m		3	3.30	44.69						
Grou Seep	ndwater bage at 1.	Conditions 90m; Moderate water flow at 2.70m		<u> </u>	<u> </u>		<u> </u>					<u> </u>
Stab i Pit ur	ility nstable fro	om 1.90m to 3.0m										
Gene	eral Rema	rks										

		T	RIAL PIT I	RECO	RD					REPORT N	UMBER	
CON	TRACT	NDFA Social Housing Bundles 4/5	5 - Lot 2 - Collins	s Avenue	e			TRIAL P	IT NO.	ТРС)5	
LOG	GED BY	IR	CO-ORDINAT	ES	716,1 738,8	17.97 E 47.77 N		DATE S DATE C	TARTE OMPLE	Shee D 08/1 TED 08/1	et 1 of 1 1/2023 1/2023	
CLIE ENGI	NT NEER	NDFA MORCE	GROUND LEV	/EL (m)	47.97			EXCAVA METHO	ATION D	JCB		
									Sample	es	(Pa)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (k	Hand Penetr (KPa)
0.0 - -	TARMA MADE (gravel a	DACAM GROUND comprising grey/black clay nd cobbles	yey angular		0.08	47.89						
-	Firm to s slightly remnan subangi	stiff yellowish brown/grey mottled sli gravelly SILT/CLAY with occasional is. Sand is fine to coarse. Gravel is t ular to subrounded.	ghtly sandy organic fine to medium		0.45	47.52		AA196378	B	0.40		
- 1.0 	Firm to s with a h is fine to subangu	stiff greyish brown slightly sandy gra igh cobble content. Sand is fine to c o coarse subangular to subrounded. Ilar to subrounded.	avelly CLAY oarse. Gravel Cobbles are	* \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.00	46.97	1	AA196379) B	0.90		
- 2.0 -	Stiff to v CLAY w	ery stiff dark grey slightly sandy ver ith a high cobble and low boulder of	y gravelly ontent. Sand is		2.20	45.77	(Slow)		, ,	1.70		
-	subrour	ded. Cobbles and boulders are sub ded of limestone (up to 300mm).	angular to			44.07		AA196381	В	2.60		
- - - -	End of 1	rial Pit at 3.00m			3.00	44.97						
Grou Slow	n dwater (water flo	Conditions w at 1.80m		1	1	1	1		<u> </u>		L	1
Stab Good	ility d											
Gene	eral Rema	rks										

er l	Т	RIAL PIT	RECO	RD					REPORT N	JMBER		
	ISL NDFA Social Housing Bundles 4/5	- Lot 2 - Collir	s Avenue	<u>.</u>			TRIAL P	IT NO.		6		
LOG	GED BY IR	CO-ORDINA1	NATES 716,128.36 E 738,868.65 N			DATE ST		Sheet 1 of 1 ED 09/11/2023				
	NT NDFA	GROUND LE	VEL (m)	48.09			EXCAVA		JCB	1/2023		
		<u> </u>						Sample	es	1)	leter	
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPɛ	Hand Penetron	
0.0	CONCRETE MADE GROUND comprising dark grey/black angular gravel and cobbles, sandy gravelly c	√grey clayey ≿lay		0.25	47.84							
-	Firm grey slightly sandy SILT/CLAY with root fine to medium.	tlets. Sand is		0.70	47.39	(Seepage)	AA204940	В	0.50			
1.0	Firm greyish brown sandy gravelly CLAY with cobble content. Sand is fine to coarse. Grave	h a medium el is fine to	×××××××××××××××××××××××××××××××××××××	1.30	46.79		AA204941	В	1.00			
2.0	coarse subangular to subrounded. Cobbles a subangular to subrounded.	are	a b b b b b b b b b b b b b				AA204942	В	1.80			
	Stiff dark grey slightly sandy gravelly CLAY we cobble content. Sand is fine to coarse. Grave coarse subangular to subrounded. Cobbles a subangular to subrounded of limestone.	vith a high el is fine to are	1,0,10,10,10,10,10,10	2.50	45.59		AA204943	В	2.80			
3.0	End of Trial Pit at 3.00m		<u>~</u>	3.00	45.09							
Groui Groui Grabi Pit ur	ndwater Conditions age at 0.70m lity nstable to 2.50m											
Gene Soaka	ral Remarks away test SA06 carried out at TP06											
	BSL	Т	RIAL PIT	RECO	RD					REPORT N 250	umber 00-2	
----------------------	---	--	---	----------	------------------	--------------------	--------------	-----------------	------------	------------------	------------------	---------------
CON	TRACT	NDFA Social Housing Bundles 4/5	5 - Lot 2 - Collin	s Avenue	9			TRIAL P	IT NO.	TP0	7	
LOG	GED BY	IR	CO-ORDINAT	ES	716,14 738,90	40.67 E 02.35 N		DATE S	TARTED	09/1 TED 09/1	1/2023 1/2023	
CLIE ENG	NT	NDFA MORCE	GROUND LE	VEL (m)	48.14			EXCAVA METHO	ATION D	JCB		
			1						Sample	s	a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetron
0.0	CONCF	RETE										
	MADE (and cob	GROUND comprising dark grey angubles	ular gravel		0.25	47.89						
	MADE	GROUND comprising brown/grey/bla	ack sandy		0.65	47.49		AA196396	Б	0.50		
- 1.0	gravelly cobbles	Clay, old concrete slab and rubble, , boulders, rare plastic rubbish	old tarmac,					AA196397	й В	1.30		
	Firm to with a h is fine to subang	stiff greyish brown slightly sandy gra igh cobble content. Sand is fine to c o coarse subangular to subrounded. ular to subrounded.	velly CLAY oarse. Gravel Cobbles are		1.50	46.64	(Moderate					
2.0								AA196398	В	2.00		
	Stiff to v gravelly content subang subang End of	very stiff dark brownish grey slightly s CLAY with a high cobble and low be . Sand is fine to coarse. Gravel is fin ular to subrounded. Cobbles and bo ular to subrounded of limestone (up Trial Pit at 2.70m	sandy very oulder e to coarse ulders are to 350mm).		2.40 2.70	45.74 45.44		AA196399	В	2.60		
3.0												
Grou Mode	Indwater erate wate	Conditions er flow at 1.50m										
Stab Pit u	ility nstable to	1.50m										
Gene	eral Rema	rks										

REPOR	RT NUMBER
2!	5000-2
NO. T	FP08
IRTED 0 IPLETED 0)9/11/2023)9/11/2023
i ON J	ICB
amples	a) neter
Type Depth	Vane Test (KP
B 0.6	0
B 1.0	0
B 1.8	0
В 2.8	0
_	В 2.8

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 2 - Collins Avenue TRIAL PIT NO. LOGGED BY IR CO-ORDINATES 716,259.22 E DATE STARTED LOGGED BY IR GROUND LEVEL (m) 46.70 DATE STARTED CLIENT NDFA GROUND LEVEL (m) 46.70 EXCAVATION Geotechnical Description Description Description Description Description	TP09 Sheet 1 09/11/20 JCB	of 1 2023 2023 Detrometer
CONTRICT INDEX FORMATION ADDRESS OF LOCE SHEET LOGGED BY IR CO-ORDINATES 716,259.22 E DATE STARTED CLIENT NDFA GROUND LEVEL (m) 46.70 EXCAVATION ENGINEER MORCE Geotechnical Description Samples	Sheet 1 09/11/20 09/11/20 JCB	of 1 023 023 uetrometer
LOGGED BY IR CO-ORDINATES 716,259.22 E 738,959.44 N DATE STARTED DATE COMPLETER CLIENT NDFA GROUND LEVEL (m) 46.70 EXCAVATION METHOD Geotechnical Description g g g g	09/11/20 09/11/20 JCB	st (KPa)
CLIENT NDFA ENGINEER MORCE Geotechnical Description Best State Best State	JCB	st (KPa) netrometer
ENGINEER MORCE Geotechnical Description g g g g g g g	spth	st (KPa) netrometer
Geotechnical Description	spth	st (KPa) netrometer
Geotechnical Description	əpth	st (KF
Legen Type Kater T	ă	Vane Tes Hand Per (KPa)
0.0 CONCRETE		
- MADE GROUND comprising dark grey/grey slightly clayey		
AA196388 B	0.40	
Firm grey slightly sandy SILT/CLAY with some organic		
	0.90	
$\begin{bmatrix} 1.0 \\ \hline \\ $		
cobble content. Sand is fine to coarse. Gravel is fine to		
subangular to subrounded. Cobbles are		
	1.60	
Stiff to very stiff dark grey slightly sandy gravelly CLAY		
with a high cobble and medium boulder content. Sand is		
subrounded. Cobbles and boulders are subangular to		
AA196391 B	2.30	
End of Trial Pit at 2.40m		
3.0		
Groundwater Conditions	I	
- Joepage at 1.1011, Slow water 10w at 1.6011		
Stability		
General Remarks		

	3SL	Т	RIAL PIT	RECO	RD				F	REPORT N 250	umber 00-2	
CON	ITRACT NDFA Social Housin	g Bundles 4/5	- Lot 2 - Collin	s Avenue)			TRIAL P	IT NO.	TP1	0	
LOG	GED BY IR		CO-ORDINAT	ËS	716,2 738,9	74.89 E 43.47 N		DATE ST	TARTED	09/1 ⁻ ED 09/1 ⁻	et 1 of 1 1/2023 1/2023	
CLIE	ENT NDFA		GROUND LE	/EL (m)	46.84			EXCAVA METHO	ATION	JCB		
ENG									Samples		<u> </u>	eter
	Geotechnical	Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa	Hand Penetrom (KPa)
0.0	CONCRETE											
-	MADE GROUND comprising b Gravel Firm to stiff greyish brown sligh with a high cobble content. Sal is fine to coarse subangular to subangular to subrounded.	orown clayey ro htly sandy grav nd is fine to co subrounded. (velly CLAY velly CLAY varse. Gravel Cobbles are	[아니 아' 여 () () () () () () () () () (0.22 0.45	46.62 46.39	(Seepage)	AA196382	В	0.70		
- - - - - - -	1.40m - Occasional lenses of s	silty Sand		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				AA196383	в	1.60		
2.0	Stiff to very stiff dark grey sligh with a high cobble and boulder coarse. Gravel is fine to coarse subrounded. Cobbles and bou subrounded of limestone (up to	ntly sandy grav r content. Sanc e subangular tu Iders are suba o 300mm).	relly CLAY d is fine to o angular to		1.95	44.89						
-	Pit terminated due to boulder of End of Trial Pit at 2.50m	obstructions			2.50	44.34		AA196384	В	2.40		
- 3.0 -												
Grou Seep	undwater Conditions page at 0.70m											
Stab Good	ility d											
Gene Soak	eral Remarks kaway test SA10 carried out at TI	P10										

	Am							F	REPORT N	UMBER	
ک او	T ISL	RIAL PIT	RECO	RD					250	00-2	
CON	TRACT NDFA Social Housing Bundles 4/5	- Lot 2 - Collin	is Avenue	•			TRIAL P	IT NO.	TP1	1	
		CO-ORDINAT	ES	716,32	23.25 E		- SHEET		Shee	et 1 of 1	
_OG	GED BY IR			738,97	79.93 N		DATE C	OMPLET	ED 09/1	1/2023	
	NT NDFA	GROUND LE	VEL (m)	46.41			EXCAVA METHO	ATION D	JCB		
ING	NEER MORGE										
								Samples	\$	Ja)	mete
	Geotechnical Description				_	trike				est (KI	enetro
			gend) pth	evatio	ater S	mple f	эс	pth	ne Te	nd Pe
0.0			Le Le	Ű.De	Ĕ	Ň	Re	Ty	De	Va	Ha
).0	CONCRETE										
	MADE GROUND comprising grey/dark grey	sandy slightly		0.25	46.16						
	gravelly Silt/Clay with organic remnants and	boulders					AA196395	В	0.40		
				0.90	45.51		AA196386	В	0.80		
.0	Soft to firm brown/grey mottled slightly sand gravelly SILT/CLAY with a medium cobble c	y slightly ontent. Sand									
	subangular. Cobbles are subangular to subr	rounded to rounded.	× × × ×								
			* X			1					
	1.45m - Lense of rounded coarse gravel - Po	ossible track	$\times \times \times 0$			(Rapid)					
	of existing culvert		× O ×				AA196387	В	1.50		
	Pit terminated due to rapid water ingress			1.70	44.71						
2.0											
3.0											
Grou Rapi	ndwater Conditions				1	1					1
laph											
Pit sl	iiity ightly unstable from 1.5m										
Jene	eral Remarks										
Pit te	rminated at 1.70m due to rapid water ingress	through gravel	surround	/ trencł	nfill of adj	acent c	ulvert				

TRIAL PIT PHOTOGRAPHY RECORD TP 01

TP 01 – spoil

TRIAL PIT PHOTOGRAPHY RECORD TP 02

TP 02 – spoil

TP 03 – spoil

TRIAL PIT PHOTOGRAPHY RECORD TP 04

TP 04 – spoil

TRIAL PIT PHOTOGRAPHY RECORD

TP 05 – spoil

TRIAL PIT PHOTOGRAPHY RECORD **TP 07**

TP 08 – spoil

TRIAL PIT PHOTOGRAPHY RECORD TP 09

TP 09 – spoil

TRIAL PIT PHOTOGRAPHY RECORD TP 10

TP 10 – spoil

TRIAL PIT PHOTOGRAPHY RECORD TP 11

TP 11 – spoil

Appendix 2

Foundation Pit Logs

Appendix 3

Cable Percussion Borehole Logs

SPT Calibration Sheet (Er)

REPORT NUMBER

<	\checkmark														
co	NTRAC	T ND	FA Socia	Housing Bu	ndles 4/5 -	Lot 2 - C	Collins Ave	enue				BOREH SHEET	IOLE NO	D. BH01 Sheet 1 of 1	
co Gr	-ordin Ound I	IATES LEVEL (r	,716 738, nOD)	002.22 E 902.17 N 48.20	E E	RIG TYPI BOREHC BOREHC	e)le diami)le dept	ETER (r H (m)	nm)	Dando 20 200 6.30	000	DATE C DATE C	OMMEN	NCED 17/11/2023 TED 20/11/2023	
CLI	ENT	ND) FA		s	SPT HAN	MER REF	NO.		SA7		BORED	BY	DT	
EN	GINEER	MC	DRCE		E	ENERGY	RATIO (%	6)		74.07		PROCE	SSED E	BY FC	
(1									Ē		San	nples			e
under			De	escription			-egend	Elevation	Depth (n	Ref. Number	Sample Type	Depth	Recovery	Field Test Results	Standpip
)	CON	CRETE						18.00	0.20		071				
	Black	/grey sar	ndy slightly	/ gravelly SIL	T/CLAY			47.50	0.70	AA119034	в	0.50			
I	Soft g	irey sand	ly gravelly	SILT/CLAY				46.90	1.30	AA119035	в	1.00		N = 8 (1, 1, 1, 2, 2, 3)	
	Stiff g	rey/brow	n sandy g	ravelly SILT/	CLAY			10.00	1.00						
2	Stiff to	o verv sti	ff grev sar	ndv gravelly S	SILT/CLAY	with	 	46.00	2.20	AA119036	в	2.00		N = 27 (1, 2, 4, 5, 7, 11)	
	occas	sional col	obles	avelly silty CI	AV with so	mo		45.40	2.80	_					
3	cobbl	es and o	ccasional	boulders						AA119037	В	3.00		N = 50/225 mm (8, 14, 14, 14, 22)	
										AA119038	В	4.00		N = 50/225 mm (10, 11, 14, 15, 21)	
										AA119039	В	5.00		N = 50/225 mm (12, 10, 14, 16, 20)	
6	Obstr	uction						41.90	6.30	AA119040	В	6.00		N = 50/150 mm (13, 12, 22, 28)	
7	End c	f Boreho	le at 6.30	m											
8															
11/-	m (m)		Time	Commonto			Wate	er Ca	asing	Sealed	Ris	e 1	V Fime		AILO
4	.50 .10	6.30 6.30	(h) 1 1.5	Commenta			Strike	<u>e D</u>	epth	At	To) (min)	No water strike	
													GF	ROUNDWATER PRO	GRES
NS	TALLA			n B7 Base	Type	2	Dat	e	Hole Depth	Casing Depth	De W	pth to ater	Comme	ents	
_					туре										
١E	MARKS	CAT so	canned loo	ation with ha	and dug ins	pection	pit carried	out.	D - Sma B - Bulk LB - Lar Env - Fr	Disturbed (tub) Disturbed ge Bulk Disturbe wironmental San	d d nple (Jar -	+ Vial + Tub)	UT - Sam P - L W -	Undisturbed 100mm Diameter ple Undisturbed Piston Sample Water Sample	

REPORT NUMBER

	\checkmark															
CO	NTRAC	T NE	FA Soc	ial Hous	sing Bu	ndles 4/5 ·	- Lot 2 - C	Collins Ave	enue				BOREH SHEET	OLE NO	D. BH02 Sheet 1 of 1	
CO GR	-ordin Ound I	IATES LEVEL (r	71 73 nOD)	6,048.23 8,874.53	3 E 3 N 18.32		RIG TYPI BOREHC BOREHC	E)LE DIAM)LE DEPT	ETER (I H (m)	mm)	Dando 20 200 6.20	000	DATE C	ommen omple	ICED 20/11/2023 TED 21/11/2023	
CLI	ENT	NE)FA				SPT HAN	IMER REF	F. NO.		SA7		BORED	BY	DT	
ENG	GINEER	MC	DRCE				ENERGY	RATIO (%	%)	1	74.07		PROCE	SSED E	BY FC	1
<u> </u>												San	nples			Φ
Depth (n			[Descript	ion			Legend	Elevation	Depth (n	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpip Details
0	TARM	IACADA	M					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	48.12	0.20)					
	Grey	sandy sli	ightly gra	avelly S	ILT/CLA	λΥ		ו	47.62	0.70) AA119041	В	0.50			
1	Soft g	rey/brow	/n sandy	/ gravell	y SILT/	CLAY		X			AA119042	2 В	1.00		N = 9 (0, 1, 1, 2, 3, 3)	
	Firm r	nottled g	prey san	dy grave	elly SIL	T/CLAY w	ith		46.92	1.40	<u>)</u>					
2	occas	ional coi	DDIES								AA119043	в	2.00		N = 13 (2, 2, 2, 4, 4, 3)	
	Vorus	stiff black	candy	aravolly	cilty CI	AV with c	omo		45.52	2.80	<u> </u>					
3	cobble	es and o	ccasion	al bould	ers	with 5	ome				AA119044	В	3.00		N = 50 (8, 13, 14, 14, 14, 8)	
4											AA119045	БВ	4.00		N = 50/75 mm (17, 8, 50)	
5											AA119046	В	5.00		N = 50/75 mm (11, 14, 50)	
- 6								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	42.12	6.20)AA119047	в	6.00		N = 50/75 mm (12, 13, 50)	
- 7	End o	f Borehc	ole at 6.2	20 m												
8																
-																
-																
HA		RATA BO	ORING/C	CHISELL	ING					·				V	VATER STRIKE DET	AILS
Fror	m (m)	To (m)	Time (h)	Comr	nents			Wate Strike	er Ca e D	asing epth	Sealed At	Ris Ta	e T) (1	ime min)	Comments	
4. 6.	20	6.20	1 1.5												No water strike	
														GF	ROUNDWATER PRO	GRESS
INS	TALLA	TION DE	TAILS					Dat	e	Hole	Casing	De	pth to	Comme	ents	
	Date	Tip De	pth RZ	Top RZ	Base	Тур	e	21-11-	-23	6.20	Nil		5.40	End of BH	1	
REI	MARKS	CAT so	anned I	location	with ha	nd dug in:	spection	pit carried	l out.	San D - Sn B - Bu LB - Li Env - I	nple Legen nall Disturbed (tub lk Disturbed arge Bulk Disturbe Environmental Sar	id)) ed mple (Jar -	+ Vial + Tub)	UT - Sam P - L W - '	Undisturbed 100mm Diameter ple Indisturbed Piston Sample Water Sample	

250)()()-2
200	υυ	-2

0- R(ORDIN	IATES LEVEL (m	716,0 738,8 I OD)	057.27 E 389.96 N 48.28	RIG TYF BOREH BOREH	Pe Ole diam Ole dept	ETER (n Ĥ (m)	nm)	Dando 20 200 6.30	000	DATE CO	OMMENC	Sheet 1 of 1 ED 22/11/2023 ED 23/11/2023	
LII NG	ent Sineer	NDI MO	FA RCE		SPT HA	MMER REI Y RATIO (%	F. NO. %)		SA7 74.07	1	BORED I PROCES	BY SED BY	DT FC	
					I			_		Sam	ples			
			De	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
	CON	CRETE					47.00	0.20						
	Soft g	irey sandy es (Possi	/ gravelly ble Made	SILT/CLAY with so Ground)	me		47.50	1.00	AA204208	в	0.50			
	Soft to SILT/0	o firm ligh CLAY	t grey sar	ndy slightly gravelly			47.20	1.00	AA204209	В	1.00		N = 7 (0, 1, 1, 2, 2, 2)	
						×	46 28	2 00						
-	Stiff g occas	rey/browr ional cob	n sandy gi bles	ravelly SILT/CLAY	with		40.20	2.00	AA204210	В	2.00		N = 17 (2, 2, 4, 4, 5, 4)	
	Very s	stiff black es and oc	sandy gra casional l	avelly silty CLAY wi boulders	th some		45.48	2.80	 AA204211	в	3.00		N = 40 (6, 8, 8, 10, 10, 12)	
									AA204212	В	4.00		N = 35/225 mm (8, 12, 14, 15, 6)	
									AA204213	В	5.00		N = 50/225 mm (10, 13, 18, 18, 14)	
	Obstr	uction					41.98	6.30	AA204214	В	6.00		N = 50/150 mm (12, 13, 23, 27)	
	End o	f Borehol	e at 6.30	m										
;														
IA	RD ST	RATA BO	RING/CH	ISELLING			· · · ·				·	WA	TER STRIKE DET	AILS
on	n (m)	To (m)	Time (h)	Comments		Wate Strik	er Ca <u>e D</u> e	sing epth	Sealed At	Rise To	e Ti (m	me nin) Co	omments	
3.0 6.	60 10	6.80 6.30	1 1.5									1	No water strike	
												GRO	UNDWATER PRO	GRE
IS'	TALLA	TION DE	TAILS			Dat	te	Hole Depth	Casing Depth	Dep W	oth to ater	Commen	ts	
[Date	Tip Dep	th RZ To	p RZ Base	Туре	_		- 0,000						

REPORT NUMBER

со	NTRAC	T ND	FA Social	Housing Bundl	es 4/5 - Lot 2 -	Collins Av	enue				BOREH	OLE NO.	BH04	
<u></u>			716 (P F			Dando 20	00	SHEET		Sheet 1 of 1	
GR		LEVEL (n	738,9 n OD)	02.00 E 04.87 N 48.21	BOREH	OLE DIAM	ETER (n `H (m)	nm)	200 6.30	,00	DATE CO DATE CO	OMMENO	ED 23/11/2023 ED 24/11/2023	
CLI	ENT	ND	FA		SPT HA	MMER REI	F. NO.	:	SA7		BORED	BY	DT	
EN	GINEER	MC	RCE		ENERG	Y RATIO (%	%)		74.07		PROCES	SSED B	/ FC	
oth (m)			De	scription		end	/ation	oth (m)	mber	San eldu	ipies fc	overy	Field Test Results	ndpipe ails
De						Leg	Ele	De	Nui	Sar	(n) De	Rec		Sta Det
. 0	CON	CRETE					47.91	0.30						
	Soft g occas	irey/black sional cot	sandy gra bles (Pos	avelly SILT/CLA sible Made Gro	(Y with und)		47.21	1.00	AA204215	в	0.50			
1	Soft g	rey/brow	n sandy sl	ightly gravelly S	SILT/CLAY		46.71	1.50	AA204216	В	1.00		N = 7 (0, 1, 1, 2, 2, 2)	
	Firm r occas	mottled li sional col	ght grey sa obles	andy gravelly SI	LT/CLAY with	<u> </u>	10.71	1.00	44204217	В	2.00		N = 18	
2					AX		45.71	2.50	AA204217	в	2.00		(2, 3, 4, 4, 5, 5)	
	Firm t	io stiff gre sional cot	ey sandy g obles	ravelly SILT/CL	AY with		45.41	2.80	_					
3	Very s	stiff black es and o	sandy gra ccasional l	avelly silty CLAN coulders	/ with some				AA204218	В	3.00		N = 50/225 mm (8, 15, 16, 16, 18)	
4							5		AA204219	В	4.00		N = 50/75 mm (18, 7, 50)	
- 5									AA204220	в	5.00		N = 50/225 mm	
													(10, 9, 10, 10, 14)	
- 6	Ohstr	uction				- A	41.91	6.30	AA204221	в	6.00		N = 50/150 mm (13, 12, 23, 27)	
-	End o	of Boreho	le at 6.30	m										
. 7														
- 8														
-														
- 9														
-														
HA	RD ST	RATA BO	DRING/CHI	SELLING				l		·		W	ATER STRIKE DET	AILS
Fror	m (m)	To (m)	Time (h)	Comments		Wate Strik	er Ca e De	sing epth	Sealed At	Ris To	e T (n	ime nin) C	Comments	
3 6	.90 .10	6.30 6.30	1.25 1.5										No water strike	
												GR	OUNDWATER PRO	GRESS
INS	TALLA	TION DE	TAILS			Dat	te	Hole Depth	Casing	De	pth to	Comme	nts	
	Date	Tip Dep	oth RZ To	RZ Base	Туре			Jopui						
RE	MARKS	G CAT so	anned loc	ation with hand	dug inspection	pit carried	l out.	D - Small B - Bulk I	Disturbed (tub) Disturbed (tub) Disturbed	d d		UT - U Sampl P - Lin	indisturbed 100mm Diameter e disturbed Piston Sample	
								Env - Env	vironmental Sar	u nple (Jar -	+ Vial + Tub)	W - W	ater Sample	

25	n	n	n	-2
20	υ	υ	υ	-2

CO	-ORDIN	IATES	716, 738, 1 OD)	068.51 E 862.78 N 48.08	RIG TYF BOREH BOREH	PE OLE DIAM OLE DEPT	ETER (n 'H (m)	nm)	Dando 20 200 6.20	000	SHEET DATE CO DATE CO		Sheet 1 of 1 ED 21/11/2023 ED 22/11/2023	
CLI	ENT	ND	FA	10.00	SPT HA	MMER REI	F. NO.		SA7		BORED I	ВΥ	DT	
N	GINEEF	R MO	RCE		ENERG	Y RATIO (9	%)		74.07		PROCES	SED BY	FC	
-							_	Ē		San	nples		_	e
			De	escription		Legend	Elevation	Depth (n	Ref. Number	Sample Type	Depth (m)	Secovery	Field Test Results	Standnin
		/ACADAI	M				47.98	0.10						
	Grey	sandy slig	ghtly grav	elly SILT/CLAY	/									
	Soft r	nottled ar	ov/brown	sandy gravelly SI			47.38	0.70	AA204201	В	0.50			
	with c	ccasiona	l cobbles	Sandy gravely SIL	IVOLAT				AA204202	в	1.00		N = 6	
							-						(0, 1, 1, 1, 2, 2)	
							46.28	1.80						
	Stiff g	rey/black	sandy gi	avelly SILT/CLAY	with some				AA204203	в	2 00		N = 28	
	CODDI	es					15 50	2 50			2.00		(1, 2, 5, 5, 8, 10)	
	Very	stiff black	sandy gr	avelly silty CLAY w	ith some		40.08	2.50	-					
	cobbl	es and oc	casional	boulders		- <i>A</i> _e			4 4 20 4 20 4		2.00		N = 50/225 mm	
							-		AA204204	В	3.00		(8, 14, 16, 16, 18)	
							-							
						X	5						N 50/75 mm	
									AA204205	В	4.00		N = 50/75 mm (16, 9, 50)	
							-							
							-		AA204206	В	5.00		N = 50/150 mm (17, 8, 35, 15)	
							41.88	6.20	AA204207	в	6.00		N = 50/75 mm	
	Obstr	uction				200							(13, 0, 30)	
	End C	DI Boreno	ie al 6.20	m										
A	RD ST	RATA BC	RING/CH	IISELLING		10/64		oing	Socied 1	Die		WA	TER STRIKE DET	AIL
or	n (m)	To (m)	(h)	Comments		Strik		epth	At	To	(m	nin) C	omments	
4. 6.	.10 .00	6.20 6.20	1 1.5										No water strike	
												GRC		GP
NSTALLATION DETAILS					Dat	te	Hole	Casing	De	pth to	Commen	its	an	
	Date	Tip Dep	oth RZ To	p RZ Base	Туре			Depth	Depth		ater			
Ē	MARKS	CAT sc	anned lo	cation with hand du	g inspection	pit carried	l out.	Samp D - Smal	Die Legen	d		UT - Ur	disturbed 100mm Diameter	
								B - Bulk LB - Larg	Disturbed ge Bulk Disturbe	d	16-1 T-1-1	Sample P - Und	isturbed Piston Sample	
								EIIV - FI	vironmental San	пріе цаяг.	+ viai + 1100	vv - vva	tor outliple	

REPORT NUMBER

CO- GR	ORDIN	IATES LEVEL (n	716,0 738,8 n OD)	84.35 E 75.35 N 48.11	RIG BOR BOR	type Ehol Ehol	.E DIAM .E DEPT	ETER (n H (m)	nm)	Dando 20 200 6.30	00	DATE C	OMMENO	Sneet 1 of 1 CED 24/11/2023 ED 27/11/2023		
CLI ENC	ENT SINEER	ND MO	FA RCE		SPT ENEI	hami Rgy f	MER REI RATIO (%	F. NO. 6)		SA7 74.07		BORED PROCE	BY SSED BY	DT / FC		
									_		Sam	nples				
Depth (m)			Des	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe	
0	TARM Grey	IACADAI sandy slig	M ghtly grave	IIy SILT/CLA	ſΥ		×××××	47.91	0.20	 AA204222	В	0.50				
1	Soft n occas	nottled lig sional cob	ht grey sa bles	ndy gravelly	SILT/CLAY wit	th	×	47.11	1.00	AA204223	В	1.00		N = 8 (0, 1, 2, 1, 2, 3)		
2	Stiff n with s	nottled gr ome cob	ey/brown s bles	andy gravel	Iy SILT/CLAY		\$ (45.61	2 50	AA204224	В	2.00		N = 25 (2, 4, 5, 5, 6, 9)		
3	Very s cobble	stiff black es and oo	sandy gra ccasional b	velly silty CL ooulders	AY with some	J~F1.1.1.1.+~			2.00	AA204225	В	3.00		N = 36 (5, 6, 7, 9, 9, 11)		
4						<u> </u>	×() = C 0 = A *0 = = = 7 = *			AA204226	В	4.00		N = 50 (7, 8, 9, 11, 16, 14)		
5						ייליאיאיני				AA204227	В	5.00		N = 50/225 mm (9, 16, 18, 18, 14)		
6	Obstr	uction		~				41.81	6.30	AA204228	В	6.00		N = 50/150 mm (6, 19, 27, 23)		
7		Derene														
9																
I IA			Time /	ommonto			Wate	er Ca	sing	Sealed	Rise	e T	ime		AIL3	
4.	70 10	6.30	(h) 1.25 1.5	Johnmenits			Strik	e De	epth	At	To	1)	min)	No water strike		
										Caster	-	- 41- 1	GR	OUNDWATER PRO	GRES	
INS	TALLA Date	TION DE	TAILS	RZ Base	Туре		Dat	e	Hole Depth	Depth	De W	pth to ater	Comme	nts		
RE	MARKS	CAT sc	anned loca	ation with ha	nd dug inspect	tion pi	t carried	l out.	D - Smal B - Bulk LB - Larg Env - Env	Die Legen Disturbed (tub) Disturbed ge Bulk Disturbe vironmental Sam	d nple (Jar +	+ Vial + Tub)	UT - Undisturbed 100mm Diameter Sample P - Undisturbed Piston Sample			

REPORT NUMBER

0-(RC	ORDIN DUND I	ATES _EVEL (m	716,1 738,9 IOD)	14.93 E 10.14 N 48.09	RI B(B(ig type orehoi orehoi	LE DIAMI	ETER (n H (m)	nm)	Dando 20 200 6.20	00	SHEET DATE CO DATE CO	ommen omplet	Sheet 1 of 1 CED 05/12/2023 TED 05/12/2023	
	INT	ND	FA		SI		MER REF	NO.		SA7		BORED	BY	DT	
٩G	INEER	MO	RCE		E	NERGY	RATIO (%	6)		/4.0/	Sam	nles	SSED B		
			Des	scription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standnine
	CONC Grey s Made	CRETE sandy GF Ground)	AVEL with	h some cobb	oles (Possibl	le		47.89	0.20	AA209208	В	0.50			
	Soft g	rey/black	sandy slig	ghtly gravelly	/ SILT/CLAY		ל	46.49	1.60	AA209209	В	1.00		N = 10 (0, 1, 2, 2, 4, 2)	
	Firm g occas	jrey/brow ional cob	n sandy gi bles	ravelly SILT/	CLAY with	- - - - - - - - - - - - 		45.49	2.60	AA209210	В	2.00		N = 20 (4, 5, 4, 5, 5, 6)	
	Very s cobble	stiff black as and oc	sandy gra casional b	velly silty CL ooulders					AA209211	В	3.00		N = 50 (8, 14, 14, 14, 15, 7)		
						- - - - - - - - - - - - - 				AA209212	В	4.00		N = 50/75 mm (15, 9, 50)	
										AA209213	В	5.00		N = 50/150 mm (20, 5, 30, 20)	
_	Obstru End o	uction f Borehol	e at 6 20 r	m		-		41.89	6.20	AA209214	В	6.00		N = 50/75 mm (25, 50)	
			Time	SELLING			Wate	r Ca	sing	Sealed	Rise	e T	ime /	Commonto	
3.9 6.0	90 90	6.20	(h) 1 1.5	Johnments			Strike	e De	epth	At	<u> </u>	(r	<u>min)</u>	No water strike	
									Holo	Casing		oth to	GR	OUNDWATER PRO	GR
S1	TALLA Date	TION DE	TAILS	RZ Base	Туре		Date	e	Depth	Depth	W	ater	Comme	nts	

250)()()-2
200	υυ	-2

0- R(NATES	716 738 n OD)	116.25 E 898.74 N 48.00	RIG TYI BOREH BOREH	PE OLE DIAM OLE DEPT	ETER (n H (m)	nm)	Dando 20 200 6.30	00	SHEET DATE CO DATE CO	MMENC	Sheet 1 of 1 ED 30/11/2023 ED 04/12/2023	
LIE	ENT INEEF	ND R MC	FA DRCE		SPT HA	MMER REI Y RATIO (%	F. NO. %)		SA7 74.07		BORED E PROCES	BY SED BY	DT FC	
										San	nples			
			De	escription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
+	CON	CRETE					47.80	0.20						
	MAD with p	E GROU bieces of	ND comp tarmacad	rising grey sandy g lam	ravelly Fill		47.10	0.90	AA209201	В	0.50			
	Soft r	nottled b	rown sand	dy slightly gravelly s	SILT/CLAY		46.60	1.40	AA209202	В	1.00		N = 6 (0, 2, 1, 2, 1, 2)	
	SILT	CLAY wi	th occasio	onal cobbles	<i>c</i> ,		45 40	0.00	AA209203	В	2.00		N = 18 (2, 3, 4, 4, 5, 5)	
	Very cobb	stiff black les and o	c sandy gr ccasional	ravelly silty CLAY w boulders	vith some		40.40	2.60	AA209204	В	3.00		N = 40 (5, 8, 9, 9, 10, 12)	
									AA209205	В	4.00		N = 50/225 mm (8, 14, 16, 16, 18)	
							-		AA209206	В	5.00		N = 50/75 mm (17, 8, 50)	
	Obstr	ruction					41.70	6.30	AA209207	В	6.00		N = 50/150 mm (9, 16, 30, 20)	
	End	of Boreho	le at 6.30	m										
A	RUSI		Time			Wate	er Ca	Isina	Sealed	Rie	e Tir	me	IER STRIKE DET	AILS
)m	1 (m)	Io (m)	(h)	Comments		Strik	e De	epth	At	То	(m	in) C	omments	
1.8 5.1	30 10	6.00 6.30	1 1.5			6.30 6.30		.30	No	No	2	0 5	Seepage	
												GRO	UNDWATER PRO	GRE
IS		TION DE	TAILS			Dat	e	Hole	Casing	De	pth to C	Commen	ts	
[Date	Tip De	oth RZ To	p RZ Base	Туре	_								
EN	IARKS	S CAT so	anned lo	cation with hand du	ug inspectior	n pit carried	l out.	D - Sma B - Bulk LB - Lar	Il Disturbed (tub) Disturbed ge Bulk Disturbed		· Vial · Tub)	UT - Un Sample P - Undi W - Wat	disturbed 100mm Diameter isturbed Piston Sample	

25	n	n	n	-2
20	υ	υ	υ	-2

	NTRAC	T N	DFA Socia	ll Housina Br	undles 4/5 - L	ot 2 - 0	Collins Ave	enue				BOREHO	DLE NO.	BH09	
			710	105 02 E		GTVP	F			Dando 20	00	SHEET		Sheet 1 of 1	
GR		LEVEL (I	716 738 mOD)	,105.93 E ,868.09 N 48.00	BC	OREHO	LE DIAM	ETER (n H (m)	nm)	200 6.20	,00	DATE CO		ED 27/11/2023 ED 28/11/2023	
CLI	ENT	NE	DFA		SF		IMER REI	F. NO.		SA7		BORED	BY	DT	
ENG	GINEEF	a Mo	DRCE		E	NERGY	ratio (%	%)		74.07	Son	PROCES	SED BY	FC	
Ê								Ę	ε.		Jan	1100	~	-	be
nepin (D	escription			Legend	Elevatic	Depth (Ref. Numbe	Sample Type	Depth (m)	Recover	Field Test Results	Standpi
0	TARM	/IACADA	M					47.90	0.10						
	MADI Soft b	E GROU prown sa	ND comp	rising Cl.804 Iv gravelly SI	-type stone F LT/CLAY	ill/		47.70	1_0.30_	_/ AA204229	В	0.50			
1			- , - , - , - , - , - , - , - , - , - ,	, , , , , , , ,				46.80	1.20	AA204230	в	1.00		N = 8 (0, 1, 1, 2, 2, 3)	
	Soft b SILT/	ecoming CLAY wi	g firm to s ith occasi	tiff grey/brow onal boulders	n sandy grav S	elly								(0, 1, 1, 2, 2, 0)	
2										AA204231	в	2.00		N = 19 (1, 2, 3, 4, 6, 6)	
	Very	stiff blac	k sandy g	ravelly silty C	LAY with son	ne		45.50	2.50	AA204232	в	2.50			
3	cobbl	es and c	occasiona	boulders						AA204233	в	3.00		N = 50/225 mm (8, 12, 17, 17, 16)	
4										AA204234	в	4.00		N = 50/75 mm (25, 33, 50)	
								2							
5										AA204235	В	5.00		N = 12/75 mm (25, 38, 12)	
													N 5075		
ô	Obstr	uction						41.80	6.20	AA204236	В	6.00		(25, 50)	
	End o	of Boreho	ole at 6.20) m											
7															
8															
9															
HA	ARD ST	RATA B	ORING/CI	ISELLING									WA	TER STRIKE DET	AILS
ror	m (m)	To (m)	Time (h)	Comments			Wate Strik	er Ca <u>e </u> De	ising epth	Sealed At	Ris To	e Ti 	me nin)C	omments	
6.	.00	6.20	1.5											No water strike	
											-		GRC	UNDWATER PRO	GRE
NS	TALLA	TION DE	TAILS				Dat	e	Hole Depth	Depth	De	oth to ater	Commen	its	
	Date	Tip De	pth RZ T	op RZ Base	Туре										
١E	MARKS	CAT s	canned lo	cation with h	and dug insp	ection	pit carried	l out.	D - Smal	I Disturbed (tub)	d	1	UT - Ur Sample	disturbed 100mm Diameter	
									LB - Larg Env - En	e Bulk Disturbe vironmental Sar	d nple (Jar	+ Vial + Tub)	P - Und W - Wa	isturbed Piston Sample ter Sample	

REPORT NUMBER

CO-C			716,1 738,8	107.34 E 343.96 N		RIG TYP BOREHO BOREHO	E DLE DIAMI	ETER (r H (m)	nm)	Dando 20 200 6 30	00	DATE CO		ED 28/11/2023	
		NDI	FA	48.06		SPT HAN	/MER REF	F. NO.		SA7		BORED E		DT	
ENGI	NEER	MO	RCE			ENERGY	RATIO (%	6)		74.07		PROCES	SED BY	FC	
											Sar	nples			
neptn (m			De	scription			Legend	Elevation	Depth (m	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
0	CONC	CRETE					*****	47.86	0.20						
	Grey	sandy slig	htly grave	elly SILT/CL	AY		-XO	47.56	0.50						
	Soft to	o firm gre	y sandy g	ravelly SILT	CLAY with	ı	Ø			AA204237	В	0.50			
1	occas		DIES							AA204238	в	1.00		N = 10	
								16 50	1 50					(1, 2, 2, 3, 2, 3)	
-	Very s	stiff grey/k	prown san	dy gravely S	SILT/CLAY	' with		40.00	1.50	-					
:	some	cobbles									-			N - 50	
: _,	Vori	tiff block	conducar		I AV with -	omo		45.86	2.20	AA204239	В	2.00		(5, 10, 12, 13, 13, 12)	
	very s cobble	es and oc	casional l	oulders		ome									
							\overline{A}								
										AA204240	в	3.00		N = 50/75 mm (8 14 50)	
														(0, 11, 00)	
							<u> </u>			A 20/12/1	в	4.00		N = 50/150 mm	
										77204241		4.00		(13, 12, 30, 20)	
										AA204242	В	5.00		N = 50/75 mm (15, 10, 50)	
							T A								
										AA204243	в	6.00		N = 50/150 mm	
	Ohatw						-72-8	41.76	6.30	_				(14, 11, 22, 28)	
	End o	f Borehol	e at 6.30	m											
IAF	ID ST	RATA BO	RING/CH	SELLING								<u> </u>	WA	TER STRIKE DET	AILS
om	(m) [.]	To (m)	Time (h)	Comments			Wate Strike	er Ca e De	sing epth	Sealed At	Ris To	se Tir o (m	me C	omments	
3.3 6.1	0	6.30	1.25 1.5					-					1	No water strike	
10-									Hole	Casing		oth to -	GRC	DUNDWATER PRO	GRES
IST	ALLA						Dat	e	Depth	Depth	N N	Vater C	Commen	ts	
_D;	ate	Tip Dep	th RZ To	p RZ Base	Тур	e	-								
					and derest		alt as min 1								
=IVI/	AHKS	CALSC	anned loc	ation with ha	and dug in	spection	pit carried	out.	D - Sma	Disturbed (tub)	a		UT - Un	disturbed 100mm Diameter	
									LB - Lar	ae Bulk Disturbe	d		P - Und	isturbed Piston Sample	

25	n	n	n	-2
20	υ	υ	υ	-2

		ATES	716,12 738,85	28.23 E 57.88 N	RIG BOR BOB	TYPE EHOLE FHOLE		ETER (m H (m)	nm)	Dando 20 200 5 20	000	DATE C	ommen	ICED 29/11/2023	
		NDF	A	47.95	SPT			=. NO.		SA7		BORED	BY	DT	
		IVIOF	IUE				4110 (%	0)		74.07	San	nnles	SSED B		
nepili (III)			Des	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	(m)	Recovery	Field Test Results	Standpipe
0	CONC	CRETE					****	47 75	0.20						
	MADE with la	GROUN arge cobbl	D compris es	ing grey sa	ndy gravelly Fil			47.55	0.40	AA204244	в	0.50			
1	Soft m	nottled gre	ey sandy g	ravelly SIL	Γ/CLAY		·	47.05	0.90	AA204245	в	1.00		N = 7 (0, 1, 1, 2, 2, 2)	
	Stiff b	rown sand es	dy gravely	SILT/CLAY	' with some		 }	46.35	1.60	_				N - 27	
2	Very s	stiff black s	sandy grav casional b	velly silty C oulders	LAY with some			45.75	2.20	AA204246	в	2.00		(1, 2, 3, 5, 7, 12)	
3						1×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1				AA204247	В	3.00		N = 50/225 mm (10, 14, 16, 16, 18)	
4										AA204248	В	4.00		N = 50/75 mm (15, 10, 50)	
5	Obetri	uction				0		42.75	5.20	AA204249	в	5.00		N = 50/75 mm (25, 50)	
6	End o	f Borehole	e at 5.20 m	1											
7															
в															
9															
пА				ELLING			Wate	r Ca	sina	Sealed	Ris	e T	ime		AILS
3.0 5	30 30	5.20	(h) C 1 1.5	omments			Strike	e De	pth	At	To) (r	nin)	No water strike	
							Date	e .	Hole	Casing	De	pth to	GF Comme	ROUNDWATER PRO	GRE
NS	TALLA	HON DEI				1		- I L	Jepth	Depth	//	rater			

25	n	n	n	-2
20	υ	υ	υ	-2

:0-0	ORDIN	IATES	716, 738.	156.14 E 886.34 N	RIG	TYPE	E DIAMI	ETER (n	nm)	Dando 20 200	000	SHEET DATE CO	MMENC	Sheet 1 of 1	
RC	DUND	LEVEL (n	nOD)	48.01	BO	REHOL	E DEPT	H (m)	,	6.30		DATE CO	MPLET	ED 07/12/2023	
LIE	ENT	ND	FA		SPT		MER REF	 NO.		SA7		BORED	BY	DT	
NG	INEER	MO	RCE		ENE	ERGY F	RATIO (%	6) 		74.07	San	PROCES	SED BY	/ FC	
			De	scription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	(m)	Recovery	Field Test Results	Standpipe
)	CON	CRETE				×	\sim	47.81	0.20						
	Grey Firm t with o	sandy slig o stiff mo occasiona	ghtly grav ttled grey I cobbles	elly SILT/CLA sandy gravell	Y Iy SILT/CLAY			47.61	0.40	AA209222	В	0.50			
										AA209223	В	1.00		N = 11 (0, 1, 2, 2, 2, 5)	
-	Stiff g with s	rey/brow ome cobl	n mottled bles	sandy gravelly	y SILT/CLAY			46.11	2.60	 AA209224	в	2.00		N = 21 (1, 2, 4, 5, 5, 7)	
	Very s cobbl	stiff black es and oc	sandy gr ccasional	avelly silty CL boulders	AY with some	**************************************		10.71	2.00	AA209225	в	3.00		N = 50/225 mm (9, 16, 17, 17, 16)	
						<u>ויין ד</u> ו זאין				AA209226	в	4.00		N = 50/75 mm (8, 17, 50)	
										AA209227	В	5.00		N = 50/75 mm (12, 13, 50)	
	Obstr	uction						41.71	6.30	AA209228	В	6.00		N = 50/150 mm (13, 12, 26, 24)	
	End o	if Boreho	e at 6.30	m											
IAI	RD ST	RATA BC	RING/CH	ISELLING		1						· 	W	ATER STRIKE DET	AILS
om	n (m)	To (m)	i ime (h)	Comments			Strike	er Ca e De	sing epth	Sealed At	Ris <u>T</u> o	e li <u>(</u> n	me nin) C	Comments	
5.5 6.1	50	6.30 6.30	1 1.5											No water strike	
									Holo	Casing		nth to	GRO	OUNDWATER PRO	GRE
IST D	TALLA Date	TION DE	TAILS	p RZ Base	Туре		Dat	e	Depth	Depth	Ue W	ptn to ater	Commer	nts	
EM	IARKS	CAT sc	anned loo	ation with har	nd dug inspe	ction pi	it carried	out.	D - Sma B - Bulk LB - Lar	Die Legen Il Disturbed (tub) Disturbed ge Bulk Disturbe	d d		UT - U Sample P - Un	ndisturbed 100mm Diameter e disturbed Piston Sample	

REPORT NUMBER

<u> </u>	\checkmark															
CO	NTRAC	T NE	OFA So	ocial H	ousing Bu	ndles 4/5 -	Lot 2 - C	Collins Ave	enue				Boreh Sheet	OLE NC	D. BH13 Sheet 1 of 1	
CO GR	-ordin Ound I	IATES LEVEL (I	7 7 m OD)	716,163 738,912	3.41 E 2.39 N 48.04	F E E	RIG TYPI BOREHO BOREHO	E DLE DIAM DLE DEPT	ETER (r H (m)	nm)	Dando 20 200 6.30	000	DATE CO DATE CO	OMMEN OMPLE	ICED 06/12/2023 TED 06/12/2023	
CLI	ENT	NE	DFA			S	SPT HAN	IMER REF	F. NO.		SA7		BORED	BY	DT	
ENG	GINEER	a MC	DRCE			E	ENERGY	RATIO (9	6) 		74.07	Sor	PROCE	SSED B	SY FC	
Jepth (m)				Desc	ription			egend	evation	Depth (m)	Ref. Number	Sample	Depth Depth	ecovery	Field Test Results	standpipe Details
0	CON	PETE							Ш 47.04					· <u> </u>		00
	MADE	EGROU	ND co	mprisir	ng grey sa	ndy gravell	y Fill		47.64	0.20						
	Firm g	grey san	dy SIL	T/CLA	Y with occ	asional cob	bles				AA209215	В	0.50			
1	Firm	mottlad b		andu	arovelly SI		vith		46.84	1.20	AA209216	в	1.00		N = 18 (0, 2, 3, 5, 5, 5)	
	occas	ional co	bbles	sanuy	gravelly SI		vitri	<u> </u>	46.44	1.60	_					
2	Stiff n with c	obbles	rey/bro	own sa	ndy gravel	IIy SILT/CL	AY				AA209217	в	2.00		N = 20 (1, 2, 5, 4, 5, 6)	
									15 34	2 70					(.,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Very s	stiff blacl es and o	k sand	y grave onal bo	elly silty CI ulders	LAY with sc	ome		40.04	2.70	AA209218	в	3.00		N = 50	
3								<u>k</u>							(7, 13, 13, 13, 17, 7)	
4											AA209219	в	4.00		N = 50/225 mm	
															(10, 12, 13, 13, 20)	
5											AA209220	в	5.00		N = 50/225 mm (12, 13, 16, 16, 18)	
															(, -, -, -, -,	
6									41.74	6.30	AA209221	в	6.00		N = 50/150 mm (13, 12, 28, 22)	
	Obstr End o	uction of Boreho	ole at 6	6.30 m												
7																
- 8																
0																
9																
HA	RD ST	RATA B	ORING	/CHISI	ELLING									W	VATER STRIKE DET	AILS
Fror	n (m)	To (m)	Time (h)	e Co	omments			Wate Strike	er Ca e De	epth	Sealed At	Rise To	e I (r	ime min)	Comments	
5. 6.	10 10	6.30 6.30	1 1.5												No water strike	
										I				GF	ROUNDWATER PRO	GRESS
INS	TALLA	TION DE	TAILS	6				Dat	e	Hole Depth	Casing Depth	De W	oth to ater	Comme	ents	
	Date	Tip De	pth RZ	Z Top	RZ Base	Туре)	_								
REI	MARKS	CAT so	cannec	d locati	ion with ha	and dug ins	pection (it carried	l out.	D - Sma	Die Legen	d		UT - Sam	Undisturbed 100mm Diameter	
										LB - Lan Env - En	ge Bulk Disturbe vironmental Sar	d nple (Jar 4	Vial + Tub)	P - U W - 1	ndisturbed Piston Sample Water Sample	

25	n	n	n	-2
20	υ	υ	υ	-2

COI	NTRAC	F ND	FA Socia	Housing	Bundles 4/5	- Lot 2 - (Collins Ave	enue				SHEET	ILE NO.	BH14 Sheet 1 of 1	
CO-ORDINATES 716,195.87 E RIG TYPE 738,919.36 N BOREHOL GROUND LEVEL (mOD) 47.40						'E DLE DIAM DLE DEPT	Dando 2000 LE DIAMETER (mm) 200 LE DEPTH (m) 4.50			00	DATE COMMENCED 08/01/2024 DATE COMPLETED 09/01/2024				
CLII	ENT	ND	FA			SPT HAI	MMER REI	F. NO.		SA7		BORED B	ЗY	DT	
ENG	INEEF	R MO	RCE			ENERG	/ RATIO (9	%)		74.07		PROCES	SED BY	FC	
(m) mq			De	scription			Jend	vation	pth (m)	f. mber	Sar e du		covery	Field Test Results	ndpipe ails
3							Leg	Ele	De	Nu	Sai	a E	Rec		Sta Det
'	CON				brown cond			47.20	0.20	AA209229	В	0.00			
	slight	ly gravelly	y SILT/CL	AY	brown sand	iy									
	Firm	mottled g	rey sandy	gravelly S	SILT/CLAY			46.20	1.20	AA209230	В	1.00		N = 9 (1, 2, 2, 2, 2, 3)	
2	Stiff t	o vorv stif	f black sa	ndy grave		th some		45.30	2.10	AA209231	в	2.00		N = 22 (2, 3, 4, 4, 5, 9)	
	cobbl	es and or	casional	boulders		an oome									
										AA209232	В	3.00		N = 41 (6, 7, 7, 9, 12, 13)	
								43.10	4.30	AA209233	В	4.00		N = 50/150 mm (15, 10, 33, 17) N = 50/75 mm	
	Obstr End c	uction of Boreho	le at 4.50	m										(25, 50)	
5															
6															
7															
8															
Э															
НΔ	RD ST		BING/CH	ISELLING									WA		
ron	n (m)	To (m)	Time	Comment	S		Wate	er Ca	sing	Sealed	Ris	e Ti	me C	omments	
3. 3. 4.	30 70 10	8.50 3.90 4.30	(1) 1 0.75 1.5				2.80) 2	.80	3.10	1.4	.0 2	20 I	Moderate	
									Hole	Casing		onth to	GRC	OUNDWATER PRO	GRES
NS'						00	Dat	e	Depth	Depth	N N	Vater C	Jommen	Its	
Date Tip Depth RZ Top RZ Base Type					08-01	-24	3.00 4.30	3.00 Nil	<u> </u>	1.40 E	nd of BH	ay			
₹EŇ	ARKS	S CAT sc	anned loo	ation with	hand dug ir	nspection	pit carriec	I out.	D - Sma B - Bulk LB - La	ple Legene all Disturbed (tub) Disturbed rge Bulk Disturbed	d d	· Vial · Tub)	UT - Un Sample P - Und W - Wa	disturbed 100mm Diameter isturbed Piston Sample ter Sample	

REPORT NUMBER

25	n	n	n	-2
20	υ	υ	υ	-2

RO	ORDIN	IATES LEVEL (m	716,24 738,94 OD)	7.68 E 6.31 N 46.95	RIG BO BO	à TYPE REHOL REHOL	.E DIAMI .E DEPT	ETER (m H (m)	ım)	Dando 20 200 5.30	000	DATE CO	OMMEN	CED 12/01/2024 CED 12/01/2024	
LIE	NT	NDF	A		SP		MER REF	F. NO.		SA7		BORED	ΒΥ	DT	
١G	INEER	MOF	RCE		EN	ERGY F	RATIO (%	%)		74.07		PROCES	SSED B	Y FC	1
-								-	-		San	nples		_	e e
			Desc	cription			Legend	Elevation	Depth (r	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standnin
t	CONC	CRETE				X		46.75	0.20						
	MADE grave	E GROUN Ily SILT/C	D comprisi LAY	ng grey sa	ndy slightly			46.05	0.90	AA209234	в	0.50			
	Soft g	rey/browr	sandy slig	htly gravell	y SILT/CLAY		×9 	45 35	1 60	AA210263	В	1.00		N = 6 (0, 1, 1, 1, 2, 2)	
	Stiff m occas	nottled bro ional cobl	wn sandy bles	silty gravell	y CLAY with			14 65	2 30	AA210264	В	2.00		N = 23 (2, 2, 3, 5, 5, 10)	
	Very s cobble	stiff black es and oc	sandy silty casional bo	gravelly Cl oulders	AY with som	e 4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	and the second s	<u> </u>	2.30	 AA210265	в	3.00		N = 47	
						<u>, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1</u>		- - -		1 2 2 1 0 2 0 2		5.00		(15, 10, 10, 14, 11, 12)	
						1,1,1,1,1,1				AA210266	В	4.00		N = 40 (7, 7, 9, 10, 10, 11)	
	Obstru	uction						41.65	5.30	AA210267	в	5.00			
			at 5.30 m												
	ידי חב														
	וכי <u>ט</u> ר (m) י						Wate	er Ca	sing	Sealed	Ris	e T	ime ,	Commonto	AIL
4.0 4.5 5.2	00 50 20	5.30 5.30	(h) (h) 1 1.5				Strike	e De	pth	At	To	<u>) (n</u>	nin)	No water strike	
									1141-		-		GR	OUNDWATER PRO	GR
-							Dat	e	Hole	Casing	De	pth to	Comme	nts	
ST					T				Jepin	Depth	~ ~	rater			

REPORT NUMBER

25	n	n	n	-2
20	υ	υ	υ	-2

CO-		ATES	716,2 738,9	67.60 E 40.16 N		RIG TYP BOREHO BOREHO	e Dle diam Di e dept	ETER (n H (m)	nm)	Dando 20 200 4 70	000	SHEET		Sheet 1 of 1 CED 11/01/2024	
		NDI MOI	FA BGE	40.07		SPT HAI	MMER REI	F. NO.		SA7		BORED	BY SSED B	DT Y FC	
						ENERG				14.07	San	nples	0010 0		
Depth (m)			Des	scription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	(m)	Recovery	Field Test Results	Standpipe
0	CONC	RETE						46.67	0.20						
	MADE	E GROUN Ily SILT/C	ID compris LAY	sing grey sa	undy slight	ly		45.97	0.90	AA210257	В	0.50			
1	Soft to	o firm gre	y/brown sa	andy gravell	y SILT/CL	AY		45 17	1 70	AA210258	В	1.00		N = 10 (0, 1, 2, 2, 2, 4)	
2	Stiff m with o	nottled da ccasiona	rk brown s I cobbles	sandy silty g	ravelly CL	.AY		44.57	2.30	AA210259	В	2.00		N = 28 (2, 3, 5, 5, 8, 10)	
3	Very s cobble	itiff black	sandy gra	velly CLAY	with some	9		3 - - -		AA210260	в	3.00		N = 36 (9, 6, 8, 9, 10, 9)	
ŀ								-		AA210261	в	4.00		N = 31 (8, 7, 8, 8, 8, 7)	
-	Obstru	uction	o ot 4 70 r	~				42.17	4.70	AA210262	В	4.50		N = 50/75 mm (25, 50)	
5 7 3 9	RD STI	RATA BO	RING/CHI	SELLING			Wate			Saslad			w	ATER STRIKE DET	AILS
ron	n (m) -	To (m)	Time	Comments			Wate	er Ca	ising	Sealed	Ris	e T	ime (Comments	
4.	00 60	4.20 4.70	(n) 1 1.5				Strik		epth	At	10	<u>) (</u> r	<u>riin)</u>	No water strike	
									Holo	Cooine		untile t-	GR	OUNDWATER PRO	GRE
NS ⁻	TALLA Date	TION DE	T AILS	RZ Base	Тур	De	Dat	e	Hole Depth	Depth	De W	epth to Vater	Comme	nts	
REN	MARKS	CAT sca	anned loca	ation with ha	and dug in	spection	pit carriec	l out.	Sam D - Sma B - Bulk LB - Lar	ple Legen all Disturbed (tub) Disturbed ge Bulk Disturbe	d d	.)(fal - Tub)	UT - L Samp P - Ur W - M	Jndisturbed 100mm Diameter le ndisturbed Piston Sample	

REPORT NUMBER

со	NTRAC	T ND	FA Socia	I Housing B	undles 4/5	- Lot 2 - (Collins Av	enue				BOREH	OLE NO.	BH17 Sheet 1 of 1	
CO GR	-ORDIN OUND L	ATES _EVEL (r	716, 738, nOD)	278.87 E 935.25 N 46.97		RIG TYP BOREHO BOREHO	PE OLE DIAM OLE DEPT	IETER (r TH (m)	nm)	Dando 20 200 5.30	000	DATE C	OMMENO	CED 10/01/2024 ED 11/01/2024	
CLI	ENT	ND	FA			SPT HAI	MMER RE	F. NO.		SA7		BORED	BY	DT	
EN	GINEER	MC	DRCE			ENERG	RATIO (S	%)		74.07		PROCE	SSED B	f FC	
(u									Ê		Sam	nples		_	e
Depth (r			De	escription			Legend	Elevation	Depth (r	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpip Details
0	CONC	RETE						46.77	0.20	_					
	MADE slightly	E GROUI y SILT/C	ND comp CLAY. Gra	rising grey n vel is fine.	nottled san	ıdy				AA210251	в	0.50			
1	Soft g	rey/brow	n sandy s	lightly grave	elly SILT/C	LAY		45.87	1.10	AA210252	2 В	1.00		N = 8 (0, 2, 2, 1, 2, 3)	
	Stiff to	very sti	ff black sa	andy gravelly	y CLAY wit	th some		45.17	1.80			2.00		N = 23	
2	cobble	es						- - -		AA210253		2.00		(2, 3, 3, 4, 5, 11)	
3										AA210254	В	3.00		N = 49 (15, 10, 10, 9, 15, 15)	
4										AA210255	БВ	4.00		N = 44 (11, 14, 9, 10, 11, 14)	
5								41.77	5.20	AA210256	в	5.00		N = 50/150 mm (17, 8, 22, 28)	
-7 -7 -8 -9	ARD ST	RATA BC	DRING/CF	IISELLING									W	ATER STRIKE DET	AILS
	- (m) -		Time	Comment			Wate	er Ca	sing	Sealed	Ris	e T	ime	AIER SIRIKE DEL	AILS
101-	20		(h)	Comments			Strik	e D	epth	At	То	(r	min)	Johiments	
3 4 5	.30 .20 .10	4.60 5.20	0.75 1 1.5											No water strike	
								.	Hole	Casing	De	oth to	GR		GRESS
INS	Date	Tip Der	pth RZ To	p RZ Base	Tvi	pe	Dat	te	Depth	Depth	W	ater	Comme	nts	
RE	MARKS	CAT se		cation with h	and dug in	rspection	pit carried	d out.	Sam						
						21 011011			D - Sma B - Bulk LB - Lan Env - En	Il Disturbed (tub Disturbed ge Bulk Disturbe nvironmental Sar) ed mple (Jar -	Vial + Tub)	UT - U Sampl P - Un W - W	Indisturbed 100mm Diameter le disturbed Piston Sample later Sample	

REPORT NUMBER

250)()()-2
200	υυ	<i>–</i>

0-0 R0	ORDIN OUND I	IATES LEVEL (r	nOD)	716,28 738,96	4.00 E 3.71 N 46.62		RIG TYP BOREHO BOREHO	e Dle Diam Dle Dept	ETER (I H (m)	nm)	Dando 20 200 5.20	00	SHEET DATE CO DATE CO	OMMENC OMPLETE	Sheet 1 of 1 ED 10/01/2024 ED 10/01/2024			
LIE	NT INEER	ND MC	FA RCE				SPT HAI	MMER REI (RATIO (%	F. NO. %)		SA7 74.07		BORED I PROCES	BY SED BY	DT FC			
												Sam	ples					
				Desc	ription			Legend	Flevation	Depth (m	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe		
	CON MADE slight	CRETE E GROUI y gravell	ND co y SILT	mprisi T/CLAY	ng mottled 7. Gravel is	grey sand fine.	dy		46.42	0.20	 AA209240	В	0.50					
	Soft g	rey sand	y sligl	htly gra	avelly SILT,	/CLAY			45.02	1.60	AA209241	В	1.00		N = 8 (0, 2, 2, 1, 2, 3)			
	Stiff g occas	rey/brow ional cot	n san obles	dy silty	gravelly C	LAY with			44.22	2.40	AA209242	В	2.00		N = 22 (2, 3, 3, 4, 5, 10)			
	Very s cobbl	stiff black es and o	ccasic	ly grav onal bo	elly CLAY ulders	with some	9				AA209243	В	3.00		N = 44 (7, 7, 10, 6, 14, 14)			
											AA209244	В	4.00		N = 39 (16, 9, 8, 9, 11, 11)			
	Obstr End c	uction If Boreho	le at 5	5.20 m					41.42	5.20	AA209245	В	5.00		N = 50/150 mm (19, 6, 29, 21)			
IAF	אט ST		Tim	a/CHIS	ELLING			Wate	er C	asina	Sealed	Rise	e Ti	me I.	TER STRIKE DET	AIL		
om 3.5 5.1	(m) 60 0	5.20 5.20	(h) 1 1.5		omments			Strik	e D	epth	At	To	(m	nin) C	Comments No water strike			
										Hole	Casing	Dev	oth to	GRC	UNDWATER PRO	GR		
D	ate	TION DE	TAILS	3 Z Top	RZ Base	Тур)e	Dat	te	Depth	Depth	W	ater	Commen	ts			
EM	ARKS	CAT so	anne	d locat	ion with ha	nd dug in	spection	pit carried	l out.	D - Sma B - Bulk LB - Lar	I Disturbed (tub) Disturbed ge Bulk Disturbe	d		UT - Un Sample P - Und	disturbed 100mm Diameter isturbed Piston Sample			

REPORT NUMBER

250)()()-2
200	υυ	<i>–</i>

CO-C	ORDIN DUND I	ATES _EVEL (m0	716,31 738,97 DD)	1.88 E 70.66 N 46.54	RIG 1 BORI BORI	eholi Eholi	e diami E dept	ETER (m H (m)	ım)	Dando 20 200 5.30	00	SHEET DATE CO DATE CO	OMMENC OMPLETE	Sheet 1 of 1 ED 09/01/2024 ED 09/01/2024	
LIE	NT INEER	NDF. MOR	A CE		SPT	Hamm Rgy R	IER REF ATIO (9	=. NO. 6)		SA7 74.07		BORED PROCES	BY SSED BY	DT FC	
											Sam	ples			
nepiu (III)			Desc	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
	CONC MADE grave	CRETE E GROUNI Ily SILT/CL	D compris .AY. Grav	ing grey sa el is fine.	ndy slightly			46.34	0.20	AA209234 AA209235	В	0.50		N = 7 (0, 1, 1, 2, 2, 2)	
2	Stiff b	rown sand	y gravelly	SILT/CLAY	/	××××××××××××××××××××××××××××××××××××××		44.94	1.60 2.30	 AA209236	В	2.00		N = 22 (2, 2, 3, 4, 4, 11)	
	Very s cobble	stiff black s es	andy grav	elly CLAY	with occasional					AA209237	В	3.00		N = 61 (7, 14, 11, 18, 18, 14)	
										AA209238	В	4.00		N = 47 (17, 8, 11, 14, 9, 13)	
	End o	f Borehole	at 5.30 m	1		- U - Y		41.24	5.30	AA209239	В	5.00		N = 50/225 mm (15, 10, 17, 18, 15)	
,															
146															
1Af							Wate	r Ca	sing	Sealed	Rise	e Ti	me		
3.6 4.1 5.2	50 0 20	5.80 4.20 5.30	(h) C 0.75 0.5 4.5				Strike	e De	pth	At	To	(n	nin) C	No water strike	
									Holo	Caping		oth to	GRC	UNDWATER PRO	GRI
D	ALLA Date	TION DET	AILS	RZ Base	Туре		Dat	e I	Depth	Depth	W	ater	Commen	ts	
EM	IARKS	CAT sca	 nned loca	l lion with ha	nd dug inspect	ion pit	carried	out.	D - Sma B - Bulk LB - Lar	Die Legene II Disturbed (tub) Disturbed ge Bulk Disturber	d d		UT - Un Sample P - Und	disturbed 100mm Diameter isturbed Piston Sample	

 Equipe SPT Analyzer Operator
 Certificate prepared by
 Certificate checked by
 Certificate date

 JL
 June
 10/03/2023

© Copyright 2023 **Equipe Group**, The Paddocks, Home Farm Offices, The Upton Estate, Banbury, Oxfordshire, OX15 6HU Tel: +44 (0)1295 670990 Fax: +44 (0)1295 678232 Email: info@equipegroup.com

Appendix 4

Rotary Drillhole Logs & Core Photographs

SPT Calibration Sheet (Er)

REPORT NUMBER

		/																
co	NTR	ACT	N	IDFA	Social H	ousing B	undle	es 4/5	- Lot 2 - Co	llins Avenu	e		DRII SHE	.lhole Et	NO	RC She	01 et 1 of	3
CO GR	-ORE	DINA D LE	TES	(mO	716,03 738,89 D)	9.88 E 8.65 N 48.36			RIG TYPE FLUSH		Beret Air/M	ta T44 st	DAT DAT	E COMN E COMF	MENCE PLETE	ED 08/0 D 10/0)1/2024)1/2024	1 1
CLI	IENT GINE	ER	N M	IDFA	E				INCLINATI	ON (deg) METER (mi	-90 m) 78		DRII	LED B	Y Y	IC D	GSL - E . O' Sh)H Iea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	ture cing bg m) 500	Non-intact Zone	Legend			Descrip	tion	i		Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 0	1.50				-				CORE DF returns of SYMMET as returns sandy gra SYMMET as returns	RILLING: No MADE GR RIX DRILLI of MADE (velly clay w RIX DRILLI of grey bro	o recovery, OUND con NG: No re GROUND o vith fragme NG: No re own sandy	observed aprising Co covery, ob comprising nts of brick covery, ob gravelly C	by driller a ONCRETE served by o grey brow served by o LAY	s driller n driller	0.25	48.11 47.16		N = 14 (2, 1, 3, 4, 3,
2	3.00	0	0	0	-												0 0 0 0 0 0 0 0 0 0	(3, 6, 7, 10, 10)
- 4	4.50	0	0	0	_										4 90	43 46	0 0 0 0 0 0 0 0 0 0	N = 37 (4, 5, 8, 13, 9, 7)
- 5	6.00	0	0	0	-			x x x x x x x x x x x x x x x x x x x	SYMMET as returns SYMMET as returns	RIX DRILLI of grey bla RIX DRILLI of grey bro	NG: No re lick sandy S NG: No re own gravel	covery, ob SILT covery, ob y CLAY	served by o	driller driller	5.80	42.56	0 0 0 0 0 0 0 0 0 0 0	N = 40/180 mm (7, 10, 9, 21,
7	7.50	0	0	0	-												0 0 0 0 0 0 0 0 0 0	10) N = 29/70 mm (8, 21, 29)
21/2/24 6 6 8	9.00	0	0	0														N = 22/55 mm (12, 28, 22)
	MAR	KS			1			1	1						WA	TER S	TRIKE	DETAILS
Hol	le ca	sed f	from (0.00-	19.20m.	SPT Er =	82.2	2%		Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co	ommer	nts	
00 - SITE2.GPJ											200				N	lo wate	er strik	e recorded
2500															GR	OUND	WATE	R DETAILS
	TAL	LATI	ON D	ETA	ILS					Date	Hole Depth	Casing	Depth t	⁰ Cor	nment	S		
IGSL RC F	Date	-	Tip D 22.2	epth 20	RZ Top 2.00	RZ Base 22.20)	Тур 50m	m SP									

REPORT NUMBER

со	NTR	ACT	N	IDFA	Social H	ousing B	undle	es 4/5	- Lot 2 - Col	llins Avenue	9		DRI SHE	LLHOLE ET	NO	RC She	01 et 2 of	3
CO GR	ORE	DINA D LE	TES	(mO	716,03 738,89 D)	9.88 E 8.65 N 48.36			RIG TYPE FLUSH		Beret Air/M	ta T44 ist	DAT DAT	e comn E comp	IENCE PLETEI	D 08/0 D 10/0	1/2024 1/2024	4
CL EN	IENT GINE	ER	N	IDFA 10RC)E				INCLINATI	ON (deg) <u>METER (m</u> r	-90 n) 78		DRI	LLED B	((IG D	SL - E . <u>O' S</u> f	DH lea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	eture cing og m)	Non-intact Zone	Legend			Descrip	otion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 10	10.50				-				SYMMETI as returns	RIX DRILLI of grey bro	NG: No re wn gravel	covery, obs ly CLAY <i>(co</i>	served by o continued)	driller			0 0 0 0	N = 27/80 mm (8, 23, 23, 4)
11	12.00	0	0	0	-													N = 29/30 mm (21, 29)
13	13.50	0	0	0	-													N = 7/10 mm (43, 7)
15	15.00	0	0	0	-													N = 10/25 mm (40, 10)
- 17	16.50	0	0	0														N = 50/50 mm (50, 50)
- 18 	19.20	0	0	0			A ia Xu		SYMMETI \as returns	RIX DRILLI	NG: No re ROCK	covery, obs	served by e	driller	<u>19.00</u> 19.20	29.36 29.16		(50, 50)
RE	MAR	KS						1		Matan	Ossisse		Disa	T i	WA	TER S		DETAILS
O-SITE2.GPJ 1GS	le ca	sed f	from (0.00-	19.20m.	SPT Er =	: 82.2	2%		Strike	Depth	At	To	(min)	Co N	ommen lo wate	ts er strik	e recorded
55000															GRO)UND	VATE	R DETAILS
SUI IGSL RC FI 10M	STAL Date		ON D Tip D 22.2	epth 20	ILS RZ Top 2.00	RZ Base 22.20	9	Тур 50m	oe m SP	Date	Hole Depth	Casing Depth	Depth t Water	Con	nment	S		

REPORT NUMBER

_		/																
CON	TRA	СТ	N	IDFA	Social H	ousing B	undle	es 4/5	- Lot 2 - Col	lins Avenue	9		DRIL	LHOLE ET	NO	RC Shee	D1 et 3 of	3
CO-C		D LE	TES	(mOl	716,03 738,89 D)	9.88 E 8.65 N 48.36			RIG TYPE		Berett	a T44	DATE	E COMI		D 08/0	1/2024 1/2024	ļ
CLIE	NT		N	DFA	-/	10.00			INCLINATI	ON (deg)	Air/Mi -90	st	DRIL	LED B	Y	IG	iSL - D	IH
ENG	NE	ER	M	IORC	E				CORE DIA	METER (mn	n) 78		LOG	GED B	Y	D.	. O' Sh	ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m 0 ²⁵⁰	ture cing bg m) 500 500	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
20						<			Weak to s laminated	trong, medi), light to da	um to thinl irk grey/bla	y bedded ck, fine-gr	(to locally th ained	ninly				
21	.50	100	33	0					LIMESTO calci-siltite thin shale weathered	NE (interbe e/sandy laye layers at 22 d.	dded argill ers, locally 2.01-22.05	aceous/mi pyrite form m), fresh to	uddy layers nation, very o slightly	with local				
21 22 <u>22</u>	1.60 <u></u> 2.20	100	20	0			<u>∧ · · · ∧</u> ∧ · · ∧ /		Discontinu locally rou frequent ir moderatel iron-oxide irregular.	uities are mo gh, fracture ncipient frac y open, loca stained. Di (continued)	edium to cl es are plana ctures. Ape ally clay sm ps are 20-4	osely spac ar to locall rtures are neared, loc 40° & local	ced, smootl y irregular, tight to cally moder lly 60° &	n to ately	22.20	26.16	0 0 0 0	
23									End	of Borehole	at 22.20 m	1						
24																		
25																		
26																		
27																		
28																		
29																		
REM		(5													10/07	rep er		
Hole	cas	sed f	rom (0.00-	19.20m. :	SPT Er =	82.2	2%		Water	Casing	Sealed	Rise	Time	Co	mmen	ts	UL I AILO
										JUIKE	Deptn	AL	10	(11111)	N	o wate	er strike	e recorded
															GRO	DUND	VATE	R DETAILS
INST D	ALL ate	ATI	ON D Fip D	ETA epth	I LS RZ Top	RZ Base)	Тур	be	Date 10-01-24	Hole Depth 22.20	Casing Depth 19.20	Depth to Water 15.40	Cor	nment er levels r	S ecorded	5 mins at	iter end of
			22.2	20	2.00	22.20		50m	m SP					drillir	ng.			

REPORT NUMBER

				DFA	Social H		undle	es 4/5	- Lot 2 - Col	llins Avenue	9		SHE	ET	NO	Shee)2 et 1 of	3
GRC		D LE	EVEL	(mOl	716,10: 738,904 D)	4.26 N 48.01			RIG TYPE FLUSH		Berett Air/Mi	a T44	DAT DAT	E COMN E COMP	IENCE	D 29/0 D 31/0	1/2024 1/2024	1 1
CLIE ENG	ENT	ER	N M	DFA ORC	E				INCLINATION CORE DIAL	ON (deg) METER (mr	-90 n) 78		DRIL LOG	LED BY	(IG D.	iSL - D O' Sh)H lea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lc (mi	ture cing og m) 500	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
0 1	1.50								CORE DR returns of SYMMETH as returns sandy gra	RILLING: No MADE GR RIX DRILLI of MADE (velly clay w	o recovery, OUND com NG: No rec BROUND c ith fragmer	observed b prising CC overy, obs omprising its of brick	oy driller a NCRETE erved by c grey brow	s driller n	0.25	47.76		N = 12
2		0	0	0					as returns SYMMETF as returns SYMMETF	RIX DRILLI of grey bro	NG: No rec wn black s NG: No rec	overy, obs overy, obs ilty sandy (overy, obs	erved by c GRAVEL erved by c	driller driller	2.00 2.40	46.01		(1, 3, 2, 3, 3, 4)
3	3.00	0	0	0					as returns	of grey bla	ck gravelly	CLAY						N = 39 (2, 4, 6, 9, 11 13)
4 4 5	4.50	0	0	0														N = 52 (2, 3, 7, 10, 16, 19)
6	5.00 <u>.</u>	0	0	0														N = 50/180 mm (5, 8, 13, 27, 10)
7 7 8	7.50	0	0	0					SYMMETI as returns	RIX DRILLI	NG: No rec wn sandy (overy, obs gravelly SII	erved by c _T	driller	7.40 8.20	40.61		N = 57 (2, 4, 7, 10, 18, 22)
9	9.00	0	0	0					as returns	of grey bro	wn gravell	y CLAY		ATTICI ATTICI				N = 50/170 mm (7, 9, 14, 23, 13)
REM	IAR	KS		-											WA	rer st	RIKE	DETAILS
Hole	cas	sed f	from ().00-	17.50m. S	SPT Er =	82.2	2%		Water Strike 17.00	Casing Depth 17.00	Sealed At N/S	Rise To	Time (min)	Co	mmen Slow	ts	
		A.T.									Hole	Casing	Donath A		GRO	DUNDV	VATEF	RDETAILS
100 B 100 B			1 10 1 1	- • ^							11016	Udaniu	Denin ii			-		

REPORT NUMBER

				DFA	Social H	ousing B	undle	es 4/5	- Lot 2 - Col	llins Avenue	e		DRIL SHE	LHOLE ET	NO	RCI Shee	02 et 2 of	3
GR		DLE	VEL	(mOl	738,904 738,904 D)	4.26 N 48.01			RIG TYPE FLUSH		Berett Air/Mi	a T44 st	DAT DAT	E COMN E COMP	IENCE PLETEI	D 29/0 D 31/0	1/2024 1/2024	4 4
CLI EN(ENT GINE	ER	N M	DFA ORC	E				INCLINATI	ON (deg) METER (mr	-90 n) 78		DRIL	LED B	Y Y	IG D.	iSL - D . O' Sh)H Iea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lc (mi	ture cing bg m) 500	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10	10.50								SYMMETI as returns	RIX DRILLI of grey bro	NG: No rec own gravell	overy, ob: y CLAY <i>(c</i>	served by c ontinued)	driller				N = 50/110 mm (5 11 28 22)
11	12 00	0	0	0					· · ·									(0, 11, 20, 22)
12	12.00	0	0	0					· · ·									N = 50/190 mm (4, 6, 11, 19, 20)
14	13.50	0	0	0														N = 5/5 mm (20, 25, 5)
15	15.00	0	0	0					SYMMETI as returns	RIX DRILLI of grey bla	NG: No rec ick gravelly	overy, ob: CLAY	served by c	driller	15.40	32.61		N = 13/15 mm (37, 13)
17	16.50	0	0	0					SYMMETI as returns	RIX DRILLI of BOULD	NG: No rec ER	overy, ob:	served by c	driller	17.00 17.50	31.01		N = 10/20 mm (40, 10)
18	19.10	100	0	0					Stiff sandy angular to	y gravelly C subrounde	LAY. Sand	is fine to barse of va	coarse. Gra arios litholo	avel is gies.				
19		100	27	8		-	(ia) /								19.40	28.61		
RE	MAR	KS								Matar	Casima	Coolod	Dies	Time	WA	TER ST	RIKE	DETAILS
Hol	e cas	sed f	rom ().00-	17.50m. \$	SPT Er =	82.2	22%		vvater Strike 17.00	Depth 17.00	At N/S	кіse To	(min)	Co	ommen Slow	ts	
															GRO		VATER	R DETAILS
															2			
INS	TALL	_ATI	ON D	ETA	LS					Date	Hole	Casing	Depth t	⁰ Con	nment	s		

REPORT NUMBER

	NTR/	АСТ	N	DFA	Social H	ousing B	undle	s 4/5	- Lot 2 - Co	llins Avenue			DRIL	.LHOLE ET	NO	RCC Shee)2 et 3 of 3	3
GR	ORE	DINA D LE	TES VEL	(mOI	716,109 738,904)	5.24 E 4.26 N 48.01			RIG TYPE FLUSH		Beretta Air/Mis	t T44	DAT DAT	E COMN E COMP	MENCE PLETEI	D 29/0 ⁻ D 31/0 ⁻	1/2024 1/2024	
CLI Enc	ent Ginei	ER	N M	DFA ORC	E				INCLINATI	ON (deg) METER (mm	-90 1) 78		DRIL LOG	LED BY	Y Y	IG D.	SL - D O' Sh	H ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lc (mi	ture cing bg m) 500	Non-intact Zone	Legend			Descripti	on			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
20	20.40 21.70	100	68	48			4		Moderatel locally thir fine-graine argillaceo locally pyr 19.40-19. 21.32-21. slightly we	ly weak to st hly laminated ed LIMESTC us/muddy la rite formatior 50m, 19.85- 36m, 22.13- eathered.	rong, medi d), light to c DNE (interb yers with c: 1, very loca 19.89m, 20 22.15m & 2	um to thin lark grey/b edded alci-siltite/s thin shale .42-20.46 2.92-22.9	ly bedded black, sandy laye e layers at m, t8m), fresh	(to ers, to				
22 23	23.10	100	76	34			<u> </u>		Discontinu locally rou incipient fi locally cla locally mo (1-10mm (continued	uities are me ugh, fractures ractures. Ap y/gravel-fille iderately iror thick). Dips a d) of Borehole	edium to clo s are plana ertures are d (at 19.91 n-oxide stai are 20-40° at 23.10 m	sely spac r to curvip tight to m -20.01m, 2 ned, local & locally 6	ed, smoot Ianar, frec oderately 20.92-21.0 Iy calcite-v 50° & irreg	h to Juent open, 00m), reined ular.	23.10	24.91		
4																		
6																		
7																		
8																		
E	MAR	KS													WA	TER ST	RIKE I	DETAIL
lol	e cas	sed fi	rom ().00-	17.50m. \$	SPT Er =	82.22	2%		Water Strike 17.00	Casing Depth 17.00	Sealed At N/S	Rise To	Time (min)	Co	mment Slow	is	
										1 1		I						
															GRO	DUNDV	VATER	

REPORT NUMBER

CONTRAC	TN	IDFA	Social H	ousing B	undle	es 4/5	- Lot 2 - Col	llins Avenu	e		DRI She	LLHOLE ET	E NO	RC She	03 et 1 of	2
CO-ORDIN		(mQ)	716,22 738,94 ۱ ח	4.60 E 5.56 N			RIG TYPE		Beret	ta T44	DAT			D 04/0	1/2024	1
			5)	47.05				ON (dea)	Air/Mi	st	DRI		v		SI - F	т)Н
ENGINEER	N	IORC	E				CORE DIA	METER (mi	n)		LOC	GED B	Y	D	. O' Sh	ea
Downhole Depth (m) Core Run Depth (m) T C R %	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	cture cing og m)	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
0							CORE DR		o recovery,	observed	by driller a	IS	0.20	46.85		
-1							SYMMETI as returns	RIX DRILLI of grey bro	NG: No ree wn black s	covery, obs silty sandy (served by gravelly C	driller LAY				
													1.90	45.15		N = 11 (1, 1, 1, 2, 3, 5)
2							SYMMETI as returns	RIX DRILLI of grey bla	NG: No ree ick gravelly	covery, obs CLAY	served by	driller				
3																N = 53 (3, 4, 5, 9, 19, 20)
⁻ 4																N = 70 (4, 8, 14, 16, 17, 23)
6																N = 50/155 mm (7, 12, 21, 24, 5)
8																N = 24/50 mm (14, 26, 24)
9																N = 50/125 mm (10, 18, 27, 23)
REMARKS	1.6.	0.00	10.00		00.			Mater	Caping	Socied	Piec	Time	WA	TER S	FRIKE	DETAILS
Hole cased	a from (u.00-	12.00m.	SPIEr=	: 82.2	2%		Strike	Depth	At	То	(min)	Cc N	ommen lo wate	ts er strike	e recorded
													GR	OUND\	NATER	R DETAILS
INSTALLA	TION D	ETA	ILS					Date	Hole Depth	Casing Depth	Depth f Water	to Cor	nment	s		
Date	Tip D	epth	RZ Top	RZ Base	e	Тур	0e	-								

REPORT NUMBER

	\sim	/																
со	NTR	ACT	N	IDFA	Social H	lousing B	undle	es 4/5	- Lot 2 - Co	llins Avenu	e		DRILI SHEE	lhole T	NO	RC She	03 et 2 of	2
GR)-ORI	dina Id Le	TES EVEL	(mO	716,22 738,94 D)	4.60 E 5.56 N 47.05			RIG TYPE		Berett Air/Mis	a T44	DATE	COMN COMP	IENCE	D 04/0 D 05/0	1/2024	1 1
CL EN	IENT GINE	ER	N	IDFA 10RC) CE				INCLINATI	ON (deg) METER (mi	-90 n)	51	DRIL		(IG D	àSL - D . O' Sh)H lea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lo (m	cture cing og m)	Non-intact Zone	Legend			Descript	ion		_	Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 10									SYMMET as returns	RIX DRILLI of grey bla	NG: No rec ck gravelly	overy, obs CLAY <i>(col</i>	erved by di ntinued)	riller				N = 50/140 mm (8, 13, 21, 29)
12																		N = 25/40 mm (12, 25, 25)
- 14															14 90	22.15		N = 10/10 mm (40, 10)
115 16 16 17 17 18 19 19 19 19 19 19	MAR	KS							End	of Borehole	e at 14.90 m	1			WA	TER ST	FRIKE	N = 50/30 mm (50, 50)
Ho	le ca	sed f	from (0.00-	12.00m.	SPT Er =	82.2	22%		Water	Casing	Sealed	Rise	Time	Co	mmen	ts	-
000 - SITE2.GPJ										Guike			10	(11111)	N	lo wate	er strike	e recorded
1 250												Costa			GRO	OUND\	VATER	RDETAILS
	STAL Date	LATI	ON D Tip D	DETA epth	ILS RZ Top	RZ Base	9	Ту	pe	Date	Hole Depth	Depth	Depth to Water	Con	nment	S		
GSL																		

REPORT NUMBER

	\sim	/																
со	NTR	ACT	N	IDFA	Social H	ousing B	undl	es 4/5	- Lot 2 - Col	llins Avenue	9		DRII SHE	.lhole et	NO	RC She	04 et 1 of	2
GB	-ORE	DINA		(mO	716,29 738,95 D)	5.26 E 2.46 N 46 74			RIG TYPE		Beret	ta T44	DAT	E COMN E COMP		ED 03/0	1/2024	1
CL	IENT		N	DFA					INCLINATI	ON (deg)	-90	St	DRII	LED B	Y	IC	ASL - D)H
EN	GINE	ER	N	IORC	E				CORE DIA	METER (mr	n) 78		LOG	GED B	Y	D	. O' Sh	ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	ture cing pg m) 500	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 0	1.50	0	0	0					CORE DF returns of SYMMETI as returns black sand SYMMETI as returns	RILLING: No MADE GRI RIX DRILLI of MADE (dy gravelly RIX DRILLI of grey bro	o recovery, OUND com NG: No rec GROUND c clay with fr NG: No rec own silty sa	observed aprising CC covery, obs comprising agments o covery, obs ndy gravel	by driller a DNCRETE served by o grey brow f brick. served by o ly CLAY	s driller n driller	0.25	46.49 45.64		N - 14
- 2		0	0	0					SYMMETI as returns	RIX DRILLI of grey bla	NG: No red ck gravelly	covery, obs CLAY	served by o	lriller	2.00	44.74	0 0 0 0 0 0	(1, 1, 2, 4, 3, 5)
- 3	3.00	0	0	0	-												0 0 0 0 0 0	N = 50/190 mm (4, 7, 13, 27, 10)
- 4	4.50	0	0	0	-												0 0 0 0 0 0	N = 30/85 mm (9, 20, 25, 5)
- - - - - - - - - - - - - - - - - - -	6.00				-													N = 35/55 mm (8, 15, 35)
- 7	7.50	0	0	0					SYMMETI as returns	RIX DRILLI of grey bro	NG: No rec own gravell	covery, obs y CLAY	erved by o	driller	7.00	39.74	0 0 0 0 0 0 0 0 0 0	N = 27/25 mm (23, 27)
21/2/24	9.00	0	0	0														N = 24/30 mm (16, 26, 24)
	MAR	KS		<u> </u>	I			[l						WA	TER S		DETAILS
Ho	le ca	sed	from (0.00-	14.90m.	SPT Er =	82.2	22%		Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co	mmen	its	
00 - SITE2.GPJ													-		N	lo wate	er strike	e recorded
1 250(11-1-	October 1			GR	OUND	NATEF	TETAILS
€ INS	STAL	LAT		ETA	ILS	DT -				Date	Depth	Depth	Water	D Con	nment	S		
04 ISD	Date -01-2	24	11p D 14.9	epth 90	HZ Top 1.00	HZ Base 14.90		Тур 50m	m SP									

REPORT NUMBER

со	NTR/	ACT	N	DFA	Social H	ousing B	undle	es 4/5	- Lot 2 - Col	lins Avenue	e		DRII	LHOL	E NO	RC She	04 et 2 of	2
CO GR	-ORD	DINA D LE	TES	(mOl	716,299 738,952 D)	5.26 E 2.46 N 46.74			RIG TYPE FLUSH		Beretta Air/Mis	a T44 st	DAT DAT	e com e com	MENCE	D 03/0 D 04/0	1/2024 1/2024	4 4
CL EN	ENT GINEI	ER	N M	DFA ORC	E				INCLINATION CORE DIAL	ON (deg) METER (mr	-90 n) 78		DRII LOG	LED E	BY BY	IC D	GSL - E . O' Sh)H Iea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lo (mi	ture cing bg m) 500	Non-intact Zone	Legend			Descripti	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10	10.50								SYMMETR as returns	RIX DRILLI of grey bro	NG: No rec wn gravelly	overy, obs / CLAY <i>(c</i> c	erved by o ontinued)	driller				N = 29/25 mm (19, 21, 29)
11	12.00	0	0	0													0 0 0 0 0 0 0 0 0 0	N = 20/15 mm (14, 30, 20)
- 13 - 14	13.50	0	0	0													0 0 0 0 0 0 0 0	N = 50/50 mm (50, 50)
- 15	14.90								End o	of Borehole	at 14.90 m				14.90	31.84	• 🗐 •	N = 50/40 mm (50, 50)
16																		
RE Ho	MARI e cas	KS sed f	rom C).00-	14.90m. \$	SPT Er =	82.2	2%		Water	Casing	Sealed	Rise	Time	AW e	TER S		DETAILS
										Strike	Depth	At	To	(min		lo wate	er strike	e recorded
1															CP			
													-		GR	OUND	NATER	R DETAILS

RC01 – Box 1 of 1 – 19.20-22.20m

<u>RC02 – Box 1 of 2 – 17.50-20.20m</u>

<u>RC02 – Box 2 of 2 – 20.20-23.10m</u>

 Equipe SPT Analyzer Operator
 Certificate prepared by
 Certificate checked by
 Certificate date

 JL
 Junt (1)
 Junt (2)
 Junt (2)
 Junt (2)

 V
 V
 V
 V
 Junt (2)

© Copyright 2023 **Equipe Group**, The Paddocks, Home Farm Offices, The Upton Estate, Banbury, Oxfordshire, OX15 6HU Tel: +44 (0)1295 670990 Fax: +44 (0)1295 678232 Email: info@equipegroup.com Appendix 5

Slit Trench Logs & Photographs

Report No.	25000-2	SL	IT TRENCH F	RECORD		FACING DIRECTION	I: W E	IGSL
Project:	NDFA Social Housi	ng Bundles 4/5 - Lot 2 –			Survoy		Slit Tronch No	ST01
Fiojeci. Engineer:				Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Client:			Start of Trench	715999 84	738895.85	48 221	Date Commenced	30/01/2024
Crew:	ESK		End of Trench	716010.424	738895.767	48.217	Date Completed	30/01/2024
Ground Conditions From (m)	To (m)		Soil Descript	ion			Photograph	
0	0.35		CONCRETE			- The second		12 F. SI
0.35	0.6	MADE GROUND comprisir	ng sandy gravely Clay mix concrete	y including concret	e blocks and lean			
0.6	1.6	MADE GROUND com	nprising firm brown sa	andy gravelly Clay	with cobbles	F		
						12		A A
						1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1		
						The second	- Sa	
						A AND		A. 2.2
						AN CONSIGNA	CONTRACT PORTAGE	Constant in the
	Trench Dimensi	ons		Location	-	E	xcavation Quantities	
LHS of Trench (m)	0.0		An Sec			Surface	Length (m)	Material
RHS of Trench (m)	10.00		ST01	-0	01-1	Road		
Trench Depth (m)	1.60			and a	1. Car	Path (LHS)		
Trench Width (III)	0.5	J		Mar and a	n a	Grass Verge (LHS)		
				1	· ·	Grass Verge (RHS)		
Facing Direction	NORTH			SAMPLES		Other	10	Concrete
Facing Features	Towards Shanow	en Hall Accommodation		AA210363		Total Length	10.0	Concrete
Groundwater	None	encountered				Zero Metres Taker	As: Concrete seem	
0.2	1	2 3	4	X-Section	6	7	8 9	10
0.6								
0.8								
1.2								
1.6	C. PERMIT	to a Al. 986 M	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Par Million and	P. A. 7496	and the summer of	TRANSFER OF A	
				Plan				
0	1	2 3	4	5	0		8 9	
0.5								
	Diameter (mm)	Matorial		Description		Distance (m)	Depth to grown (m)	Angle (deg.)
Service A	150	Concrete	Cor	crete storm drai	1	6.8	0.4	100
Service B	100	Consider	001			0.0	0.1	100
Service C								
Service D								
Service E								
Service F								
Service G								
Service H								
Service I								
Service J								
Service K								
Service L								
Service M		<u> </u>				<u> </u>	<u> </u>	

Report No.	25000-2	SL	lt trench f	RECORD		FACING DIRECTION	I: W E	IGSL
Project:	NDFA Social Housi Collins Avenue	ng Bundles 4/5 - Lot 2 –			Survey		Slit Trench No.	ST02
Engineer:	MORCE			Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Client:	NDFA		Start of Trench	716054.456	738910.795	48.327	Date Commenced	31/01/2024
Crew:	PN / ESK		End of Trench	716054.646	738899.568	48.216	Date Completed	31/01/2024
Ground Conditions								
From (m)	To (m)		Soil Descript	ion			Photograph	
0	0.3		CONCRETE				CT COS	the second
0.3	1.0	MADE	GROUND ccomprisi	ng Hardcore Fill				Contraction of the second
1.0	1.7	MADE GROUND compris	ing sandy gravelly Cla boulder conte	ay with a low to me nt	dium cobble and			
								N.
			Location	2015 HILLS				
	I rench Dimensi	ons				E C	xcavation Quantities	
LHS of Trench (m)	0.0			ST02-0		Surface	Length (m)	Material
RHS of Trench (m)	11.60		-			Road		
Trench Depth (m)	0.5					Path (LHS) Path (BHS)		
	0.0	1	11 1	STO2 1		Grass Verge (LHS)		
			the state of the s			Grass Verge (RHS)		
Facing Direction	EAST			SAMPLES		Other	11.6	Concrete
Facing Features	Along Depot			AA210364		Total Length	11.6	L
Groundwater	None	encountered				Zero Metres Taken	As: Wall	
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6		3	4 5	X-Section 6	7 c	8 5		11
				Plan				
0.5	1 2	3	4 5	6	7	89	10	11
	Diameter (mm)	Material		Description		Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	130	Steel		Steel pipe		1.2	0.69	90
Service B	110	PVC	0	range PVC pipe		0.7	0.4	90
Service C	200	Lean mix	Lea	an mix haunching		7.2	1.1	90
Service D							<u> </u>	
Service E								
Service I								
Service J	<u> </u>							
Service K								
Service L								
Service M								

Report No.	25000-2	SL	IT TRENCH F	RECORD		FACING DIRECTION	I: W E	IGSL
Project:	NDFA Social Housi	ng Bundles 4/5 - Lot 2 –			Survey		Slit Trench No	ST03
Engineer:	MORCE			Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Client:	NDFA		Start of Trench	716090.815	738913.508	48.065	Date Commenced	01/02/2024
Crew:	PN / ESK		End of Trench	716093.227	738902.316	48.034	Date Completed	01/02/2024
Ground Conditions From (m)	To (m)		Soil Descripti	on		Photograph		1 8
0	0.3		CONCRETE			iui-	In the second second	
0.3	1.1	MADE GI	ROUND comprising lo	ose sandy Gravel				20
1.1	1.6	MADE GROUND comprisir	g sandy gravelly Clay content	v with a medium bo	ulder and cobble			
			Loodian					N.
	Trench Dimensi	ons	Location		t-ma	E	xcavation Quantities	
LHS of Trench (m)	0.0		-01	25103-0	The second se	Surface	Length (m)	Material
RHS of Trench (m)	10.50			1 8		Road		
Trench Depth (m)	1.60		1			Path (LHS)		
Trench Width (m)	0.5					Path (RHS)		
				-ST08-1		Grass Verge (LHS) Grass Verge (BHS)		
Facing Direction	EAST			SAMPLES		Other	10.5	Concrete
Facing Features	Along Depot			AA210365		Total Length		
Groundwater	None	encountered				Zero Metres Taken	As: Wall	
0 0.2 0.4 0.6 1 1.2 1.4 1.4	1	2 3 A B	4	X-Section 5	6		9	10
				Plan				
0	1	2 3	4	5	6	7 8	9	10
	Diameter (mm)	Material		Description		Distance (m)	Depth to crown (m)	Angle (deq.)
Service A	30	Steel	Steel pipe with va	lve (terminating in	n open trench)	1.96	0.5	90
Service B	70	PVC	B	lack PVC pipe		2.5	0.6	90
Service C								
Service D								
Service E								
Service F								
Service G								
Service H								
Service I								
Service J								
Service K								
Service L								
Service M						<u> </u>	<u> </u>	ļ

Report No.	25000-2	SL	IT TRENCH F	RECORD		FACING DIRECTION	I: W E	IGSL
Project: Engineer: Client: Crew:	NDFA Social Hous Collins Avenue MORCE NDFA PN / ESK	ing Bundles 4/5 - Lot 2 –	Start of Trench	Easting (m) 716244.284 716247.031	Survey Northing (m) 738961.149 738951.503	Elevation (mOD) 46.715 46.792	Slit Trench No. Sheet Date Commenced Date Completed	ST04 1 of 1 01/02/2024 01/02/2024
	111/ 2011		Lind of Trease.	//0=///22	10000	10.1.0_	Duto Complete	01/06/202 .
Ground Conditions From (m)	To (m)	1	Soil Descript	ion		Photograph		
0	0.25		CONCRETE					
0.25	0.4	MADE	GROUND comprisin	ng Hardcore Fill				iner;
0.4	1.6	MADE GROUND compris	ing sandy slightly gra content - <u>strong hyd</u>	velly Silt/Clay with Irocarbon odour	a low to medium			d ra Li
			Location			24		R. C.
	Trench Dimensi	ons	Location		In the second	E	xcavation Quantities	1
LHS of Trench (m)	0.0	-	12154	ST04-0	1.	Surface	Length (m)	Material
RHS of Trench (m)	10.00	-	an and the state of the state o		12-	Road		
Trench Depth (m)	1.60	-		1000		Path (LHS)		
Trench Width (III)	0.5	1	471	STOA-1	and the second	Grass Verge (LHS)		
			A4	- Children		Grass Verge (RHS)		
Facing Direction	EAST			SAMPLES		Other		
Facing Features	Towards St. Kevi	ns F.C.		AA210366		Total Length		
Groundwater	Seepag	je at base of pit				Zero Metres Taken	As:	
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.4 1.6		2 3 c	4	X-Section	6 AB		8 9	10
				Plan	_	_		
0	1	2 3	4	5	6	7	8 9	
	Diameter (mm)	Material		Description		Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	80	PVC	E	Black PVC pipe		5.6	0.25	90
Service B	80	PVC	E	Black PVC pipe		5.7	0.25	90
Service C	150	Concrete	Lea	an mix haunching		3.1	0.65	90
Service D								
Service E								
Service F								
Service G								
Service H								
Service I								
Service J								
Service K								
Service M	I					I	1	l

Report No.	25000-2	SL	IT TRENCH F	RECORD		FACING DIRECTION	I: W E	IGSL
Project: Engineer: Client: Crew:	NDFA Social Housi Collins Avenue MORCE NDFA PN / ESK	ng Bundles 4/5 - Lot 2 –	Start of Trench End of Trench	Easting (m) 716300.979 716308.154	Survey Northing (m) 738977.008 738969.698	Elevation (mOD) 46.494 46.478	Slit Trench No. Sheet Date Commenced Date Completed	ST05 1 of 1 02/02/2024 02/02/2024
Ground Conditions								
From (m)	To (m)		Soil Descripti	ion			Photograph	
0 0.25	0.25	MADE GROUND compris and bould	CONCRETE ing greenish grey sar ler content and with re	ndy gravelly Clay w ad brick fragments	ith a low cobble			
						Ŋ.		
	Trench Dimensio	ons	l	Location		E	xcavation Quantities	
LHS of Trench (m) RHS of Trench (m) Trench Depth (m) Trench Width (m)	0.0 10.50 1.60 0.5			AS 105-		Surface Road Path (LHS) Path (RHS) Grass Verge (LHS)	Length (m)	Material
					STREET, A.	Grass Verge (RHS)		
Facing Direction	Northeast	5.0		SAMPLES		Other	10.5	Concrete
Facing Features	Towards St. Kevir	is F.C.		AA210367		I otal Length	10.5	Concrete
Groundwater	None	encountered				Zero Metres Taken	As: Wall	
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6		2 3	4	X-Section 5 B	6		9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10
				Plan				
0	1	2 3	4	5	6	7 8	9	10
	Diameter (mm)	Material		Description		Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	900	Gravel	Gi	ravel water trap		3.3	0.8	90
Service B	120	Concrete	Lea	an mix haunching		5.2	0.27	45
Service C	40	PVC	B	Black PVC pipe		8.6	0.35	100
Service D	80	PVC	Gree	en corrugated pip	e	8.65	0.3	100
			<u> </u>					
Service I								
Service K								
Service I								
Service M								
	1	I	1			1	1	1

Report No.	25000-2	SL	IT TRENCH F	RECORD		FACING DIRECTI	ON: W E			
Project: Engineer:	NDFA Social Housi Collins Avenue MORCE	ng Bundles 4/5 - Lot 2 –	Survey Easting (m) Northing (m)			Elevation (mQ[Slit Trench No.	ST06 1 of 1		
Client:	NDFA		Start of Trench	716136.688	738845.424	47.994	Date Commenced	12/02/2024		
Crew:	PN / ESK		End of Trench	716130.119	738851.925	47.854	Date Completed	12/02/2024		
Ground Conditions										
From (m)	To (m)		Soil Descripti	ion		Photograph	and the second second			
0	0.25		TARMACADA	M				2		
0.25	0.45	MADE	GROUND comprisin	g Hardcore Fill			COMPANY			
0.45	1.6	MADE GROUND com	MADE GROUND comprising firm yellowish brown sandy gravelly Clay with fragments of red brick							
	Trench Dimensio	ons		Location		Excavation Quantities				
LHS of Trench (m)	0.0					Surface	Length (m)	Material		
RHS of Trench (m)	10.90			ST06-1	Star a la fai	Road	9.4	Tarmac		
Trench Depth (m)	1.60			1 200	Nº C	Path (LHS)	1.5	Tarmac		
Trench Width (m)	0.5			\$ 106	.•	Path (RHS)		-		
						Grass Verge (LH	S)			
Facing Direction	Southwest			SAMPLES		Other	5)	1		
Facing Features	Entrance Gate off	Collins Avenue Ext		AA210371		Total Length				
Groundwater	s	low flow				Zero Metres Tal	en As: Edge of path (Tre	e-side)		
0 0.2 0.4 0.6 1 1.2 1.4 1.6	1	2 3	4	X-Section	5 7	8 B	9 T	0		
				Plan						
0.5	1	2 3	4	5 6	; 7	8	9 1	0		
Convine A	Diameter (mm)	Material	-			Distance (m)	Depth to crown (m)	Angle (deg.)		
	45	Cablo	L E	Black cobic		0.1	0.8	90		
Service C	20 600	Concrete		Concrete		8.4	1 17	90		
Service D	000			00101010		0.4	1.1/			
Service E										
Service F										
Service G										
Service H										
Service I										
Service J										
Service K										
Service L										
Service M								ļ		

Report No.	25000-2	SL	IT TRENCH I	RECORD		FACING DIRECTION	I: W S	IGSL
Project: Engineer: Client: Crew:	NDFA Social Housi Collins Avenue MORCE NDFA PN / ESK	ng Bundles 4/5 - Lot 2 –	Start of Trench End of Trench	Easting (m) 716159.727 716152.918	Survey Northing (m) 738868.07 738875.157	Elevation (mOD) 48.084 47.936	Slit Trench No. Sheet Date Commenced Date Completed	ST07 1 of 1 09/12/2024 09/12/2024
Ground Conditions								
From (m)	To (m)		Soil Descript	ion		Photograph	XS BOALD	
0	0.1		TARMACADA	M				
0.1	0.3		CONCRETE				Carl Start	
0.3	0.8	MADE	GROUND comprisir	ng Hardcore Fill				
0.8	1.6	MADE GROUND compris	OUND comprising brownish grey sandy Silt/Clay with a low cobble and boulder content and with red brick fragments				A.	
	Trench Dimensio	ons	Location			F	xcavation Quantities	27
LHS of Trench (m)	0.0		Pa		Cover 1	Surface	Length (m)	Material
BHS of Trench (m)	9.50			ST07-1		Boad	8.0	Tarmac
Trench Depth (m)	1.60		Postori -			Path (LHS)	1.5	Tarmac
Trench Width (m)	0.5			Rent D	SUNS.	Path (RHS)		
			N.X.			Grass Verge (LHS)		
						Grass Verge (RHS)		
Facing Direction	Southwest			SAMPLES		Other		
Facing Features	Entrance Gate off	Collins Avenue Ext	AA210370			I otal Length		
Groundwater	s	low flow				Zero Metres Taken	As: Edge of path (Tree	side)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6	1 A 0	2 3	4	X-Section	6	B		9
				Plan				
0	1	2 3	4	5	6	7	8	9
	Diameter (mm)	Material		Description		Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	60	PVC	E	Black PVC pipe		0.75	0.75	90
Service B	700	Concrete	Concrete sla	b (possible servic	es below)	6.65	0.7	90
Service C								
Service D								
Service E								
Service F								
Service G							<u> </u>	
Service H							<u> </u>	
Service I								
Service J							<u> </u>	
Service K							<u> </u>	
Service L								
Service M								l

Report No.	25000-2	SL	LIT TRENCH RECORD				FACING DIRECTION	: W E	IGSL		
Project:	NDFA Social Housi Collins Avenue	ng Bundles 4/5 - Lot 2 -			Sur	vey		Slit Trench No.	ST08		
Engineer:	MORCE			Easting (m)	Northing	g (m)	Elevation (mOD)	Sheet	1 of 1		
Client:	NDFA		Start of Trench 716194.219 738898.104			47.586	Date Commenced	08/02/2024			
Crew:	PN / ESK		End of Trench	716187.15	58 738904	4.927	47.571	Date Completed	08/02/2024		
Onered Openditions											
From (m)	To (m)		Soil Descript	ion			Photograph		and second and		
0	0.3 CONCRETE				and the second s						
0.3	0.5	0.5 MADE GROUND comprising Hardcore Fill				20					
0.5	1.7	MADE GROUND c	omprising Firm green	ish grey sandy g	ravelly Clay			SAM -			
									-		
	Turnel Dimensi			1							
	Trench Dimensio	ons	Location				E	xcavation Quantities	Mark and all		
LHS of Trench (m)	0.0			AST06-1	Sector Carl		Surrace	Length (m)	Material		
RHS of Trench (m)	9.90			1	× 22	1	Road	5.6	Concrete		
Trench Depth (m)	1.70		1 A A	1		L	Path (LHS) Path (BHS)	1.0	Tarmac		
	0.0		1	AST 08	-0	10	Grass Verge (LHS)	3.3	Topsoil		
						al	Grass Verge (RHS)	0.0			
Facing Direction	Southwest		SAMPLES				Other				
Facing Features	Entrance Gate off	Collins Avenue Ext	AA210369			Total Length	9.9				
Groundwater	S	low flow					Zero Metres Taken	As: Wall			
0 0.2 0.4 0.6 0.8	1	2 3	4	X-Section 5	6		7	8 7			
1.2 - 1.4 -											
1.6 -	al President		an an Ari. 🕅		一 四 八 一 号	an si	and the second second	alleval. Londo A	and the second		
				Plan							
0	1	2 3	4	Fian 5	6		7	8 9			
0		· · ·						I			
			I								
Samilaa A	Diameter (mm)		-				Distance (m)	Deptn to crown (m)	Angle (deg.)		
Service A	60					0.35	0.5	90			
Service B	60	GLAT		Ciay pipe			1	1.4	120		
Service C											
Service D											
Service E											
Service F											
Service H											
Service I											
Service I											
Service K											
Service I											
Service M											
			1				1		· · · · · · · · · · · · · · · · · · ·		

Report No.	25000-2	SLIT TRENCH RECORD				FACING DIRECTION	I: W E	IGSL
Project:	NDFA Social Housi Collins Avenue	ng Bundles 4/5 - Lot 2 –			Survey		Slit Trench No.	ST09
Engineer:	MORCE			Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Client:	NDFA		Start of Trench	716232.021	738937.823	-	Date Commenced	06/02/2024
Crew:	PN / ESK		End of Trench	716226.576	738943.398	46.972	Date Completed	06/02/2024
Ground Conditions								
From (m)	To (m)		Soil Descripti	ion		Photograph		and the
0	0.3	0.3 CONCRETE						
0.3	0.7	MAD	E GROUND comprisir	ng Harcore Fill				
0.7	17	MADE GROUND comprisi	ing Soft mottled grey a	and brown sandy g	ravelly Clay with	- We the fact		State 1
	Trench Dimensio	ons		Location		E	xcavation Quantities	
LHS of Trench (m)	0.0		A COL	2004		Surface	Length (m)	Material
RHS of Trench (m)	10.00		and the second second	-ST09-1		Road	5.8	Concrete
Trench Depth (m)	1.70				E star	Path (LHS)		
Trench Width (m)	0.5		a state	У \$Т09-0	1	Path (RHS)		
			E LEAR AND	Sec.	1	Grass Verge (LHS)	4.2	Grass
E 1 D1 11						Grass Verge (RHS)		
Facing Direction	Southwest	Colline Avenue Ext	44210368	SAMPLES		Other Total Length	10.0	
	Littlance Gate on		77210300					
Groundwater	None	encountered				Zero Metres Taken	As: Wall (Tree side)	
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6		2 3	4	X-Section 5	6	7	8	10
				Plan				
	Diameter (mm)	Material		Description		Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	65	PVC	В	Black PVC pipe		0.3	0.8	90
Service B								
Service C								
Service D								
Service E								
Service F								
Service G			ļ					
Service H								
Service I								
Service J								
Service K								
Service L								
Service M								

<u>ST01</u>

<u>ST02</u>

<u>ST04</u>

<u>ST05</u>

<u>ST06</u>

<u>ST06</u>

<u>ST08</u>

<u>ST09</u>

Appendix 6

Soakaway Records

Soaka	way De	sign f -value from fie	ld tests	IGSL
Contract:	NDFA Social	Housing Bundles 4/5 - Lot 2 - Collins Aven	ue Contract No.	25000-2
Test No.	SA10		Easting	716277.8
Engineer	MORCE		Northing	738946.1
Date:	09/11/2023		Elevation	46.814mOD
Summary c	of ground con	ditions		
from	to	Description		Ground water
0.00	0.22	CUNCRETE MADE CROUND comprising brown clovery	rounded condu Croval	_
0.22	1.70	Firm to stiff grevish brown slightly sandy	rounded sandy Gravel	DRY
0.45	1.70	content	gravely CLAT with a high cobble	
Notes: SA1	0 undertaker	n at TP10 location		I
Field Data		Field Lest		
Depth to	Elapsed	Depth of Pit ((D) 1.70	m
Water	Time	Width of Pit ((L) 0.50	m
(m)	(min)	Length of Pit	(L) 1.80	m
0.700	0.00			
0.760	0.00	Initial depth t	0 water = 0.76	m
0.760	1.00		0 water = 0.76	m
0.760	2.00	Elapsed time	(mins)= 60.00	
0.760	3.00	Top of porms		m
0.760	5.00	Base of perme		m
0.760	5.00	Base of perm		
0.760	7.00	No any Water Soak	ade	
0.760	7.00 8.00		age	
0.760	0.00 0.00	4		
0.760	10.00	- Rase area-	0.9	m2
0.760	12.00	*Av. side area of permeable stratum ove	r test perior 4 324	m2
0.760	14.00	Total Exposed	d area = 5.224	m2
0.760	16.00			
0.760	18.00	-		
0.760	20.00	Infiltration rate (f) = Volume of wa	ater used/unit exposed area / unit ti	me
0.760	25.00			•
0.760	30.00	f= 0 m/min	or	0 m/sec
0.760	40.00			
0.760	50.00			
0.760	60.00			
		_		
		_		
l				
		Depth of water vs Elapsed	Time (mins)	
	70.00			
	<u> </u>			—
	50.00			
	40.00			
	by 30.00			
	20.00		•	
	10.00			
	0.00	0.100 0.200 0.300 0.400	0 0.500 0.600 0.700	0.800
	0.000	Depth to Wat	ter (m)	

Appendix 7

Geotechnical Laboratory Results (Soil)

Appendix 8

Geo-Environmental & Chemical Laboratory Results (Soils)

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report			Email: info@chemtest.cor
Report No.:	24-00485-1		
Initial Date of Issue:	18-Jan-2024		
Re-Issue Details:			
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	Darren Keogh		
Project	25000-2 Site 2 NDFA Social Housing		
Quotation No.:		Date Received:	09-Jan-2024
Order No.:		Date Instructed	: 09-Jan-2024
No. of Samples:	45		
Turnaround (Wkdays):	8	Results Due:	18-Jan-2024
Date Approved:	18-Jan-2024		
Approved By:	•		
Details:	Stuart Henderson, Technical Manager		

2183

THE ENVIRON MONITORING CER

CY'S

Results - Leachate

Client: IGSL			Che	mtest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		0	Chemte	est Sam	ple ID.:	1751932	1751934	1751936	1751938	1751940	1751941	1751943	1751945	1751946	1751948	1751950	1751952
Order No.:			Clie	nt Samp	le Ref.:	AA119035	AA119042	AA204208	AA204215	AA204202	AA204222	AA209208	AA209210	AA209201	AA204230	AA204238	AA204244
	Sample Locatio		ocation:	BH01	BH02	BH03	BH04	BH05	BH06	BH07	BH07	BH08	BH09	BH10	BH11		
	Sample Type		е Туре:	SOIL													
				Top Dep	oth (m):	1.00	1.00	0.50	0.50	1.00	0.50	0.50	2.00	0.50	1.00	1.00	0.50
Determinand	Accred.	SOP	Туре	Units	LOD												
Ammonium	U	1220	10:1	mg/l	0.050	2.7	0.067	< 0.050	< 0.050	< 0.050	0.20	< 0.050	0.48	0.072	0.17	0.10	1.9
Ammonium	Ν	1220	10:1	mg/kg	0.10	29	0.84	0.65	0.51	1.1	15	0.67	12	1.3	2.4	1.2	22

Results - Leachate

Client: IGSL			Che	mtest J	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	est Sam	ple ID.:	1751953	1751955	1751957	1751959	1751960	1751961	1751963	1751965	1751967	1751968	1751969	1751971
Order No.:			Clie	nt Samp	ole Ref.:	AA209223	AA209215	AA196364	AA196368	AA196372	AA196373	AA196375	AA196378	AA196380	AA204940	AA196397	AA196392
	Sample Locatio		ocation:	BH12	BH13	TP01	TP02	TP03	TP03	TP04	TP05	TP05	TP06	TP07	TP08		
	Sample Type		e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
				Top De	pth (m):	1.00	0.50	0.50	0.50	0.70	1.50	0.80	0.40	1.70	0.50	1.30	0.60
Determinand	Accred.	SOP	Туре	Units	LOD												
Ammonium	U	1220	10:1	mg/l	0.050	1.8	< 0.050	0.058	0.072	0.058	0.11	0.13	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Ammonium	N	1220	10:1	mg/kg	0.10	21	1.5	0.67	0.76	0.63	1.2	1.5	0.84	0.74	0.86	1.3	0.37

Results - Leachate

Client: IGSL			Che	mtest Jo	ob No.:	24-00485	24-00485	24-00485
Quotation No.:			Chemte	st Sam	ple ID.:	1751972	1751974	1751975
Order No.:			Clie	nt Samp	le Ref.:	AA196388	AA196390	AA196386
			Sa	ample Lo	ocation:	TP09	TP09	TP11
				Sampl	е Туре:	SOIL	SOIL	SOIL
				Top Dep	oth (m):	0.40	1.60	0.80
Determinand	Accred.	SOP	Туре	Units	LOD			
Ammonium	U	1220	10:1	mg/l	0.050	< 0.050	0.13	0.41
Ammonium	Ν	1220	10:1	mg/kg	0.10	0.47	1.8	4.4

Client: IGSL			Cher	ntest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	st Sam	ple ID.:	1751932	1751933	1751934	1751935	1751936	1751937	1751938	1751939
Order No.:			Clier	nt Samp	le Ref.:	AA119035	AA119036	AA119042	AA119044	AA204208	AA204209	AA204215	AA204217
		1	Sa	ample Lo	ocation:	BH01	BH01	BH02	BH02	BH03	BH03	BH04	BH04
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	1.00	2.00	1.00	3.00	0.50	1.00	0.50	2.00
				Asbest	os Lab:	DURHAM		DURHAM		DURHAM		DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
АСМ Туре		U	2192		N/A	-		-		-		-	
Asbestos Identification		U	2192		N/A	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	
Moisture		N	2030	%	0.020	26	12	12	10	7.4	17	7.5	18
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Clay	Sand	Sand	Sand	Clay	Sand	Sand
pH at 20C	1	М	2010		4.0	[A] 7.7	Í	[A] 8.6		[A] 10.0		[A] 10.2	
pH (2.5:1) at 20C		N	2010		4.0		[A] 8.9		[A] 9.0		[A] 8.5		[A] 8.4
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	[A] 1.0		[A] < 0.40		[A] < 0.40		[A] < 0.40	
Magnesium (Water Soluble)		N	2120	g/l	0.010		[A] < 0.010		[A] < 0.010		[A] < 0.010		[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		[A] < 0.010		[A] < 0.010		[A] 0.058		[A] 0.15
Total Sulphur		U	2175	%	0.010		[A] 0.023		[A] 0.17		[A] 0.090		[A] 0.087
Sulphur (Elemental)		М	2180	mg/kg	1.0	[A] 64		[A] 1.8		[A] 4.2		[A] 1.0	
Chloride (Water Soluble)		М	2220	g/l	0.010		[A] 0.015		[A] 0.022		[A] 0.027		[A] 0.021
Nitrate (Water Soluble)		N	2220	g/l	0.010		< 0.010		< 0.010		< 0.010		< 0.010
Cyanide (Total)		М	2300	mg/kg	0.50	[A] < 0.50							
Sulphide (Easily Liberatable)		Ν	2325	mg/kg	0.50	[A] 5.6		[A] 7.9		[A] 7.7		[A] 7.2	
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01		< 0.01		< 0.01		< 0.01
Sulphate (Total)		U	2430	%	0.010	[A] 0.14		[A] 0.068		[A] 0.45		[A] 0.42	
Sulphate (Acid Soluble)		U	2430	%	0.010		[A] 0.019		[A] 0.084		[A] 0.10		[A] 0.10
Arsenic		M	2455	mg/kg	0.5	8.7		9.8		12		34	
Barium		M	2455	mg/kg	0	120		88		160		560	
Cadmium		М	2455	mg/kg	0.10	1.4		2.3		0.95		1.9	
Chromium		М	2455	mg/kg	0.5	24		17		13		11	
Molybdenum		M	2455	mg/kg	0.5	2.7		3.6		1.7		1.1	
Antimony		N	2455	mg/kg	2.0	< 2.0		2.0		2.7		6.7	
Copper		M	2455	mg/kg	0.50	21		25		26		37	
Mercury		M	2455	mg/kg	0.05	0.09		0.05		0.05		0.10	
Nickel		М	2455	mg/kg	0.50	33		43		25		23	
Lead		М	2455	mg/kg	0.50	25		26		280		300	
Selenium		М	2455	mg/kg	0.25	1.3		0.97		1.4		0.89	
Zinc		М	2455	mg/kg	0.50	84		69		90		330	
Chromium (Trivalent)		N	2490	mg/kg	1.0	24		17		13		11	
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50		< 0.50		< 0.50		< 0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05							
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05							
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05							

Client: IGSL			Cher	ntest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	st Sam	ple ID.:	1751932	1751933	1751934	1751935	1751936	1751937	1751938	1751939
Order No.:			Clier	nt Samp	le Ref.:	AA119035	AA119036	AA119042	AA119044	AA204208	AA204209	AA204215	AA204217
			Sa	mple Lo	ocation:	BH01	BH01	BH02	BH02	BH03	BH03	BH04	BH04
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	1.00	2.00	1.00	3.00	0.50	1.00	0.50	2.00
				Asbest	os Lab:	DURHAM		DURHAM		DURHAM		DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05							
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	[A] < 0.25							
Aliphatic EPH >C10-C12	EH_2D_AL_#1	М	2690	mg/kg	2.00	[A] < 2.0							
Aliphatic EPH >C12-C16	EH_2D_AL_#1	М	2690	mg/kg	1.00	[A] < 1.0		[A] 1.2		[A] 1.3		[A] < 1.0	
Aliphatic EPH >C16-C21	EH_2D_AL_#1	М	2690	mg/kg	2.00	[A] 2.5		[A] 2.4		[A] < 2.0		[A] < 2.0	
Aliphatic EPH >C21-C35	EH_2D_AL_#1	М	2690	mg/kg	3.00	[A] 5.5		[A] 15		[A] 22		[A] 14	
Aliphatic EPH >C35-C40	EH_2D_AL_#1	N	2690	mg/kg	10.00	[A] < 10		[A] 11		[A] 12		[A] < 10	
Total Aliphatic EPH >C10-C35	EH_2D_AL_#1	М	2690	mg/kg	5.00	[A] 8.0		[A] 20		[A] 27		[A] 17	
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05							
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05							
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05							
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	[A] < 0.25							
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0							
Aromatic EPH >C12-C16	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0							
Aromatic EPH >C16-C21	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 2.8		[A] 2.5		[A] < 2.0		[A] < 2.0	
Aromatic EPH >C21-C35	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 15		[A] 11		[A] 8.7		[A] 7.1	
Aromatic EPH >C35-C40	EH_2D_AR_#1	Ν	2690	mg/kg	1.00	[A] 4.7		[A] 15		[A] 6.5		[A] 6.8	
Total Aromatic EPH >C10-C35	EH_2D_AR_#1	U	2690	mg/kg	5.00	[A] 18		[A] 14		[A] 8.9		[A] 7.4	
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	[A] < 0.50							
Total EPH >C10-C35	EH_2D_Total_# 1	U	2690	mg/kg	10.00	[A] 26		[A] 34		[A] 36		[A] 24	
Organic Matter		М	2625	%	0.40								
Total Organic Carbon		М	2625	%	0.20	[A] 1.2		[A] 1.3		[A] 4.8		[A] 4.3	
Mineral Oil EPH	EH_2D_AL_#1	Ν	2670	mg/kg	10	< 10		31		39		17	
Benzene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0		[A] 2.6	
Toluene		М	2760	µg/kg	1.0	[A] < 1.0							
Ethylbenzene		М	2760	µg/kg	1.0	[A] < 1.0							
m & p-Xylene		М	2760	µg/kg	1.0	[A] < 1.0							
o-Xylene		М	2760	µg/kg	1.0	[A] < 1.0							
Methyl Tert-Butyl Ether		M	2760	µg/kg	1.0	[A] < 1.0							
Naphthalene		M	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Acenaphthene		M	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Fluorene	ļ	М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Phenanthrene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Anthracene		M	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Fluoranthene		M	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Pyrene	ļ	М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Benzo[a]anthracene		M	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	

Client: IGSL			Cher	ntest Jo	b No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	st Samp	ole ID.:	1751932	1751933	1751934	1751935	1751936	1751937	1751938	1751939
Order No.:			Clier	nt Sampl	le Ref.:	AA119035	AA119036	AA119042	AA119044	AA204208	AA204209	AA204215	AA204217
			Sa	mple Lo	cation:	BH01	BH01	BH02	BH02	BH03	BH03	BH04	BH04
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	1.00	2.00	1.00	3.00	0.50	1.00	0.50	2.00
				Asbesto	os Lab:	DURHAM		DURHAM		DURHAM		DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Chrysene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Coronene		N	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10		< 0.10	
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	< 1.0		< 1.0		< 1.0		< 1.0	
PCB 28		U	2815	mg/kg	0.010	[A] < 0.010							
PCB 52		U	2815	mg/kg	0.010	[A] < 0.010							
PCB 101		U	2815	mg/kg	0.010	[A] < 0.010							
PCB 118		U	2815	mg/kg	0.010	[A] < 0.010							
PCB 153		U	2815	mg/kg	0.010	[A] < 0.010							
PCB 138		U	2815	mg/kg	0.010	[A] < 0.010							
PCB 180		U	2815	mg/kg	0.010	[A] < 0.010							
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	[A] < 0.05							
Total Phenols		М	Top Depth (m): Asbestos Lab: red. SOP Units LOD 4 2800 mg/kg 0.10 5 2815 mg/kg 0.10 5 2815 mg/kg 0.010 5			< 0.10		< 0.10		< 0.10		< 0.10	

Client: IGSL			Chei	ntest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	st Sam	ple ID.:	1751940	1751941	1751942	1751943	1751944	1751945	1751946	1751947
Order No.:			Clier	nt Samp	le Ref.:	AA204202	AA204222	AA204224	AA209208	AA209209	AA209210	AA209201	AA209203
			Sa	ample Lo	ocation:	BH05	BH06	BH06	BH07	BH07	BH07	BH08	BH08
				Sample	e Type:	SOIL							
				Top Dep	oth (m):	1.00	0.50	2.00	0.50	1.00	2.00	0.50	2.00
				Asbest	os Lab:	DURHAM	DURHAM		DURHAM		DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
АСМ Туре		U	2192		N/A	-	-		-		-	-	
Asbestos Identification		U	2192		N/A	No Asbestos	No Asbestos		No Asbestos		No Asbestos	No Asbestos	
Moisturo		N	2020	0/_	0.020	12	12	10		8.0	16		10
Soil Colour		N	2030	70	0.020 N/A	Brown	Brown	Brown	Brown	Brown	Brown	D.4	Brown
		IN	2040		IN/A	DIOWII							
Other Material		N	2040		N/A	Stones							
Soil Texture		N	2040		N/A	Sand	Clay						
pH at 20C		М	2010		4.0	[A] 8.7	[A] 9.7		[A] 10.6		[A] 8.7	[A] 8.8	
pH (2.5:1) at 20C		Ν	2010		4.0			[A] 8.6		[A] 10.0			[A] 8.9
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	[A] < 0.40	[A] 0.90		[A] < 0.40		[A] < 0.40	[A] 0.41	
Magnesium (Water Soluble)		N	2120	g/l	0.010			[A] < 0.010		[A] < 0.010			[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010			[A] < 0.010		[A] 0.45			[A] 0.095
Total Sulphur		U	2175	%	0.010			[A] 0.015		[A] 0.40			[A] 0.13
Sulphur (Elemental)		М	2180	mg/kg	1.0	[A] 36	[A] 3.1		[A] 3.0		[A] 3.5	[A] 28	
Chloride (Water Soluble)		М	2220	g/l	0.010			[A] 0.012		[A] 0.024			[A] 0.053
Nitrate (Water Soluble)		N	2220	g/l	0.010			< 0.010		< 0.010			0.036
Cyanide (Total)		М	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50		[A] < 0.50		[A] < 0.50	[A] < 0.50	
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	[A] 5.1	[A] 8.6		[A] 6.7		[A] 5.0	[A] 11	
Ammonium (Water Soluble)		М	2220	g/l	0.01			< 0.01		< 0.01			< 0.01
Sulphate (Total)		U	2430	%	0.010	[A] 0.11	[A] 0.66		[A] 0.47		[A] 0.062	[A] 0.35	
Sulphate (Acid Soluble)		U	2430	%	0.010			[A] 0.038		[A] 0.19			[A] 0.092
Arsenic		М	2455	mg/kg	0.5	18	19		40		16	11	
Barium		М	2455	mg/kg	0	120	180		520		170	270	
Cadmium		М	2455	mg/kg	0.10	3.4	1.3		3.3		2.8	1.4	
Chromium		М	2455	mg/kg	0.5	27	21		17		21	15	
Molybdenum		М	2455	mg/kg	0.5	6.2	1.8		2.2		4.2	1.9	
Antimony		Ν	2455	mg/kg	2.0	3.1	2.5		32		4.6	< 2.0	
Copper		М	2455	mg/kg	0.50	43	32		270		43	44	
Mercury		М	2455	mg/kg	0.05	0.08	0.07		0.20		0.08	0.12	
Nickel		М	2455	mg/kg	0.50	75	36		36		55	27	
Lead		М	2455	mg/kg	0.50	36	92		1600		150	67	
Selenium		М	2455	mg/kg	0.25	1.6	0.96		1.3		1.1	1.1	
Zinc		М	2455	mg/kg	0.50	120	140		460		110	200	
Chromium (Trivalent)		N	2490	mg/kg	1.0	27	21		17		21	15	
Chromium (Hexavalent)		Ν	2490	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50	< 0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	

Client: IGSL			Che	mtest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	st Sam	ple ID.:	1751940	1751941	1751942	1751943	1751944	1751945	1751946	1751947
Order No.:			Clie	nt Samp	le Ref.:	AA204202	AA204222	AA204224	AA209208	AA209209	AA209210	AA209201	AA209203
			Sa	ample Lo	ocation:	BH05	BH06	BH06	BH07	BH07	BH07	BH08	BH08
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1.00	0.50	2.00	0.50	1.00	2.00	0.50	2.00
				Asbest	os Lab:	DURHAM	DURHAM		DURHAM		DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25	[A] < 0.25	[A] < 0.25		[A] < 0.25		[A] < 0.25	[A] < 0.25	
Aliphatic EPH >C10-C12	EH_2D_AL_#1	М	2690	mg/kg	2.00	[A] < 2.0	[A] < 2.0		[A] 2.1		[A] 2.3	[A] 2.8	
Aliphatic EPH >C12-C16	EH 2D AL #1	М	2690	mg/kg	1.00	[A] < 1.0	[A] 3.8		[A] < 1.0		[A] 4.6	[A] 4.4	
Aliphatic EPH >C16-C21	EH 2D AL #1	М	2690	mg/kg	2.00	[A] 2.1	[A] 11		[A] 4.2		[A] 4.7	[A] 3.6	
Aliphatic EPH >C21-C35	EH 2D AL #1	М	2690	mg/kg	3.00	[A] 21	[A] 40		[A] 39		[A] 15	[A] 20	
Aliphatic EPH >C35-C40	EH_2D_AL_#1	N	2690	mg/kg	10.00	[A] 14	[A] 19		[A] 13		[A] 10	[A] 14	
Total Aliphatic EPH >C10-C35	EH 2D AL #1	М	2690	mg/kg	5.00	[A] 26	[A] 56		[A] 46		[A] 27	[A] 31	
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	
Aromatic VPH >C7-C8	HS 2D AR	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25	[A] < 0.25	[A] < 0.25		[A] < 0.25		[A] < 0.25	[A] < 0.25	
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	
Aromatic EPH >C12-C16	EH 2D AR #1	U	2690	mg/kg	1.00	[A] < 1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] 1.3	
Aromatic EPH >C16-C21	EH 2D AR #1	U	2690	mg/kg	2.00	[A] < 2.0	[A] 8.1		[A] < 2.0		[A] 2.5	[A] 24	
Aromatic EPH >C21-C35	EH 2D AR #1	U	2690	mg/kg	2.00	[A] 8.5	[A] 180		[A] 18		[A] 12	[A] 43	
Aromatic EPH >C35-C40	EH_2D_AR_#1	N	2690	mg/kg	1.00	[A] 7.4	[A] 56		[A] 6.6		[A] 6.7	[A] 9.3	
Total Aromatic EPH >C10-C35	EH 2D AR #1	U	2690	mg/kg	5.00	[A] 10	[A] 190		[A] 18		[A] 14	[A] 69	
Total VPH >C5-C10	HS 2D Total	U	2780	mg/kg	0.50	[A] < 0.50	[A] < 0.50		[A] < 0.50		[A] < 0.50	[A] < 0.50	
Total EPH >C10-C35	EH_2D_Total_#	U	2690	mg/kg	10.00	[A] 36	[A] 250		[A] 64		[A] 41	[A] 100	
Organic Matter		М	2625	%	0.40								
Total Organic Carbon		М	2625	%	0.20	[A] 0.38	[A] 2.9		[A] 4.1		[A] 0.92	[A] 5.3	
Mineral Oil EPH	EH 2D AL #1	N	2670	mg/kg	10	40	75		59		37	45	
Benzene		М	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	
Toluene		М	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	
Ethylbenzene		М	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	
m & p-Xylene		М	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	
o-Xylene		М	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	
Naphthalene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	0.15	
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	0.18	
Acenaphthene	1	М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	0.87	
Fluorene	1	М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	0.90	i i
Phenanthrene		М	2800	mg/kg	0.10	< 0.10	0.43		< 0.10		< 0.10	5.3	
Anthracene		М	2800	mg/kg	0.10	< 0.10	0.16		< 0.10		< 0.10	2.5	
Fluoranthene		М	2800	mg/kg	0.10	< 0.10	1.1		< 0.10		< 0.10	13	
Pyrene		М	2800	mg/kg	0.10	< 0.10	0.92		< 0.10		< 0.10	11	
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	0.53		< 0.10		< 0.10	5.9	

Client: IGSL			Chei	mtest Jo	b No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		0	Chemte	st Samp	ple ID.:	1751940	1751941	1751942	1751943	1751944	1751945	1751946	1751947
Order No.:		Chemtest Job No. Chemtest Sample ID. Client Sample Location Sample Type Top Depth (m Asbesto: Lab Accred. SOP Units LOD M 2800 mg/kg 0.10 N 2800 mg/kg 0.10 N 2800 mg/kg 0.10 N 2800 mg/kg 0.010 N 2800 mg/kg 0.010 N 2800 mg/kg 0.010 N 2800 mg/kg 0.010				AA204202	AA204222	AA204224	AA209208	AA209209	AA209210	AA209201	AA209203
			Sa	ample Lo	ocation:	BH05	BH06	BH06	BH07	BH07	BH07	BH08	BH08
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	1.00	0.50	2.00	0.50	1.00	2.00	0.50	2.00
			Asbestos Lab:				DURHAM		DURHAM		DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Chrysene		М	2800	mg/kg	0.10	< 0.10	0.57		< 0.10		< 0.10	4.7	
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	1.0		< 0.10		< 0.10	7.7	
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	0.30		< 0.10		< 0.10	2.4	
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	0.94		< 0.10		< 0.10	6.3	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	3.9	
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	0.70	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	3.4	
Coronene		Ν	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10	
Total Of 17 PAH's Lower		Ν	2800	mg/kg	1.0	< 1.0	6.0		< 1.0		< 1.0	69	
PCB 28		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 52		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 101		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 118		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 153		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 138		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 180		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	
Total Phenols		М	2920	mg/kg	0.10	< 0.10	0.14		< 0.10		< 0.10	< 0.10	

Client: IGSL			Cher	ntest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(hemte	st Sam	ple ID.:	1751948	1751949	1751950	1751951	1751952	1751953	1751954	1751955
Order No.:			Clier	nt Samp	le Ref.:	AA204230	AA204231	AA204238	AA204239	AA204244	AA209223	AA209224	AA209215
			Sa	ample Lo	ocation:	BH09	BH09	BH10	BH10	BH11	BH12	BH12	BH13
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	1.00	2.00	1.00	2.00	0.50	1.00	2.00	0.50
				Asbest	os Lab:	DURHAM		DURHAM		DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
АСМ Туре		U	2192		N/A	-		-		-	-		-
Asbestos Identification		U	2192		N/A	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	No Asbestos Detected		No Asbestos Detected
Moisture		N	2030	%	0.020	17	10	18	11	18	18	11	8.5
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones	Stones and Roots	Stones	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Clay	Sand	Sand	Sand	Sand	Clay	Sand
pH at 20C		М	2010		4.0	[A] 8.3		[A] 8.6		[A] 8.4	[A] 8.5	· · ·	[A] 10.5
pH (2.5:1) at 20C		N	2010		4.0		[A] 9.0		[A] 8.9			[A] 9.2	
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	[A] < 0.40		[A] 0.52		[A] 1.6	[A] 0.81		[A] < 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010		[A] < 0.010		[A] < 0.010			[A] < 0.010	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		[A] < 0.010		[A] < 0.010			[A] < 0.010	
Total Sulphur		U	2175	%	0.010		[A] 0.014		[A] 0.045			[A] 0.027	
Sulphur (Elemental)		М	2180	mg/kg	1.0	[A] 1.8		[A] 2.0		[A] 12	[A] 10		[A] 4.9
Chloride (Water Soluble)		М	2220	g/l	0.010		[A] 0.032		[A] 0.055			[A] 0.036	
Nitrate (Water Soluble)		N	2220	g/l	0.010		< 0.010		< 0.010			< 0.010	
Cyanide (Total)		М	2300	mg/kg	0.50	[A] < 0.50		[A] < 0.50		[A] < 0.50	[A] < 0.50		[A] < 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	[A] 5.1		[A] 3.8		[A] 8.5	[A] 6.0		[A] 4.7
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01		< 0.01			< 0.01	
Sulphate (Total)		U	2430	%	0.010	[A] 0.064		[A] 0.039		[A] 0.14	[A] 0.11		[A] 0.46
Sulphate (Acid Soluble)		U	2430	%	0.010		[A] 0.025		[A] 0.031			[A] 0.023	
Arsenic		М	2455	mg/kg	0.5	18		21		13	19		25
Barium		М	2455	mg/kg	0	150		97		160	170		280
Cadmium		М	2455	mg/kg	0.10	3.5		2.2		1.2	3.8		1.3
Chromium		М	2455	mg/kg	0.5	30		30		16	29		15
Molybdenum		М	2455	mg/kg	0.5	4.5		6.1		2.0	4.5		1.9
Antimony		N	2455	mg/kg	2.0	2.4		2.8		< 2.0	2.4		4.2
Copper		М	2455	mg/kg	0.50	28		31		26	36		26
Mercury		М	2455	mg/kg	0.05	0.11		0.09		0.12	0.15		0.09
Nickel		М	2455	mg/kg	0.50	76		64		28	68		27
Lead		М	2455	mg/kg	0.50	41		45		59	62		110
Selenium		М	2455	mg/kg	0.25	1.2		1.4		0.84	1.3		0.83
Zinc		M	2455	mg/kg	0.50	110		110		79	120		200
Chromium (Trivalent)		N	2490	mg/kg	1.0	30		30		16	29		15
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50		< 0.50		< 0.50	< 0.50		< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05		[A] < 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05		[A] < 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05		[A] < 0.05

Client: IGSL			Che	mtest J	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	st Sam	ple ID.:	1751948	1751949	1751950	1751951	1751952	1751953	1751954	1751955
Order No.:			Clie	nt Samp	le Ref.:	AA204230	AA204231	AA204238	AA204239	AA204244	AA209223	AA209224	AA209215
			Sa	ample Lo	ocation:	BH09	BH09	BH10	BH10	BH11	BH12	BH12	BH13
			Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	1.00	2.00	1.00	2.00	0.50	1.00	2.00	0.50
				Asbest	os Lab:	DURHAM		DURHAM		DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25		[A] < 0.25	[A] < 0.25		[A] < 0.25
Aliphatic EPH >C10-C12	EH_2D_AL_#1	М	2690	mg/kg	2.00	[A] < 2.0		[A] 2.2		[A] 2.3	[A] 2.4		[A] 2.5
Aliphatic EPH >C12-C16	EH_2D_AL_#1	М	2690	mg/kg	1.00	[A] < 1.0		[A] 1.2		[A] < 1.0	[A] 2.7		[A] 5.2
Aliphatic EPH >C16-C21	EH_2D_AL_#1	М	2690	mg/kg	2.00	[A] 2.4		[A] < 2.0		[A] 3.2	[A] 3.0		[A] 6.7
Aliphatic EPH >C21-C35	EH_2D_AL_#1	М	2690	mg/kg	3.00	[A] 11		[A] 10		[A] 12	[A] 15		[A] 45
Aliphatic EPH >C35-C40	EH_2D_AL_#1	N	2690	mg/kg	10.00	[A] 13		[A] 11		[A] 10	[A] 16		[A] 12
Total Aliphatic EPH >C10-C35	EH_2D_AL_#1	М	2690	mg/kg	5.00	[A] 16		[A] 15		[A] 19	[A] 23		[A] 59
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05		[A] < 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05		[A] < 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25		[A] < 0.25	[A] < 0.25		[A] < 0.25
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic EPH >C12-C16	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic EPH >C16-C21	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] < 2.0		[A] 3.0		[A] 5.9	[A] 2.3		[A] 3.3
Aromatic EPH >C21-C35	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 8.7		[A] 16		[A] 34	[A] 14		[A] 21
Aromatic EPH >C35-C40	EH_2D_AR_#1	Ν	2690	mg/kg	1.00	[A] 6.4		[A] 7.7		[A] 12	[A] 8.9		[A] 7.1
Total Aromatic EPH >C10-C35	EH_2D_AR_#1	U	2690	mg/kg	5.00	[A] 10		[A] 19		[A] 39	[A] 17		[A] 24
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	[A] < 0.50		[A] < 0.50		[A] < 0.50	[A] < 0.50		[A] < 0.50
Total EPH >C10-C35	EH_2D_Total_# 1	U	2690	mg/kg	10.00	[A] 27		[A] 34		[A] 58	[A] 40		[A] 83
Organic Matter		М	2625	%	0.40								
Total Organic Carbon		М	2625	%	0.20	[A] 0.51		[A] 0.72		[A] 2.6	[A] 1.8		[A] 5.2
Mineral Oil EPH	EH_2D_AL_#1	Ν	2670	mg/kg	10	29		26		29	39		71
Benzene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Toluene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Ethylbenzene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
m & p-Xylene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
o-Xylene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0
Naphthalene		M	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Acenaphthene		M	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Fluorene		Μ	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Phenanthrene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		0.18
Anthracene		M	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Fluoranthene		M	2800	mg/kg	0.10	0.35		< 0.10		0.29	0.14		0.37
Pyrene		M	2800	mg/kg	0.10	0.33		< 0.10		0.31	0.15		0.31
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		0.20

Client: IGSL			Cher	ntest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		C	hemte	st Samp	ole ID.:	1751948	1751949	1751950	1751951	1751952	1751953	1751954	1751955
Order No.:			Clier	nt Sampl	le Ref.:	AA204230	AA204231	AA204238	AA204239	AA204244	AA209223	AA209224	AA209215
			Sa	mple Lo	ocation:	BH09	BH09	BH10	BH10	BH11	BH12	BH12	BH13
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	1.00	2.00	1.00	2.00	0.50	1.00	2.00	0.50
				Asbesto	os Lab:	DURHAM		DURHAM		DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Chrysene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		0.14
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		0.21
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Coronene		Ν	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10
Total Of 17 PAH's Lower		Ν	2800	mg/kg	1.0	< 1.0		< 1.0		< 1.0	< 1.0		1.4
PCB 28		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 52		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 101		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 118		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] 0.012	[A] < 0.010		[A] < 0.010
PCB 153		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] 0.012	[A] < 0.010		[A] < 0.010
PCB 138		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] 0.012	[A] < 0.010		[A] < 0.010
PCB 180		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] 0.012	[A] < 0.010		[A] < 0.010
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Phenols		М	2920	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10		< 0.10

Client: IGSL			Cher	ntest Jo	b No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		0	hemte	st Sam	ple ID.:	1751956	1751957	1751958	1751959	1751960	1751961	1751962	1751963
Order No.:			Clier	nt Samp	le Ref.:	AA209217	AA196364	AA196366	AA196368	AA196372	AA196373	AA196374	AA196375
			Sa	mple Lo	ocation:	BH13	TP01	TP01	TP02	TP03	TP03	TP03	TP04
		Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
		Top Depth (m):			2.00	0.50	2.00	0.50	0.70	1.50	2.40	0.80	
				Asbest	os Lab:		DURHAM		DURHAM	DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
АСМ Туре		U	2192		N/A		-		-	-	-		-
Asbestos Identification		U	2192		N/A		No Asbestos Detected		No Asbestos Detected	No Asbestos Detected	No Asbestos Detected		No Asbestos Detected
Moisture		N	2030	%	0.020	10	77	95	3.8	6.0	17	9.9	12
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Clav	Sand	Clav	Loam	Sand	Sand	Clav	Sand
pH at 20C	1	M	2010		4.0		[A] 9.2		[A] 8.3	[A] 9.0	[A] 8.2		[A] 8.7
pH (2.5:1) at 20C	1	N	2010		4.0	[A] 9.2		[A] 9.0				[A] 8.7	
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40		[A] < 0.40		[A] < 0.40	[A] < 0.40	[A] 0.69		[A] 0.57
Magnesium (Water Soluble)		N	2120	g/l	0.010	[A] < 0.010		[A] < 0.010				[A] < 0.010	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	[A] 0.018		[A] 0.013				[A] < 0.010	
Total Sulphur		U	2175	%	0.010	[A] 0.027		[A] 0.021				[A] 0.018	
Sulphur (Elemental)		М	2180	mg/kg	1.0		[A] 2.6		[A] 1.1	[A] 1.6	[A] 61		[A] 4.4
Chloride (Water Soluble)		М	2220	g/l	0.010	[A] < 0.010		[A] < 0.010				[A] 0.050	
Nitrate (Water Soluble)		Ν	2220	g/l	0.010	< 0.010		< 0.010				< 0.010	
Cyanide (Total)		М	2300	mg/kg	0.50		[A] < 0.50		[A] < 0.50	[A] < 0.50	[A] < 0.50		[A] < 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50		[A] 6.8		[A] 5.5	[A] 5.3	[A] 5.9		[A] 5.2
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01		< 0.01				< 0.01	
Sulphate (Total)		U	2430	%	0.010		[A] 0.45		[A] 0.65	[A] 0.32	[A] 0.11		[A] 0.23
Sulphate (Acid Soluble)		U	2430	%	0.010	[A] 0.030		[A] 0.020				[A] 0.020	
Arsenic		М	2455	mg/kg	0.5		33		31	65	6.4		20
Barium		М	2455	mg/kg	0		260		290	670	71		320
Cadmium		М	2455	mg/kg	0.10		1.9		1.5	3.6	0.88		1.4
Chromium		М	2455	mg/kg	0.5		14		9.0	15	18		31
Molybdenum		М	2455	mg/kg	0.5		2.1		1.3	2.3	1.8		1.7
Antimony		N	2455	mg/kg	2.0		8.4		4.3	32	< 2.0		2.9
Copper		М	2455	mg/kg	0.50		64		30	250	16		38
Mercury		М	2455	mg/kg	0.05		0.08		0.07	0.18	0.06		0.13
Nickel		М	2455	mg/kg	0.50		37		28	39	26		40
Lead		М	2455	mg/kg	0.50		340		120	2100	26		180
Selenium		М	2455	mg/kg	0.25		1.3		0.81	1.2	0.58		0.97
Zinc		М	2455	mg/kg	0.50		280		220	670	67		220
Chromium (Trivalent)		N	2490	mg/kg	1.0		14		9.0	15	18		31
Chromium (Hexavalent)		N	2490	mg/kg	0.50		< 0.50		< 0.50	< 0.50	< 0.50		< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05

Client: IGSL		Chemtest Job No.:				24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		C	hemte	st Sam	ple ID.:	1751956	1751957	1751958	1751959	1751960	1751961	1751962	1751963
Order No.:			Clie	nt Samp	le Ref.:	AA209217	AA196364	AA196366	AA196368	AA196372	AA196373	AA196374	AA196375
			Sa	ample Lo	ocation:	BH13	TP01	TP01	TP02	TP03	TP03	TP03	TP04
			Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Depth (m):			2.00	0.50	2.00	0.50	0.70	1.50	2.40	0.80
				Asbest	os Lab:		DURHAM		DURHAM	DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25		[A] < 0.25		[A] < 0.25	[A] < 0.25	[A] < 0.25		[A] < 0.25
Aliphatic EPH >C10-C12	EH 2D AL #1	М	2690	mg/kg	2.00		[A] 3.0		[A] < 2.0	[A] < 2.0	[A] < 2.0		[A] < 2.0
Aliphatic EPH >C12-C16	EH 2D AL #1	М	2690	mg/kg	1.00		[A] 4.4		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] 39
Aliphatic EPH >C16-C21	EH 2D AL #1	М	2690	mg/kg	2.00		[A] 3.7		[A] < 2.0	[A] < 2.0	[A] < 2.0		[A] 50
Aliphatic EPH >C21-C35	EH_2D_AL_#1	М	2690	mg/kg	3.00		[A] 16		[A] 12	[A] 5.2	[A] 22		[A] 41
Aliphatic EPH >C35-C40	EH 2D AL #1	N	2690	mg/kg	10.00		[A] < 10		[A] 18	[A] < 10	[A] 32		[A] 31
Total Aliphatic EPH >C10-C35	EH 2D AL #1	М	2690	mg/kg	5.00		[A] 27		[A] 14	[A] 6.7	[A] 22		[A] 130
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aromatic VPH >C7-C8	HS 2D AR	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25		[A] < 0.25		[A] < 0.25	[A] < 0.25	[A] < 0.25		[A] < 0.25
Aromatic EPH >C10-C12	EH 2D AR #1	U	2690	mg/kg	1.00		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic EPH >C12-C16	EH 2D AR #1	U	2690	mg/kg	1.00		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] 9.1
Aromatic EPH >C16-C21	EH 2D AR #1	U	2690	mg/kg	2.00		[A] 2.9		[A] 2.4	[A] 2.5	[A] 2.0		[A] 49
Aromatic EPH >C21-C35	EH_2D_AR_#1	U	2690	mg/kg	2.00		[A] 9.6		[A] 26	[A] 20	[A] 11		[A] 35
Aromatic EPH >C35-C40	EH_2D_AR_#1	Ν	2690	mg/kg	1.00		[A] 5.8		[A] 7.1	[A] 6.5	[A] 29		[A] 26
Total Aromatic EPH >C10-C35	EH 2D AR #1	U	2690	mg/kg	5.00		[A] 12		[A] 28	[A] 22	[A] 13		[A] 93
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50		[A] < 0.50		[A] < 0.50	[A] < 0.50	[A] < 0.50		[A] < 0.50
Total EPH >C10-C35	EH_2D_Total_# 1	U	2690	mg/kg	10.00		[A] 39		[A] 42	[A] 29	[A] 35		[A] 220
Organic Matter		М	2625	%	0.40								
Total Organic Carbon		М	2625	%	0.20		[A] 2.2		[A] 3.5	[A] 5.5	[A] 0.42		[A] 2.0
Mineral Oil EPH	EH_2D_AL_#1	Ν	2670	mg/kg	10		27		32	< 10	54		160
Benzene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Toluene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Ethylbenzene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
m & p-Xylene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
o-Xylene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Naphthalene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		0.15
Acenaphthylene		Ν	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		0.24
Acenaphthene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		0.85
Fluorene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		0.79
Phenanthrene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		7.3
Anthracene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		3.5
Fluoranthene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		30
Pyrene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		24
Benzo[a]anthracene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		16

Client: IGSL			Cher	ntest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		C	hemte	st Samp	ole ID.:	1751956	1751957	1751958	1751959	1751960	1751961	1751962	1751963
Order No.:			Clier	nt Samp	le Ref.:	AA209217	AA196364	AA196366	AA196368	AA196372	AA196373	AA196374	AA196375
			Sa	imple Lo	ocation:	BH13	TP01	TP01	TP02	TP03	TP03	TP03	TP04
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	2.00	0.50	2.00	0.50	0.70	1.50	2.40	0.80
				Asbest	os Lab:		DURHAM		DURHAM	DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Chrysene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		12
Benzo[b]fluoranthene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		21
Benzo[k]fluoranthene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		7.1
Benzo[a]pyrene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		19
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		11
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		2.0
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		9.9
Coronene		Ν	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		< 0.10
Total Of 17 PAH's Lower		Ν	2800	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0		160
PCB 28		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 52		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 101		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 118		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 153		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 138		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 180		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
Tot PCBs Low (7 Congeners)		Ν	2815	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Phenols		М	2920	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		< 0.10

Client: IGSL			Cher	ntest Jo	b No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(hemte	st Sam	ple ID.:	1751964	1751965	1751966	1751967	1751968	1751969	1751970	1751971
Order No.:			Clier	nt Samp	le Ref.:	AA196376	AA196378	AA196379	AA196380	AA204940	AA196397	AA196398	AA196392
			Sa	imple Lo	ocation:	TP04	TP05	TP05	TP05	TP06	TP07	TP07	TP08
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):			1.60	0.40	0.90	1.70	0.50	1.30	2.00	0.60	
		Asbestos Lab:				DURHAM		DURHAM	DURHAM	DURHAM		DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
ACM Type		U	2192		N/A		-		-	-	-		-
Asbestos Identification		U	2192		N/A		No Asbestos Detected		No Asbestos Detected	No Asbestos Detected	No Asbestos Detected		No Asbestos Detected
Moisture		N	2030	%	0.020	19	13	14	8.6	5.3	16	12	6.3
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
			2010		10/7	Brown	Biomi	Biowin	Brown	Biomi	Biowin	Biomi	Biowin
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	None	Stones
Soil Texture		N	2040		N/A	Loam	Loam	Loam	Clay	Clay	Clay	Clay	Loam
pH at 20C	ļ	M	2010		4.0		[A] 8.2		[A] 8.3	[A] 9.4	[A] 9.5		[A] 9.0
pH (2.5:1) at 20C		N	2010		4.0	[A] 8.3		[A] 8.5				[A] 8.7	
Boron (Hot Water Soluble)		M	2120	mg/kg	0.40		[A] 0.52		[A] < 0.40	[A] < 0.40	[A] 0.55		[A] < 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010	[A] < 0.010		[A] < 0.010				[A] < 0.010	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	[A] 0.025		[A] 0.11				[A] < 0.010	
Total Sulphur		U	2175	%	0.010	[A] 0.052		[A] 0.074				[A] 0.010	
Sulphur (Elemental)		М	2180	mg/kg	1.0		[A] 6.5		[A] < 1.0	[A] 8.7	[A] 37		[A] 15
Chloride (Water Soluble)		M	2220	g/l	0.010	[A] 0.046		[A] 0.069				[A] < 0.010	
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010		< 0.010				< 0.010	
Cyanide (Total)		M	2300	mg/kg	0.50		[A] < 0.50		[A] < 0.50	[A] < 0.50	[A] < 0.50		[A] < 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50		[A] 6.0		[A] 6.4	[A] 4.9	[A] 5.5		[A] 6.1
Ammonium (Water Soluble)		M	2220	g/l	0.01	< 0.01		< 0.01				< 0.01	
Sulphate (Total)		U	2430	%	0.010		[A] 0.71		[A] 0.044	[A] 0.41	[A] 0.13		[A] 0.35
Sulphate (Acid Soluble)		U	2430	%	0.010	[A] 0.081		[A] 0.053				[A] 0.038	
Arsenic		М	2455	mg/kg	0.5		28		9.3	22	15		20
Barium		М	2455	mg/kg	0		260		58	210	150		120
Cadmium		М	2455	mg/kg	0.10		1.2		1.9	0.75	0.97		0.74
Chromium	ļ	Μ	2455	mg/kg	0.5		19		14	14	19		7.5
Molybdenum	ļ	М	2455	mg/kg	0.5		2.5		3.3	1.0	2.4		1.1
Antimony		N	2455	mg/kg	2.0		4.2		< 2.0	3.7	2.0		3.4
Copper		М	2455	mg/kg	0.50		77		24	23	21		27
Mercury		М	2455	mg/kg	0.05		0.13		< 0.05	0.07	0.25		0.08
Nickel		М	2455	mg/kg	0.50		45		40	26	35		28
Lead		M	2455	mg/kg	0.50		96		21	86	49		73
Selenium		M	2455	mg/kg	0.25		1.1		1.4	0.61	0.76		0.80
Zinc		М	2455	mg/kg	0.50		130		73	86	98		96
Chromium (Trivalent)		N	2490	mg/kg	1.0		19		14	14	19		7.5
Chromium (Hexavalent)		N	2490	mg/kg	0.50		< 0.50		< 0.50	< 0.50	< 0.50		< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Client: IGSI			Chei	mtest Jo	b No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
------------------------------	------------------------	---------	--------------	----------	----------	----------	------------	----------	------------	------------	------------	----------	------------
Quotation No .		C	hemte	st Sam	ole ID.:	1751964	1751965	1751966	1751967	1751968	1751969	1751970	1751971
Order No.:			Clier	nt Samp	le Ref.:	AA196376	AA196378	AA196379	AA196380	AA204940	AA196397	AA196398	AA196392
			Sa	ample Lo	ocation:	TP04	TP05	TP05	TP05	TP06	TP07	TP07	TP08
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					oth (m):	1 60	0.40	0.90	1 70	0.50	1 30	2 00	0.60
			Asbestos Lab		1.00	DURHAM	0.00	DURHAM	DURHAM	DURHAM	2.00	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD		Dorana		2011.0	Derauti	Doraban		Dertain
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	ma/ka	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	ma/ka	0.25		[A] < 0.25		[A] < 0.25	[A] < 0.25	[A] < 0.25		[A] < 0.25
Aliphatic EPH >C10-C12	EH 2D AL #1	M	2690	ma/ka	2.00		[A] < 2.0		[A] < 2.0	[A] < 2.0	[A] < 2.0		[A] < 2.0
Aliphatic EPH >C12-C16	EH 2D AL #1	M	2690	ma/ka	1.00		[A] 5.1		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Aliphatic EPH >C16-C21	EH 2D AL #1	M	2690	ma/ka	2 00		[A] 4 3		[A] < 2.0	[A] < 2.0	[A] < 2.0		[A] < 2.0
Aliphatic EPH >C21-C35	EH 2D AL #1	M	2690	ma/ka	3.00		[A] 50		[A] 20	[A] 18	[A] 23		[A] 23
Aliphatic EPH >C35-C40	EH 2D AL #1	N	2690	ma/ka	10.00		[A] 46		[A] 30	[A] 29	[A] 38		[A] 28
Total Aliphatic EPH >C10-C35	EH 2D AL #1	M	2690	ma/ka	5.00		[A] 61		[A] 20	[A] 18	[A] 27		[A] 23
Aromatic VPH >C5-C7	HS 2D AR	U	2780	ma/ka	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aromatic VPH >C7-C8	HS 2D AR	U	2780	ma/ka	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780	ma/ka	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	ma/ka	0.25		[A] < 0.25		[A] < 0.25	[A] < 0.25	[A] < 0.25		[A] < 0.25
Aromatic EPH >C10-C12	EH 2D AR #1	U	2690	ma/ka	1.00		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic EPH >C12-C16	EH 2D AR #1	U	2690	ma/ka	1.00		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic EPH >C16-C21	EH 2D AR #1	U	2690	ma/ka	2.00		[A] 2.4		[A] < 2.0	[A] < 2.0	[A] 24		[A] < 2.0
Aromatic EPH >C21-C35	EH 2D AR #1	U	2690	ma/ka	2.00		[A] 29		[A] 8.5	[A] 43	[A] 24		[A] 9.4
Aromatic EPH >C35-C40	EH 2D AR #1	N	2690	ma/ka	1.00		[A] 31		[A] 25	[A] 24	[A] 25		[A] 23
Total Aromatic EPH >C10-C35	EH 2D AR #1	U	2690	ma/ka	5.00		[A] 32		[A] 10	[A] 45	[A] 48		[A] 11
Total VPH >C5-C10	HS 2D Total	U	2780	ma/ka	0.50		[A] < 0.50		[A] < 0.50	[A] < 0.50	[A] < 0.50		[A] < 0.50
Total EPH >C10-C35	 EH_2D_Total_# 1	U	2690	mg/kg	10.00		[A] 92		[A] 30	[A] 63	[A] 76		[A] 34
Organic Matter		М	2625	%	0.40	[A] 2.2							
Total Organic Carbon		М	2625	%	0.20		[A] 4.3		[A] 2.3	[A] 6.0	[A] 2.1		[A] 6.0
Mineral Oil EPH	EH 2D AL #1	Ν	2670	mg/kg	10		140		50	47	75		51
Benzene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Toluene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Ethylbenzene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
m & p-Xylene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
o-Xylene		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Naphthalene		М	2800	mg/kg	0.10		0.13		< 0.10	< 0.10	< 0.10		< 0.10
Acenaphthylene		Ν	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		< 0.10
Acenaphthene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		< 0.10
Fluorene		М	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		< 0.10
Phenanthrene		М	2800	mg/kg	0.10		0.53		< 0.10	< 0.10	1.3		0.18
Anthracene		М	2800	mg/kg	0.10		0.17		< 0.10	< 0.10	0.43		< 0.10
Fluoranthene		М	2800	mg/kg	0.10		0.90		< 0.10	< 0.10	3.7		0.31
Pyrene		М	2800	mg/kg	0.10		0.82		< 0.10	< 0.10	2.9		0.28
Benzo[a]anthracene		М	2800	mg/kg	0.10		0.35		< 0.10	< 0.10	2.2		< 0.10

<u>Results - Soil</u>

Client: IGSL			Cher	ntest Jo	b No.:	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		C	hemte	st Samp	ole ID.:	1751964	1751965	1751966	1751967	1751968	1751969	1751970	1751971
Order No.:			Clier	nt Samp	le Ref.:	AA196376	AA196378	AA196379	AA196380	AA204940	AA196397	AA196398	AA196392
			Sa	mple Lo	cation:	TP04	TP05	TP05	TP05	TP06	TP07	TP07	TP08
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	1.60	0.40	0.90	1.70	0.50	1.30	2.00	0.60
				Asbest	os Lab:		DURHAM		DURHAM	DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Chrysene		М	2800	mg/kg	0.10		0.30		< 0.10	< 0.10	1.5		< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10		0.45		< 0.10	< 0.10	3.3		< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10		0.15		< 0.10	< 0.10	0.95		< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10		0.28		< 0.10	< 0.10	2.7		< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10		0.39		< 0.10	< 0.10	2.0		< 0.10
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	0.25		< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10		0.36		< 0.10	< 0.10	1.5		< 0.10
Coronene		Ν	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		< 0.10
Total Of 17 PAH's Lower		Ν	2800	mg/kg	1.0		4.8		< 1.0	< 1.0	23		< 1.0
PCB 28		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 52		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 101		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 118		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 153		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 138		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 180		U	2815	mg/kg	0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Phenols		М	2920	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10		< 0.10

Client: IGSL			Che	mtest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	st Sam	ple ID.:	1751972	1751973	1751974	1751975	1751976
Order No.:			Clie	nt Samp	le Ref.:	AA196388	AA196389	AA196390	AA196386	AA196387
			Sa	ample Lo	ocation:	TP09	TP09	TP09	TP11	TP11
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	0.40	0.90	1.60	0.80	1.50
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD					
АСМ Туре		U	2192		N/A	-		-	-	
Asbestos Identification		U	2192		N/A	No Asbestos Detected		No Asbestos Detected	No Asbestos Detected	
Moisture		N	2030	%	0.020	9.7	16	11	17	21
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown
Other Material		Ν	2040		N/A	Stones	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Clay	Clay	Loam	Clay
pH at 20C		М	2010		4.0	[A] 9.4	,	[A] 9.0	[A] 8.2	, , , , , , , , , , , , , , , , , , ,
рН (2.5:1) at 20С		N	2010		4.0		[A] 8.6			[A] 8.6
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	[A] 0.72		[A] < 0.40	[A] 1.6	
Magnesium (Water Soluble)		N	2120	g/l	0.010		[A] < 0.010			[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		[A] 0.057			[A] 0.060
Total Sulphur		U	2175	%	0.010		[A] 0.036			[A] 0.084
Sulphur (Elemental)		М	2180	mg/kg	1.0	[A] 97		[A] 3.9	[A] 35	
Chloride (Water Soluble)		М	2220	g/l	0.010		[A] 0.37			[A] 0.084
Nitrate (Water Soluble)		N	2220	g/l	0.010		< 0.010			0.023
Cyanide (Total)		М	2300	mg/kg	0.50	[A] < 0.50		[A] < 0.50	[A] 0.80	
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	[A] 4.0		[A] 5.5	[A] 11	
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01			< 0.01
Sulphate (Total)		U	2430	%	0.010	[A] 0.17		[A] 0.066	[A] 0.17	
Sulphate (Acid Soluble)		U	2430	%	0.010		[A] 0.051			[A] 0.068
Arsenic		М	2455	mg/kg	0.5	8.3		12	13	
Barium		М	2455	mg/kg	0	48		110	120	
Cadmium		М	2455	mg/kg	0.10	2.0		2.2	2.5	
Chromium		M	2455	mg/kg	0.5	17		25	24	
Molybdenum		M	2455	mg/kg	0.5	2.8		2.8	3.6	
Antimony		N	2455	mg/kg	2.0	< 2.0		2.0	3.4	
Copper		M	2455	mg/kg	0.50	25		32	40	
Mercury		M	2455	mg/kg	0.05	< 0.05		0.05	0.28	
Nickel		M	2455	mg/kg	0.50	32		56	50	ļ
Lead	_	M	2455	mg/кg	0.50	21		30	87	ļ
		IVI N4	2455	mg/kg	0.25	1.3		1.1	2.1	┠────┤
ZINC Chromium (Trivelent)		IVI NI	2455	mg/kg	0.50	/6		98	180	┟────┤
		N N	2490	mg/kg	1.0	1/		25	24	┟────┤
		IN LL	2490	mg/kg	0.50	< U.5U		< U.5U	< 0.50	┟────┤
			2700	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	┟────┤
Aliphalic VPH 200-07			2700	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	┟────┤
	HS_ZU_AL		2/00	ппд/кд	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	

Client: IGSL			Chei	mtest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	st Sam	ple ID.:	1751972	1751973	1751974	1751975	1751976
Order No.:			Clier	nt Samp	le Ref.:	AA196388	AA196389	AA196390	AA196386	AA196387
			Sa	ample Lo	ocation:	TP09	TP09	TP09	TP11	TP11
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	0.40	0.90	1.60	0.80	1.50
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD					
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25	[A] < 0.25	
Aliphatic EPH >C10-C12	EH_2D_AL_#1	М	2690	mg/kg	2.00	[A] < 2.0		[A] < 2.0	[A] < 2.0	
Aliphatic EPH >C12-C16	EH_2D_AL_#1	М	2690	mg/kg	1.00	[A] 14		[A] 3.5	[A] < 1.0	
Aliphatic EPH >C16-C21	EH_2D_AL_#1	М	2690	mg/kg	2.00	[A] 32		[A] 3.0	[A] < 2.0	
Aliphatic EPH >C21-C35	EH_2D_AL_#1	М	2690	mg/kg	3.00	[A] 58		[A] 18	[A] 29	
Aliphatic EPH >C35-C40	EH 2D AL #1	N	2690	mg/kg	10.00	[A] 31		[A] 25	[A] 29	
Total Aliphatic EPH >C10-C35	EH_2D_AL_#1	М	2690	mg/kg	5.00	[A] 100		[A] 25	[A] 30	
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25	[A] < 0.25	
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0	[A] < 1.0	
Aromatic EPH >C12-C16	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] 2.6		[A] < 1.0	[A] < 1.0	
Aromatic EPH >C16-C21	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 6.4		[A] < 2.0	[A] < 2.0	
Aromatic EPH >C21-C35	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 21		[A] 7.5	[A] 29	
Aromatic EPH >C35-C40	EH_2D_AR_#1	Ν	2690	mg/kg	1.00	[A] 24		[A] 22	[A] 29	
Total Aromatic EPH >C10-C35	EH_2D_AR_#1	U	2690	mg/kg	5.00	[A] 30		[A] 8.7	[A] 31	
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	[A] < 0.50		[A] < 0.50	[A] < 0.50	
Total EPH >C10-C35	EH_2D_Total_# 1	U	2690	mg/kg	10.00	[A] 130		[A] 33	[A] 61	
Organic Matter		М	2625	%	0.40		[A] 2.1			
Total Organic Carbon		М	2625	%	0.20	[A] 6.8		[A] 1.3	[A] 4.5	
Mineral Oil EPH	EH_2D_AL_#1	Ν	2670	mg/kg	10	130		50	59	i i
Benzene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	
Toluene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	
Ethylbenzene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	
m & p-Xylene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	
o-Xylene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	
Naphthalene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Acenaphthylene		Ν	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Acenaphthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Fluorene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Phenanthrene		М	2800	mg/kg	0.10	0.19		< 0.10	0.11	
Anthracene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Fluoranthene		М	2800	mg/kg	0.10	0.17		< 0.10	0.18	
Pyrene		М	2800	mg/kg	0.10	0.15		< 0.10	0.18	
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	

Client: IGSL			Chei	mtest Jo	ob No.:	24-00485	24-00485	24-00485	24-00485	24-00485
Quotation No.:		(Chemte	st Sam	ple ID.:	1751972	1751973	1751974	1751975	1751976
Order No.:			Client Sample Ref.:			AA196388	AA196389	AA196390	AA196386	AA196387
			Sa	ample Lo	ocation:	TP09	TP09	TP09	TP11	TP11
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	0.40	0.90	1.60	0.80	1.50
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD					
Chrysene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Coronene		N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	
Total Of 17 PAH's Lower		Ν	2800	mg/kg	1.0	< 1.0		< 1.0	< 1.0	
PCB 28		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 52		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 101		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 118		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 153		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 138		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	
PCB 180		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	
Tot PCBs Low (7 Congeners)		Ν	2815	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	
Total Phenols		М	2920	mg/kg	0.10	< 0.10		< 0.10	< 0.10	

Project: 25000-2 Site 2 NDFA Social I	Housing							
Chemtest Job No:	24-00485					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751932						Limits	
Sample Ref:	AA119035						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH01						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 1.2	3	5	6
Loss On Ignition	2610		М	%	4.0			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		7.7		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455		U	0.0012	0.012	0.5	2	25
Barium	1455		U	0.024	0.24	20	100	300
Cadmium	1455		U	0.00014	0.0014	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0023	0.023	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0032	0.032	0.5	10	30
Nickel	1455		U	0.0026	0.026	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0010	0.011	0.06	0.7	5
Selenium	1455		U	0.0013	0.013	0.1	0.5	7
Zinc	1455		U	0.004	0.036	4	50	200
Chloride	1220		U	9.8	98	800	15000	25000
Fluoride	1220		U	0.27	2.7	10	150	500
Sulphate	1220		U	35	350	1000	20000	50000
Total Dissolved Solids	1020		N	150	1500	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	6.0	60	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	26

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Soci	al Housing							
Chemtest Job No:	24-00485					Landfill	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751934						Limits	
Sample Ref:	AA119042						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH02						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 1.3	3	5	6
Loss On Ignition	2610		М	%	3.9			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.6		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	< 0.0002	< 0.0020	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0006	0.0056	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0094	0.094	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	0.0008	0.0077	0.1	0.5	7
Zinc	1455		U	0.011	0.11	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.22	2.2	10	150	500
Sulphate	1220		U	2.8	28	1000	20000	50000
Total Dissolved Solids	1020		N	5.6	56	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.4	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social	Housing							
Chemtest Job No:	24-00485					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751936						Limits	
Sample Ref:	AA204208						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH03						hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 4.8	3	5	6
Loss On Ignition	2610		М	%	1.0			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] 93	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		10.0		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.013		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455		U	0.0003	0.0031	0.5	2	25
Barium	1455		U	0.041	0.41	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0073	0.073	0.5	10	70
Copper	1455		U	0.0033	0.033	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0028	0.029	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0015	0.015	0.06	0.7	5
Selenium	1455		U	0.0025	0.025	0.1	0.5	7
Zinc	1455		U	< 0.003	< 0.025	4	50	200
Chloride	1220		U	8.5	85	800	15000	25000
Fluoride	1220		U	0.26	2.6	10	150	500
Sulphate	1220		U	34	340	1000	20000	50000
Total Dissolved Solids	1020		N	160	1600	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.3	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	7.4

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social H	ousing							
Chemtest Job No:	24-00485					Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1751938						Limits	
Sample Ref:	AA204215						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH04						hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 4.3	3	5	6
Loss On Ignition	2610		М	%	2.0			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		10.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.013		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0013	0.013	0.5	2	25
Barium	1455		U	0.067	0.67	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0065	0.065	0.5	10	70
Copper	1455		U	0.0035	0.035	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0022	0.022	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0021	0.021	0.06	0.7	5
Selenium	1455		U	0.0021	0.021	0.1	0.5	7
Zinc	1455		U	< 0.003	< 0.025	4	50	200
Chloride	1220		U	3.2	32	800	15000	25000
Fluoride	1220		U	0.19	1.9	10	150	500
Sulphate	1220		U	21	210	1000	20000	50000
Total Dissolved Solids	1020		N	130	1300	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.0	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	7.5

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social H	ousing								
Chemtest Job No:	24-00485					Landfill	Waste Acceptanc	e Criteria	
Chemtest Sample ID:	1751940						Limits		
Sample Ref:	AA204202						Stable, Non-		
Sample ID:							reactive		
Sample Location:	BH05						hazardous	Hazardous	
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:							Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		М	%	[A] 0.38	3	5	6	
Loss On Ignition	2610		М	%	2.4			10	
Total BTEX	2760		М	mg/kg	[A] < 0.010	6			
Total PCBs (7 Congeners)	2815		Μ	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500			
Total (of 17) PAHs						100			
pH at 20C	2010		Μ		8.7		>6		
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.016		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test	
				mg/l	mg/kg	using B	S EN 12457 at L/	L/S 10 I/kg	
Arsenic	1455		U	< 0.0002	< 0.0020	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	< 0.0005	< 0.0050	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0051	0.052	0.5	10	30	
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5	
Selenium	1455		U	0.0007	0.0067	0.1	0.5	7	
Zinc	1455		U	0.004	0.041	4	50	200	
Chloride	1220		U	3.8	38	800	15000	25000	
Fluoride	1220		U	0.18	1.8	10	150	500	
Sulphate	1220		U	3.6	36	1000	20000	50000	
Total Dissolved Solids	1020		N	6.2	62	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	3.2	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social I	Housing							
Chemtest Job No:	24-00485					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751941						Limits	
Sample Ref:	AA204222						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH06						hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 2.9	3	5	6
Loss On Ignition	2610		М	%	3.0			10
Total BTEX	2760		Μ	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	Μ	mg/kg	[A] 300	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		9.7		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.016		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/k		S 10 l/kg
Arsenic	1455		U	0.0082	0.082	0.5	2	25
Barium	1455		U	0.022	0.22	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0016	0.016	0.5	10	70
Copper	1455		U	0.012	0.12	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0050	0.050	0.5	10	30
Nickel	1455		U	0.0079	0.079	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0041	0.041	0.06	0.7	5
Selenium	1455		U	0.0025	0.025	0.1	0.5	7
Zinc	1455		U	0.006	0.056	4	50	200
Chloride	1220		U	6.8	68	800	15000	25000
Fluoride	1220		U	0.17	1.7	10	150	500
Sulphate	1220		U	73	730	1000	20000	50000
Total Dissolved Solids	1020		N	160	1600	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	8.4	84	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Socia	al Housing								
Chemtest Job No:	24-00485					LandfIII Waste Acceptance Criteria			
Chemtest Sample ID:	1751943						Limits		
Sample Ref:	AA209208						Stable, Non-		
Sample ID:							reactive		
Sample Location:	BH07						hazardous	Hazardous	
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:							Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		М	%	[A] 4.1	3	5	6	
Loss On Ignition	2610		М	%	2.0			10	
Total BTEX	2760		М	mg/kg	[A] < 0.010	6			
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500			
Total (of 17) PAHs						100			
pH at 20C	2010		М		10.6		>6		
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.018		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test	
				mg/l	mg/kg	using B	S EN 12457 at L/	2457 at L/S 10 l/kg	
Arsenic	1455		U	0.0013	0.013	0.5	2	25	
Barium	1455		U	0.038	0.38	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	0.020	0.20	0.5	10	70	
Copper	1455		U	0.020	0.20	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0033	0.033	0.5	10	30	
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	0.0046	0.046	0.06	0.7	5	
Selenium	1455		U	0.0023	0.023	0.1	0.5	7	
Zinc	1455		U	< 0.003	< 0.025	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.20	2.0	10	150	500	
Sulphate	1220		U	25	250	1000	20000	50000	
Total Dissolved Solids	1020		N	160	1600	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	3.7	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	10

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social I	<u>Housing</u>							
Chemtest Job No:	24-00485					Landfill	e Criteria	
Chemtest Sample ID:	1751945						Limits	
Sample Ref:	AA209210						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH07						hazardous	Hazardous
Top Depth(m):	2.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 0.92	3	5	6
Loss On Ignition	2610		М	%	10			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.7		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.013		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0014	0.014	0.5	2	25
Barium	1455		U	0.087	0.87	20	100	300
Cadmium	1455		U	0.00021	0.0021	0.04	1	5
Chromium	1455		U	0.0012	0.012	0.5	10	70
Copper	1455		U	0.0043	0.043	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0069	0.069	0.5	10	30
Nickel	1455		U	0.0036	0.036	0.4	10	40
Lead	1455		U	0.0013	0.013	0.5	10	50
Antimony	1455		U	0.0014	0.014	0.06	0.7	5
Selenium	1455		U	0.0010	0.0099	0.1	0.5	7
Zinc	1455		U	0.009	0.086	4	50	200
Chloride	1220		U	3.0	30	800	15000	25000
Fluoride	1220		U	0.32	3.2	10	150	500
Sulphate	1220		U	7.6	76	1000	20000	50000
Total Dissolved Solids	1020		N	86	860	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1		
	1020		0	+ 0.000	0.00	'		

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social I	Housing								
Chemtest Job No:	24-00485					Landfill \	LandfIII Waste Acceptance Criteria		
Chemtest Sample ID:	1751946						Limits		
Sample Ref:	AA209201						Stable, Non-		
Sample ID:							reactive		
Sample Location:	BH08						hazardous	Hazardous	
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:							Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		М	%	[A] 5.3	3	5	6	
Loss On Ignition	2610		М	%	3.3			10	
Total BTEX	2760		Μ	mg/kg	[A] < 0.010	6			
Total PCBs (7 Congeners)	2815		Μ	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_1D_Total_CU	Μ	mg/kg	[A] 140	500			
Total (of 17) PAHs						100			
pH at 20C	2010		М		8.8		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.016		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test	
				mg/l	mg/kg	using B	S 10 l/kg		
Arsenic	1455		U	0.0069	0.069	0.5	2	25	
Barium	1455		U	0.052	0.52	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	0.0009	0.0090	0.5	10	70	
Copper	1455		U	0.0039	0.039	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0063	0.063	0.5	10	30	
Nickel	1455		U	0.0020	0.020	0.4	10	40	
Lead	1455		U	0.0014	0.014	0.5	10	50	
Antimony	1455		U	0.0040	0.040	0.06	0.7	5	
Selenium	1455		U	0.0045	0.045	0.1	0.5	7	
Zinc	1455		U	0.005	0.051	4	50	200	
Chloride	1220		U	7.9	79	800	15000	25000	
Fluoride	1220		U	0.24	2.4	10	150	500	
Sulphate	1220		U	33	330	1000	20000	50000	
Total Dissolved Solids	1020		N	120	1200	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	6.4	64	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	8.4

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social F	lousing							
Chemtest Job No:	24-00485					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751948						Limits	
Sample Ref:	AA204230						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH09						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 0.51	3	5	6
Loss On Ignition	2610		М	%	2.2			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.3		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455		U	0.0008	0.0075	0.5	2	25
Barium	1455		U	0.011	0.11	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0011	0.011	0.5	10	70
Copper	1455		U	0.0014	0.014	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0038	0.038	0.5	10	30
Nickel	1455		U	0.0017	0.017	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	0.0008	0.0082	0.1	0.5	7
Zinc	1455		U	0.004	0.044	4	50	200
Chloride	1220		U	5.3	53	800	15000	25000
Fluoride	1220		U	0.34	3.4	10	150	500
Sulphate	1220		U	15	150	1000	20000	50000
Total Dissolved Solids	1020		N	89	890	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.8	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social H	<u>ousing</u>							
Chemtest Job No:	24-00485					Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1751950						Limits	
Sample Ref:	AA204238						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH10						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 0.72	3	5	6
Loss On Ignition	2610		М	%	2.0			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.6		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.018		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0013	0.013	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0009	0.0094	0.5	10	70
Copper	1455		U	0.0022	0.022	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0056	0.056	0.5	10	30
Nickel	1455		U	0.0025	0.025	0.4	10	40
Lead	1455		U	0.0008	0.0078	0.5	10	50
Antimony	1455		U	0.0006	0.0056	0.06	0.7	5
Selenium	1455		U	0.0013	0.013	0.1	0.5	7
Zinc	1455		U	0.008	0.075	4	50	200
Chloride	1220		U	38	380	800	15000	25000
Fluoride	1220		U	0.51	5.1	10	150	500
Sulphate	1220		U	4.8	48	1000	20000	50000
Total Dissolved Solids	1020		N	150	1500	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	1 1	U	5.3	53	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	18

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Socia	al Housing							
Chemtest Job No:	24-00485	24-00485				Landfill	e Criteria	
Chemtest Sample ID:	1751952						Limits	
Sample Ref:	AA204244						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH11						hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 2.6	3	5	6
Loss On Ignition	2610		М	%	1.8			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		Μ		8.4		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.015	0.15	0.5	2	25
Barium	1455		U	0.018	0.18	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0015	0.015	0.5	10	70
Copper	1455		U	0.0091	0.091	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0072	0.072	0.5	10	30
Nickel	1455		U	0.0035	0.035	0.4	10	40
Lead	1455		U	0.0023	0.023	0.5	10	50
Antimony	1455		U	0.0036	0.036	0.06	0.7	5
Selenium	1455		U	0.0033	0.033	0.1	0.5	7
Zinc	1455		U	0.006	0.061	4	50	200
Chloride	1220		U	21	210	800	15000	25000
Fluoride	1220		U	0.24	2.4	10	150	500
Sulphate	1220		U	20	200	1000	20000	50000
Total Dissolved Solids	1020		N	140	1400	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.1	91	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	18

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social	<u>Housing</u>							
Chemtest Job No:	24-00485					Landfill \	e Criteria	
Chemtest Sample ID:	1751953						Limits	
Sample Ref:	AA209223						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH12						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 1.8	3	5	6
Loss On Ignition	2610		М	%	1.9			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.5		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0039	0.039	0.5	2	25
Barium	1455		U	0.033	0.33	20	100	300
Cadmium	1455		U	0.00043	0.0043	0.04	1	5
Chromium	1455		U	0.0018	0.018	0.5	10	70
Copper	1455		U	0.0080	0.080	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0071	0.071	0.5	10	30
Nickel	1455		U	0.0085	0.085	0.4	10	40
Lead	1455		U	0.0031	0.031	0.5	10	50
Antimony	1455		U	0.0021	0.021	0.06	0.7	5
Selenium	1455		U	0.0015	0.015	0.1	0.5	7
Zinc	1455		U	0.016	0.16	4	50	200
Chloride	1220		U	4.4	44	800	15000	25000
Fluoride	1220		U	0.56	5.6	10	150	500
Sulphate	1220		U	11	110	1000	20000	50000
Total Dissolved Solids	1020		N	100	1000	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Disselved Oppenie Carless	1610			8.6	86	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	18

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social Ho	<u>busing</u>							
Chemtest Job No:	24-00485					LandfIII Waste Acceptance Criteria		
Chemtest Sample ID:	1751955						Limits	
Sample Ref:	AA209215						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH13						hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 5.2	3	5	6
Loss On Ignition	2610		М	%	4.8			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		Μ		10.5		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0007	0.0072	0.5	2	25
Barium	1455		U	0.048	0.48	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.011	0.11	0.5	10	70
Copper	1455		U	0.010	0.10	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0049	0.049	0.5	10	30
Nickel	1455		U	0.0042	0.042	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0054	0.054	0.06	0.7	5
Selenium	1455		U	0.0031	0.031	0.1	0.5	7
Zinc	1455		U	< 0.003	< 0.025	4	50	200
Chloride	1220		U	3.7	37	800	15000	25000
Fluoride	1220		U	0.22	2.2	10	150	500
Sulphate	1220		U	33	330	1000	20000	50000
Total Dissolved Solids	1020		N	170	1700	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	1	U	3.8	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	8.5

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Socia	al Housing							
Chemtest Job No:	24-00485					Landfill	e Criteria	
Chemtest Sample ID:	1751957						Limits	
Sample Ref:	AA196364						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP01						hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 2.2	3	5	6
Loss On Ignition	2610		М	%	2.0			10
Total BTEX	2760		Μ	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		9.2		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0080		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0013	0.013	0.5	2	25
Barium	1455		U	0.028	0.28	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0051	0.051	0.5	10	70
Copper	1455		U	0.0006	0.0061	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0040	0.040	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0014	0.014	0.06	0.7	5
Selenium	1455		U	0.0019	0.019	0.1	0.5	7
Zinc	1455		U	0.003	0.029	4	50	200
Chloride	1220		U	28	280	800	15000	25000
Fluoride	1220		U	0.21	2.1	10	150	500
Sulphate	1220		U	90	900	1000	20000	50000
Total Dissolved Solids	1020		Ν	210	2100	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	7.7

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Socia	al Housing							
Chemtest Job No:	24-00485	24-00485				Landfill	e Criteria	
Chemtest Sample ID:	1751959						Limits	
Sample Ref:	AA196368						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP02						hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 3.5	3	5	6
Loss On Ignition	2610		М	%	1.5			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.3		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.0080		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0004	0.0042	0.5	2	25
Barium	1455		U	0.024	0.24	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	< 0.0005	< 0.0050	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0017	0.017	0.5	10	30
Nickel	1455		U	0.0008	0.0076	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0006	0.0059	0.06	0.7	5
Selenium	1455		U	0.0013	0.014	0.1	0.5	7
Zinc	1455		U	0.009	0.089	4	50	200
Chloride	1220		U	5.0	50	800	15000	25000
Fluoride	1220		U	0.27	2.7	10	150	500
Sulphate	1220		U	180	1800	1000	20000	50000
Total Dissolved Solids	1020		N	260	2600	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	< 2.5	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	3.8

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social Ho	<u>busing</u>							
Chemtest Job No:	24-00485			Landfill \	e Criteria			
Chemtest Sample ID:	1751960							
Sample Ref:	AA196372						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP03						hazardous	Hazardous
Top Depth(m):	0.70					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 5.5	3	5	6
Loss On Ignition	2610		М	%	1.6			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	Μ	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		Μ		9.0		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l		mg/kg	using BS EN 12457 at L/S		S 10 I/kg
Arsenic	1455		U	0.0060	0.060	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0006	0.0060	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0008	0.0076	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0007	0.0067	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.004	0.042	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.076	< 1.0	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		N	22	210	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
		-		-				

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	6.0

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social Ho	ousing							
Chemtest Job No:	24-00485				Landfill \	e Criteria		
Chemtest Sample ID:	1751961						Limits	
Sample Ref:	AA196373						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP03						hazardous	Hazardous
Top Depth(m):	1.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 0.42	3	5	6
Loss On Ignition	2610		М	%	3.7			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		Μ		8.2		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	eaching test	
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 l/kg
Arsenic	1455		U	0.0022	0.022	0.5	2	25
Barium	1455		U	0.011	0.11	20	100	300
Cadmium	1455		U	0.00023	0.0023	0.04	1	5
Chromium	1455		U	0.0015	0.015	0.5	10	70
Copper	1455		U	0.0049	0.049	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0049	0.050	0.5	10	30
Nickel	1455		U	0.0048	0.048	0.4	10	40
Lead	1455		U	0.0028	0.028	0.5	10	50
Antimony	1455		U	0.0015	0.016	0.06	0.7	5
Selenium	1455		U	0.0006	0.0065	0.1	0.5	7
Zinc	1455		U	0.016	0.16	4	50	200
Chloride	1220		U	4.5	45	800	15000	25000
Fluoride	1220		U	0.34	3.4	10	150	500
Sulphate	1220		U	15	150	1000	20000	50000
Total Dissolved Solids	1020		N	86	850	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
		-						

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Socia	I Housing								
Chemtest Job No:	24-00485				Landfill	e Criteria			
Chemtest Sample ID:	1751963						Limits		
Sample Ref:	AA196375						Stable, Non-		
Sample ID:							reactive		
Sample Location:	TP04						hazardous	Hazardous	
Top Depth(m):	0.80					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:							Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		М	%	[A] 2.0	3	5	6	
Loss On Ignition	2610		М	%	9.2			10	
Total BTEX	2760		М	mg/kg	[A] < 0.010	6			
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] 2300	500			
Total (of 17) PAHs						100			
pH at 20C	2010		М		8.7		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.016		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test	
				mg/l	mg/kg	using BS EN 12457 at L/S 10 L		S 10 I/kg	
Arsenic	1455		U	0.012	0.12	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	0.0015	0.015	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0004	0.0038	0.5	10	30	
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40	
Lead	1455		U	0.0006	0.0061	0.5	10	50	
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.009	0.092	4	50	200	
Chloride	1220		U	1.8	18	800	15000	25000	
Fluoride	1220		U	0.089	< 1.0	10	150	500	
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020		N	57	570	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	4.2	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social	<u>Housing</u>							
Chemtest Job No:	24-00485			Landfill	e Criteria			
Chemtest Sample ID:	1751965						Limits	
Sample Ref:	AA196378						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP05						hazardous	Hazardous
Top Depth(m):	0.40					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 4.3	3	5	6
Loss On Ignition	2610		М	%	3.4			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.2		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.016		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0009	0.0091	0.5	2	25
Barium	1455		U	0.028	0.28	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0013	0.013	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0044	0.044	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0006	0.0060	0.06	0.7	5
Selenium	1455		U	0.0010	0.010	0.1	0.5	7
Zinc	1455		U	0.005	0.054	4	50	200
Chloride	1220		U	20	200	800	15000	25000
Fluoride	1220		U	0.22	2.2	10	150	500
Sulphate	1220		U	110	1100	1000	20000	50000
Total Dissolved Solids	1020		N	230	2300	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	2.7	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social I	lousing								
Chemtest Job No:	24-00485			Landfill	e Criteria				
Chemtest Sample ID:	1751967						Limits		
Sample Ref:	AA196380						Stable, Non-		
Sample ID:							reactive		
Sample Location:	TP05						hazardous	Hazardous	
Top Depth(m):	1.70					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:							Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		М	%	[A] 2.3	3	5	6	
Loss On Ignition	2610		М	%	2.0			10	
Total BTEX	2760		М	mg/kg	[A] < 0.010	6			
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500			
Total (of 17) PAHs						100			
pH at 20C	2010		М		8.3		>6		
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.012		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test	
-			mg/l		mg/kg	using BS EN 12457 at L		./S 10 l/kg	
Arsenic	1455		U	0.0003	0.0030	0.5	2	25	
Barium	1455		U	0.007	0.068	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	0.0006	0.0055	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0093	0.093	0.5	10	30	
Nickel	1455		U	0.0006	0.0063	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.003	0.033	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.21	2.1	10	150	500	
Sulphate	1220		U	4.1	41	1000	20000	50000	
Total Dissolved Solids	1020		N	6.1	61	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
					F 4	500	000	4000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	8.6

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social F	lousing							
Chemtest Job No:	24-00485				Landfill \	Vaste Acceptanc	e Criteria	
Chemtest Sample ID:	1751968							
Sample Ref:	AA204940						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP06						hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 6.0	3	5	6
Loss On Ignition	2610		М	%	1.5			10
Total BTEX	2760		Μ	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		9.4		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.014		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S 10 l/kg	
Arsenic	1455		U	0.010	0.10	0.5	2	25
Barium	1455		U	0.015	0.15	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0031	0.031	0.5	10	70
Copper	1455		U	0.0047	0.047	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0023	0.023	0.5	10	30
Nickel	1455		U	0.0009	0.0092	0.4	10	40
Lead	1455		U	0.0005	0.0052	0.5	10	50
Antimony	1455		U	0.0017	0.017	0.06	0.7	5
Selenium	1455		U	0.0018	0.018	0.1	0.5	7
Zinc	1455		U	0.007	0.066	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.14	1.4	10	150	500
Sulphate	1220		U	9.0	90	1000	20000	50000
Total Dissolved Solids	1020		N	63	630	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organia Carbon	1610	I T		4.2	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	5.3

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social I	lousing							
Chemtest Job No:	24-00485					Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1751969						Limits	
Sample Ref:	AA196397						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP07						hazardous	Hazardous
Top Depth(m):	1.30					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 2.1	3	5	6
Loss On Ignition	2610		М	%	2.9			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		9.5		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0030	0.030	0.5	2	25
Barium	1455		U	0.012	0.12	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0015	0.015	0.5	10	70
Copper	1455		U	0.0028	0.028	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0079	0.079	0.5	10	30
Nickel	1455		U	0.0023	0.023	0.4	10	40
Lead	1455		U	0.0013	0.013	0.5	10	50
Antimony	1455		U	0.0012	0.012	0.06	0.7	5
Selenium	1455		U	0.0018	0.018	0.1	0.5	7
Zinc	1455		U	0.007	0.072	4	50	200
Chloride	1220		U	2.2	22	800	15000	25000
Fluoride	1220		U	0.44	4.4	10	150	500
Sulphate	1220		U	29	290	1000	20000	50000
Total Dissolved Solids	1020		N	100	990	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Socia	al Housing							
Chemtest Job No:	24-00485					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751971						Limits	
Sample Ref:	AA196392						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP08						hazardous	Hazardous
Top Depth(m):	0.60					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 6.0	3	5	6
Loss On Ignition	2610		М	%	0.78			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		9.0		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.014		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455		U	0.0012	0.012	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0019	0.019	0.5	10	70
Copper	1455		U	0.0022	0.022	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0008	0.0079	0.5	10	30
Nickel	1455		U	0.0020	0.020	0.4	10	40
Lead	1455		U	0.0016	0.016	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.013	0.13	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.27	2.7	10	150	500
Sulphate	1220		U	1.5	15	1000	20000	50000
Total Dissolved Solids	1020		N	49	490	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.4	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	6.3

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social F	lousing							
Chemtest Job No:	24-00485					Landfill	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751972						Limits	
Sample Ref:	AA196388						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP09						hazardous	Hazardous
Top Depth(m):	0.40					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 6.8	3	5	6
Loss On Ignition	2610		М	%	1.8			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		9.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455		U	0.011	0.11	0.5	2	25
Barium	1455		U	0.007	0.066	20	100	300
Cadmium	1455		U	0.00022	0.0022	0.04	1	5
Chromium	1455		U	0.0016	0.016	0.5	10	70
Copper	1455		U	0.0073	0.073	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0050	0.050	0.5	10	30
Nickel	1455		U	0.0053	0.053	0.4	10	40
Lead	1455		U	0.0035	0.035	0.5	10	50
Antimony	1455		U	0.0039	0.039	0.06	0.7	5
Selenium	1455		U	0.0035	0.035	0.1	0.5	7
Zinc	1455		U	0.010	0.097	4	50	200
Chloride	1220		U	17	170	800	15000	25000
Fluoride	1220		U	0.19	1.9	10	150	500
Sulphate	1220		U	53	530	1000	20000	50000
Total Dissolved Solids	1020		N	180	1800	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organia Carbon	1610		U	6.3	63	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	9.7

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social Ho	ousing							
Chemtest Job No:	24-00485					Landfill	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751974						Limits	
Sample Ref:	AA196390						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP09						hazardous	Hazardous
Top Depth(m):	1.60					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 1.3	3	5	6
Loss On Ignition	2610		М	%	3.3			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		9.0		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.016		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0060	0.060	0.5	2	25
Barium	1455		U	0.012	0.12	20	100	300
Cadmium	1455		U	0.00021	0.0021	0.04	1	5
Chromium	1455		U	0.0032	0.032	0.5	10	70
Copper	1455		U	0.013	0.13	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.010	0.10	0.5	10	30
Nickel	1455		U	0.013	0.13	0.4	10	40
Lead	1455		U	0.0067	0.067	0.5	10	50
Antimony	1455		U	0.0021	0.022	0.06	0.7	5
Selenium	1455		U	0.0017	0.017	0.1	0.5	7
Zinc	1455		U	0.036	0.36	4	50	200
Chloride	1220		U	34	340	800	15000	25000
Fluoride	1220		U	0.30	3.0	10	150	500
Sulphate	1220		U	16	160	1000	20000	50000
Total Dissolved Solids	1020		N	160	1600	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	1 1	U	5.9	59	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	11

Waste Acceptance Criteria

Project: 25000-2 Site 2 NDFA Social I	Housing							
Chemtest Job No:	24-00485					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751975						Limits	
Sample Ref:	AA196386						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP11						hazardous	Hazardous
Top Depth(m):	0.80					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 4.5	3	5	6
Loss On Ignition	2610		М	%	6.5			10
Total BTEX	2760		Μ	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	Μ	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.015		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455		U	0.0026	0.026	0.5	2	25
Barium	1455		U	0.017	0.17	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0042	0.042	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0072	0.072	0.5	10	30
Nickel	1455		U	0.0022	0.022	0.4	10	40
Lead	1455		U	0.0008	0.0081	0.5	10	50
Antimony	1455		U	0.0030	0.030	0.06	0.7	5
Selenium	1455		U	0.0015	0.015	0.1	0.5	7
Zinc	1455		U	0.006	0.058	4	50	200
Chloride	1220		U	4.3	43	800	15000	25000
Fluoride	1220		U	0.26	2.6	10	150	500
Sulphate	1220		U	30	300	1000	20000	50000
Total Dissolved Solids	1020		N	140	1400	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	8.0	80	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1751932	AA119035		BH01		А	Amber Glass 250ml
1751932	AA119035		BH01		A	Plastic Tub 500g
1751933	AA119036		BH01		А	Amber Glass 250ml
1751933	AA119036		BH01		A	Plastic Tub 500g
1751934	AA119042		BH02		A	Amber Glass 250ml
1751934	AA119042		BH02		A	Plastic Tub 500g
1751935	AA119044		BH02		A	Amber Glass 250ml
1751935	AA119044		BH02		А	Plastic Tub 500g
1751936	AA204208		BH03		A	Amber Glass 250ml
1751936	AA204208		BH03		A	Plastic Tub 500g
1751937	AA204209		BH03		A	Amber Glass 250ml
1751937	AA204209		BH03		A	Plastic Tub 500g
1751938	AA204215		BH04		A	Amber Glass 250ml
1751938	AA204215		BH04		A	Plastic Tub 500g
1751939	AA204217		BH04		A	Amber Glass 250ml
1751939	AA204217		BH04		A	Plastic Tub 500g
1751940	AA204202		BH05		A	Amber Glass 250ml
1751940	AA204202		BH05		A	Plastic Tub 500g
1751941	AA204222		BH06		A	Amber Glass 250ml
1751941	AA204222		BH06		A	Plastic Tub 500g
1751942	AA204224		BH06		A	Amber Glass 250ml
1751942	AA204224		BH06		А	Plastic Tub 500g

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1751943	AA209208		BH07		A	Amber Glass 250ml
1751943	AA209208		BH07		А	Plastic Tub 500g
1751944	AA209209		BH07		A	Amber Glass 250ml
1751944	AA209209		BH07		А	Plastic Tub 500g
1751945	AA209210		BH07		A	Amber Glass 250ml
1751945	AA209210		BH07		A	Plastic Tub 500g
1751946	AA209201		BH08		A	Amber Glass 250ml
1751946	AA209201		BH08		А	Plastic Tub 500g
1751947	AA209203		BH08		A	Amber Glass 250ml
1751947	AA209203		BH08		A	Plastic Tub 500g
1751948	AA204230		BH09		A	Amber Glass 250ml
1751948	AA204230		BH09		A	Plastic Tub 500g
1751949	AA204231		BH09		A	Amber Glass 250ml
1751949	AA204231		BH09		A	Plastic Tub 500g
1751950	AA204238		BH10		A	Amber Glass 250ml
1751950	AA204238		BH10		A	Plastic Tub 500g
1751951	AA204239		BH10		A	Amber Glass 250ml
1751951	AA204239		BH10		A	Plastic Tub 500g
1751952	AA204244		BH11		A	Amber Glass 250ml
1751952	AA204244		BH11		A	Plastic Tub 500g
1751953	AA209223		BH12		A	Amber Glass 250ml
1751953	AA209223		BH12		A	Plastic Tub 500g

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1751954	AA209224		BH12		А	Amber Glass 250ml
1751954	AA209224		BH12		A	Plastic Tub 500g
1751955	AA209215		BH13		A	Amber Glass 250ml
1751955	AA209215		BH13		А	Plastic Tub 500g
1751956	AA209217		BH13		A	Amber Glass 250ml
1751956	AA209217		BH13		A	Plastic Tub 500g
1751957	AA196364		TP01		А	Amber Glass 250ml
1751957	AA196364		TP01		А	Plastic Tub 500g
1751958	AA196366		TP01		A	Amber Glass 250ml
1751958	AA196366		TP01		A	Plastic Tub 500g
1751959	AA196368		TP02		А	Amber Glass 250ml
1751959	AA196368		TP02		A	Plastic Tub 500g
1751960	AA196372		TP03		A	Amber Glass 250ml
1751960	AA196372		TP03		A	Plastic Tub 500g
1751961	AA196373		TP03		А	Amber Glass 250ml
1751961	AA196373		TP03		A	Plastic Tub 500g
1751962	AA196374		TP03		A	Amber Glass 250ml
1751962	AA196374		TP03		A	Plastic Tub 500g
1751963	AA196375		TP04		A	Amber Glass 250ml
1751963	AA196375		TP04		A	Plastic Tub 500g
1751964	AA196376		TP04		A	Amber Glass 250ml
1751964	AA196376		TP04		A	Plastic Tub 500g

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1751965	AA196378		TP05		А	Amber Glass 250ml
1751965	AA196378		TP05		А	Plastic Tub 500g
1751966	AA196379		TP05		А	Amber Glass 250ml
1751966	AA196379		TP05		A	Plastic Tub 500g
1751967	AA196380		TP05		A	Amber Glass 250ml
1751967	AA196380		TP05		A	Plastic Tub 500g
1751968	AA204940		TP06		А	Amber Glass 250ml
1751968	AA204940		TP06		А	Plastic Tub 500g
1751969	AA196397		TP07		A	Amber Glass 250ml
1751969	AA196397		TP07		A	Plastic Tub 500g
1751970	AA196398		TP07		A	Amber Glass 250ml
1751970	AA196398		TP07		A	Plastic Tub 500g
1751971	AA196392		TP08		A	Amber Glass 250ml
1751971	AA196392		TP08		A	Plastic Tub 500g
1751972	AA196388		TP09		А	Amber Glass 250ml
1751972	AA196388		TP09		A	Plastic Tub 500g
1751973	AA196389		TP09		A	Amber Glass 250ml
1751973	AA196389		TP09		A	Plastic Tub 500g
1751974	AA196390		TP09		A	Amber Glass 250ml
1751974	AA196390		TP09		A	Plastic Tub 500g
1751975	AA196386		TP11		A	Amber Glass 250ml
1751975	AA196386		TP11		A	Plastic Tub 500g
Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1751976	AA196387		TP11		A	Amber Glass 250ml
1751976	AA196387		TP11		A	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pH at 20°C	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pH at 20°C	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID

Test Methods

SOP	Title	Parameters included	Method summary
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C40 Aromatics: >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8-C10 Aromatics: >C5–C7,>C7-C8,>C8–C10	Water extraction / Headspace GCxGC FID detection
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report		Er	nail: info@chemtest.c
Report No.:	24-03994-1		
Initial Date of Issue:	19-Feb-2024		
Re-Issue Details:			
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	Darren Keogh		
Project	25000-2 Collins Avenue		
Quotation No.:	Q20-21693	Date Received:	09-Feb-2024
Order No.:		Date Instructed:	09-Feb-2024
No. of Samples:	8		
Turnaround (Wkdays):	7	Results Due:	19-Feb-2024
Date Approved:	19-Feb-2024		
Approved By:			

Details:

2183

Stuart Henderson, Technical Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Leachate

Client: IGSL	Chemtest Job No.:		24-03994	24-03994	24-03994	24-03994			
Quotation No.: Q20-21693	Chemtest Sample ID.				ple ID.:	1764863	1764865	1764868	1764869
Order No.:	Client Sample Ref.				le Ref.:	BH14	BH16	BH18	BH19
	Sample Type				e Type:	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):			1.00	0.50	1.00	1.00		
				Date Sa	mpled:	08-Feb-2024	08-Feb-2024	08-Feb-2024	08-Feb-2024
Determinand	Accred.	SOP	Туре	Units	LOD				
Ammonium	U	1220 10:1 mg/l 0.050		0.32	< 0.050	0.20	0.11		
Ammonium	N 1220 10:1 mg/kg 0.10			0.10	4.0	3.5	7.6	2.8	

Results - Soil

Client: IGSL			Che	mtest J	ob No.:	24-03994	24-03994	24-03994	24-03994	24-03994	24-03994	24-03994
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1764863	1764864	1764865	1764866	1764867	1764868	1764869
Order No.:			Clie	nt Samp	le Ref.:	BH14	BH14	BH16	BH16	BH17	BH18	BH19
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	1.00	2.00	0.50	2.00	1.00	1.00	1.00
				Date Sa	ampled:	08-Feb-2024	08-Feb-2024	08-Feb-2024	08-Feb-2024	08-Feb-2024	08-Feb-2024	08-Feb-2024
				Asbest	os Lab:	DURHAM	1	DURHAM			DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
АСМ Туре		U	2192		N/A	-		-			-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected		No Asbestos Detected			No Asbestos Detected	No Asbestos Detected
Moisture		N	2030	%	0.020	17	16	26	17	18	23	20
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Roots and Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Clay	Clay	Clay	Sand	Clay	Clay
pH at 20C		М	2010		4.0	8.6		8.9			8.7	8.9
pH (2.5:1) at 20C		Ν	2010		4.0		8.4		7.8	8.4		
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	< 0.40		0.49			0.51	< 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010		< 0.010		< 0.010	< 0.010		
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		0.015		< 0.010	0.015		
Total Sulphur		U	2175	%	0.010		0.041		0.017	0.029		
Sulphur (Elemental)		М	2180	mg/kg	1.0	4.3		27			69	4.7
Chloride (Water Soluble)		М	2220	g/l	0.010		0.046		0.49	0.17		
Nitrate (Water Soluble)		Ν	2220	g/l	0.010		< 0.010		0.021	< 0.010		
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50		0.50			< 0.50	< 0.50
Sulphide (Easily Liberatable)		Ν	2325	mg/kg	0.50	3.6		5.3			14	6.4
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01		< 0.01	< 0.01		
Sulphate (Total)		U	2430	%	0.010	0.15		0.16			0.14	0.094
Sulphate (Acid Soluble)		U	2430	%	0.010		0.037		0.028	0.034		
Arsenic		М	2455	mg/kg	0.5	17		17			12	19
Barium		М	2455	mg/kg	0	130		110			82	100
Cadmium		М	2455	mg/kg	0.10	3.1		2.8			1.7	2.9
Chromium		М	2455	mg/kg	0.5	26		33			24	30
Molybdenum		М	2455	mg/kg	0.5	7.1		5.1			4.2	5.2
Antimony		N	2455	mg/kg	2.0	2.4		2.1			< 2.0	2.2
Copper		М	2455	mg/kg	0.50	41		42			30	43
Mercury		М	2455	mg/kg	0.05	0.08		0.11			0.09	0.08
Nickel		М	2455	mg/kg	0.50	75		64			47	69
Lead		М	2455	mg/kg	0.50	35		35			30	37
Selenium		М	2455	mg/kg	0.25	3.1		1.9			2.1	3.4
Zinc		М	2455	mg/kg	0.50	130		120			93	120
Chromium (Trivalent)		N	2490	mg/kg	1.0	26		33			24	30
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50		< 0.50			< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05			< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05			< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05			< 0.05	< 0.05

Results - Soil

Client: IGSI			Che	mtest .l	oh No ·	24-03994	24-03994	24-03994	24-03994	24-03994	24-03994	24-03994
Quotation No : 020-21693		(Chemte	st Sam	ple ID.:	1764863	1764864	1764865	1764866	1764867	1764868	1764869
Order No :			Clie	nt Samp	le Ref	BH14	BH14	BH16	BH16	BH17	BH18	BH19
			0.10	Sampl	e Type:	SOIL						
				Top Dei	oth (m)	1.00	2 00	0.50	2.00	1.00	1.00	1 00
				Date Sa	ampled:	08-Feb-2024						
				Ashest	os Lab		001002024		001002024	001002024		
Determinand	HWOL Code	Accred	SOP	Units		Borthivit		DOTITIVIT			DOIGHAN	Dortriviti
Aliphatic VPH >C8-C10	HS 2D AI	U	2780	ma/ka	0.05	< 0.05		< 0.05			< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.00	< 0.25		< 0.25			< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	FH AL 2D #1	M	2690	mg/kg	2.00	< 2.0		< 2.0			< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_AL_2D_#1	M	2690	ma/ka	1 00	2.4		< 1.0			< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_AL_2D_#1	M	2690	mg/kg	2.00	< 2.0		< 2.0			< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_AL_2D_#1	M	2690	ma/ka	3.00	3.4	<u> </u>	3.5			< 3.0	3.1
Aliphatic EPH >C35-C40 MC	EH_AL_2D_#1	N	2690	ma/ka	10.00	< 10		< 10			< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_AL_2D_#1	M	2690	ma/ka	5.00	7 9		< 5.0			< 5.0	< 5.0
Aromatic VPH >C5-C7	HS 2D AR	U	2780	ma/ka	0.05	< 0.05		< 0.05			< 0.05	< 0.05
Aromatic VPH >C7-C8	HS 2D AR	U	2780	ma/ka	0.05	< 0.05		< 0.05			< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg	0.05	< 0.05		< 0.05			< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.00	< 0.25		< 0.25			< 0.25	< 0.25
Aromatic EPH $>$ C10-C12 MC	FH AR 2D #1	U	2690	mg/kg	1.00	< 1.0		< 1.0			< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_AR_2D_#1	U	2690	ma/ka	1.00	< 1.0	<u> </u>	< 1.0			< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	4.6		4.3			4.6	11
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	ma/ka	2.00	3.6	<u> </u>	< 2.0			< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH AR 2D #1	N	2690	ma/ka	1 00	14		1.0			1.6	1.3
Total Aromatic FPH >C10-C35 MC	EH_AR_2D_#1	U	2690	ma/ka	5.00	82		5.8			5.5	11
Total VPH >C5-C10	HS 2D Total	U	2780	ma/ka	0.50	< 0.50		< 0.50			< 0.50	< 0.50
Total EPH >C10-C35 MC	FH Total 2D #1	U	2690	ma/ka	10.00	16		10			< 10	15
Total Organic Carbon		M	2625	%	0.20	0.62		1.9			2.0	0.57
Mineral Oil EPH	EH AL 2D #1	N	2670	ma/ka	10	< 10		< 10			< 10	< 10
Benzene		М	2760	ua/ka	1.0	< 1.0		< 1.0			< 1.0	< 1.0
Toluene		М	2760	ua/ka	1.0	< 1.0		< 1.0			< 1.0	< 1.0
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0		< 1.0			< 1.0	< 1.0
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0		< 1.0			< 1.0	< 1.0
o-Xylene		М	2760	µg/kg	1.0	< 1.0		< 1.0			< 1.0	< 1.0
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0		< 1.0			< 1.0	< 1.0
Naphthalene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Acenaphthene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg	0.10	< 0.10	1	< 0.10			< 0.10	< 0.10
Anthracene		М	2800	mg/kg	0.10	< 0.10	1	< 0.10			< 0.10	< 0.10
Fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Pyrene		М	2800	mg/kg	0.10	< 0.10	1	< 0.10			< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10		< 0.10	ĺ		< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10

Results - Soil

Client: IGSL			Che	mtest J	ob No.:	24-03994	24-03994	24-03994	24-03994	24-03994	24-03994	24-03994
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1764863	1764864	1764865	1764866	1764867	1764868	1764869
Order No.:			Clie	nt Samp	le Ref.:	BH14	BH14	BH16	BH16	BH17	BH18	BH19
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Depth (m):		1.00	2.00	0.50	2.00	1.00	1.00	1.00	
			Date Sampled: 08		08-Feb-2024							
				Asbest	os Lab:	DURHAM		DURHAM			DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Coronene		Ν	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10
Total Of 17 PAH's Lower		Ν	2800	mg/kg	1.0	< 1.0		< 1.0			< 1.0	< 1.0
PCB 28		U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010	< 0.010
PCB 52		U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010	< 0.010
PCB 101		U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010	< 0.010
PCB 118		U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010	< 0.010
PCB 153		U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010	< 0.010
PCB 138		U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010	< 0.010
PCB 180		U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010	< 0.010
Tot PCBs Low (7 Congeners)		Ν	2815	mg/kg	0.05	< 0.05		< 0.05			< 0.05	< 0.05
Total Phenols		М	2920	mg/kg	0.10	< 0.10		< 0.10			< 0.10	< 0.10

Client: IGSL			24-03994			
Quotation No.: Q20-21693		(Chemte	ple ID.:	1764870	
Order No.:			Clie	nt Samp	le Ref.:	BH19
				Sampl	е Туре:	SOIL
				Тор Dep	oth (m):	2.00
				Date Sa	ampled:	08-Feb-2024
				Asbest	os Lab:	
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
АСМ Туре		U	2192		N/A	
Asbestos Identification		U	2192		N/A	
Moisture		N	2030	%	0.020	15
Soil Colour		Ν	2040		N/A	Brown
Other Material		N	2040		N/A	Stones
Soil Texture		N	2040		N/A	Sand
pH at 20C		М	2010		4.0	
pH (2.5:1) at 20C		Ν	2010		4.0	8.5
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	0.032
Total Sulphur		U	2175	%	0.010	0.027
Sulphur (Elemental)		М	2180	mg/kg	1.0	
Chloride (Water Soluble)		М	2220	g/l	0.010	0.14
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010
Cyanide (Total)		М	2300	mg/kg	0.50	
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01
Sulphate (Total)		U	2430	%	0.010	
Sulphate (Acid Soluble)		U	2430	%	0.010	0.040
Arsenic		М	2455	mg/kg	0.5	
Barium		М	2455	mg/kg	0	
Cadmium		М	2455	mg/kg	0.10	
Chromium		М	2455	mg/kg	0.5	
Molybdenum		M	2455	mg/kg	0.5	
Antimony		Ν	2455	mg/kg	2.0	
Copper		М	2455	mg/kg	0.50	
Mercury		M	2455	mg/kg	0.05	
Nickel		M	2455	mg/kg	0.50	
Lead		M	2455	mg/kg	0.50	
Selenium		М	2455	mg/kg	0.25	
Zinc	_	М	2455	mg/kg	0.50	
Chromium (Trivalent)	_	N	2490	mg/kg	1.0	
Chromium (Hexavalent)		N	2490	mg/kg	0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	
Aliphatic VPH >C7-C8	HS 2D AL	U	2780	mg/kg	0.05	

Client: IGSL		Che	mtest Jo	ob No.:	24-03994	
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1764870
Order No.:			Clie	nt Samp	le Ref.:	BH19
				Sampl	е Туре:	SOIL
				Top Dep	oth (m):	2.00
				Date Sa	ampled:	08-Feb-2024
				Asbest	os Lab:	
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	
Aliphatic EPH >C10-C12 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	
Aliphatic EPH >C12-C16 MC	EH_AL_2D_#1	М	2690	mg/kg	1.00	
Aliphatic EPH >C16-C21 MC	EH AL 2D #1	М	2690	mg/kg	2.00	
Aliphatic EPH >C21-C35 MC	EH AL 2D #1	М	2690	mg/kg	3.00	
Aliphatic EPH >C35-C40 MC	EH_AL_2D #1	N	2690	mg/kg	10.00	
Total Aliphatic EPH >C10-C35 MC	EH_AL_2D #1	М	2690	mg/ka	5.00	
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/ka	0.05	
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/ka	0.05	
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25	
Aromatic EPH >C10-C12 MC	EH AR 2D #1	U	2690	mg/kg	1.00	
Aromatic EPH >C12-C16 MC	EH AR 2D #1	U	2690	mg/kg	1.00	
Aromatic EPH >C16-C21 MC	EH AR 2D #1	U	2690	ma/ka	2.00	
Aromatic EPH >C21-C35 MC	EH AR 2D #1	U	2690	ma/ka	2.00	
Aromatic EPH >C35-C40 MC	EH AR 2D #1	N	2690	mg/kg	1.00	
Total Aromatic EPH >C10-C35 MC	EH AR 2D #1	U	2690	mg/kg	5.00	
Total VPH >C5-C10	HS 2D Total	U	2780	mg/kg	0.50	
Total EPH >C10-C35 MC	EH Total 2D #1	U	2690	mg/kg	10.00	
Total Organic Carbon		М	2625	%	0.20	
Mineral Oil EPH	EH AL 2D #1	N	2670	mg/kg	10	
Benzene		М	2760	µg/kg	1.0	
Toluene	1	М	2760	µg/ka	1.0	
Ethylbenzene		М	2760	µg/ka	1.0	
m & p-Xylene		М	2760	µg/ka	1.0	
o-Xylene	1	М	2760	µg/ka	1.0	
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	
Naphthalene		М	2800	mg/ka	0.10	
Acenaphthylene		N	2800	mg/ka	0.10	
Acenaphthene		М	2800	mg/ka	0.10	
Fluorene	1	М	2800	mg/ka	0.10	
Phenanthrene		М	2800	mg/kg	0.10	
Anthracene		М	2800	mg/kg	0.10	
Fluoranthene		М	2800	mg/ka	0.10	
Pyrene		М	2800	mg/ka	0.10	
Benzo[a]anthracene		М	2800	mg/ka	0.10	
Chrysene		М	2800	mg/ka	0.10	
Benzolblfluoranthene		М	2800	ma/ka	0.10	

<u>Results - Soil</u>

Client: IGSL			Che	mtest Jo	ob No.:	24-03994
Quotation No.: Q20-21693		(Chemte	ple ID.:	1764870	
Order No.:			Clie	nt Samp	le Ref.:	BH19
				Sampl	e Type:	SOIL
				Top Dep	oth (m):	2.00
				Date Sa	ampled:	08-Feb-2024
				Asbest	os Lab:	
Determinand	nand HWOL Code Accred. SOP Units LOD					
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	
Benzo[a]pyrene		М	2800	mg/kg	0.10	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	
Dibenz(a,h)Anthracene		N 2800 mg/kg 0.10				
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	
Coronene		N	2800	mg/kg	0.10	
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	
PCB 28		U	2815	mg/kg	0.010	
PCB 52		U	2815	mg/kg	0.010	
PCB 101		U	2815	mg/kg	0.010	
PCB 118		U	2815	mg/kg	0.010	
PCB 153		U	2815	mg/kg	0.010	
PCB 138		U	2815	mg/kg	0.010	
PCB 180		U 2815 mg/kg 0.010				
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	
Total Phenols		М	2920	ma/ka	0.10	

Project: 25000-2 Collins Avenue								
Chemtest Job No:	24-03994					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1764863						Limits	
Sample Ref:	BH14						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	08-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	0.62	3	5	6
Loss On Ignition	2610		М	%	100			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.6		>6	
Acid Neutralisation Capacity	2015		Ν	mol/kg	0.15		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0007	0.0073	0.5	2	25
Barium	1455		U	0.006	0.064	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0015	0.015	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.011	0.11	0.5	10	30
Nickel	1455		U	0.0011	0.011	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0014	0.014	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.011	0.11	4	50	200
Chloride	1220		U	9.2	92	800	15000	25000
Fluoride	1220		U	0.33	3.3	10	150	500
Sulphate	1220		U	7.5	75	1000	20000	50000
Total Dissolved Solids	1020		Ν	85	840	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.8	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

Project: 25000-2 Collins Avenue								
Chemtest Job No:	24-03994	24-03994				Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1764865						Limits	
Sample Ref:	BH16						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	08-Feb-2024				J		Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	1.9	3	5	6
Loss On Ignition	2610		М	%	3.1			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	Μ	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.9		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.085		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values for compliance leaching te		eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.026	0.26	0.5	2	25
Barium	1455		U	0.012	0.12	20	100	300
Cadmium	1455		U	0.0012	0.012	0.04	1	5
Chromium	1455		U	0.010	0.10	0.5	10	70
Copper	1455		U	0.035	0.35	2	50	100
Mercury	1455		U	0.00006	0.00063	0.01	0.2	2
Molybdenum	1455		U	0.028	0.28	0.5	10	30
Nickel	1455		U	0.031	0.31	0.4	10	40
Lead	1455		U	0.020	0.20	0.5	10	50
Antimony	1455		U	0.0082	0.082	0.06	0.7	5
Selenium	1455		U	0.0063	0.063	0.1	0.5	7
Zinc	1455		U	0.10	1.0	4	50	200
Chloride	1220		U	82	820	800	15000	25000
Fluoride	1220		U	0.85	8.5	10	150	500
Sulphate	1220		U	42	420	1000	20000	50000
Total Dissolved Solids	1020		N	310	3100	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	16	160	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	26

Waste Acceptance Criteria

Project: 25000-2 Collins Avenue								
Chemtest Job No:	24-03994					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1764868						Limits	
Sample Ref:	BH18						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	08-Feb-2024				l		Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	2.0	3	5	6
Loss On Ignition	2610		М	%	3.1			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.7		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.13		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values for compliance leaching to		eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0039	0.039	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0011	0.011	0.5	10	70
Copper	1455		U	0.0071	0.071	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.036	0.36	0.5	10	30
Nickel	1455		U	0.0033	0.033	0.4	10	40
Lead	1455		U	0.0015	0.015	0.5	10	50
Antimony	1455		U	0.0009	0.0092	0.06	0.7	5
Selenium	1455		U	0.0029	0.029	0.1	0.5	7
Zinc	1455		U	0.023	0.23	4	50	200
Chloride	1220		U	99	990	800	15000	25000
Fluoride	1220		U	0.51	5.1	10	150	500
Sulphate	1220		U	12	120	1000	20000	50000
Total Dissolved Solids	1020		N	320	3200	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.0	50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	23

Waste Acceptance Criteria

Project: 25000-2 Collins Avenue								
Chemtest Job No:	24-03994					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1764869						Limits	
Sample Ref:	BH19						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	08-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	0.57	3	5	6
Loss On Ignition	2610		Μ	%	2.3			10
Total BTEX	2760		Μ	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	Μ	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.9		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.13		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values for compliance leaching t		eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0062	0.062	0.5	2	25
Barium	1455		U	0.008	0.077	20	100	300
Cadmium	1455		U	0.00017	0.0017	0.04	1	5
Chromium	1455		U	0.0030	0.030	0.5	10	70
Copper	1455		U	0.012	0.12	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.026	0.26	0.5	10	30
Nickel	1455		U	0.011	0.11	0.4	10	40
Lead	1455		U	0.0050	0.050	0.5	10	50
Antimony	1455		U	0.0013	0.013	0.06	0.7	5
Selenium	1455		U	0.0015	0.015	0.1	0.5	7
Zinc	1455		U	0.058	0.58	4	50	200
Chloride	1220		U	44	440	800	15000	25000
Fluoride	1220		U	0.56	5.6	10	150	500
Sulphate	1220		U	11	110	1000	20000	50000
Total Dissolved Solids	1020		Ν	150	1500	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.1	51	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	20

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
1010	pH Value of Waters	pH at 20°C	pH Meter	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	pH at 20°C	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p- phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2690	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21–C35, >C35–C40		Acetone/Heptane extraction / GCxGC FID detection	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS Volatile organic compounds, inc BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA 8260)*please refer to UKAS sch		Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8- C10 Aromatics: >C5–C7,>C7-C8,>C8–C10	Water extraction / Headspace GCxGC FID detection	
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge	

Key U UKAS accredited

- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

- DW Drinking Water
- GW Ground Water
- LE Land Leachate
- NA Not Applicable
- PL Prepared Leachate
- PW Processed Water

- RE Recreational Water
- SA Saline Water
- SW Surface Water
- TE Treated Effluent
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

NC - No Clean Up MC - Mathematical Clean Up FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix 9

Geotechnical Laboratory Results (Rock)

		(Diametrial	I) POINT LOAD S	TRENGTH	INDEX TEST DATA				ata
Contract: So Contract no.	ocial Housing - Collins Ave 25000	Bundles 4 & 5 enue	Sample Type: Date of test:	Core 07/02/2	2024				IGSL
RC No.	Depth m	D (Diameter) mm	P (failure load) kN	F	ls (index strength) Mpa	ls(50) (index strength) Mpa	*UCS MPa	Туре	Orienation
RC01	19.6 19.7 20.6 21.5 21.7 22.1 19.6 20.3 20.6 21.6 21.8 22.6 23.1	78 78 78 78 78 78 78 78 78 78 78 78 78 7	20.0 21.0 3.0 5.0 4.0 2.0 18.0 4.0 22.0 24.0 4.0 20.0 16.0	1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.222 1.222	3.29 3.45 0.49 0.82 0.66 0.33 2.96 0.66 3.62 3.94 0.66 3.29 2.63	4.02 4.22 0.60 1.00 0.80 0.40 3.61 0.80 4.42 4.82 0.80 4.02 3.21	80 84 12 20 16 8 72 16 88 96 16 80 64	d d d d d d d d d d d d d d d d d d	
Sta Number of S Minimum Average Maximum Standard De Upper 95% (Lower 95% (Comments:	itistical Sumr amples Teste v. Confidence Li Confidence Li	nary Data ed mit mit	ls(50) 13 0.40 2.52 4.82 1.76 5.97 -0.93	UCS* 13 8 50 96 35 119.38 -18.69	*UCS Normal	Distribution Cur		At i a b d appro to <u>weak</u> U	bbreviations irregular axial block diametral ox. orientation o planes of cness/bedding unknown
*UCS taken a	as k x Point L	oad Is(50): k=		20	0 10	0 200	300	P //	perpendicular parallel

Appendix 10

Exploratory Hole Location Plans

