IGSL Ltd

NDFA Social Housing Bundles 4/5 Lot 4 - Basin View

Ground Investigation Report

Project No. 25000-4

March 2024

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176

E: info@igsl.ie W: www.igsl.ie

DOCUMENT ISSUE REGISTER

Distribution	Report Status	Revision	Date of Issue	Prepared By:	Approved By:
MORCE	Draft PDF by email	0	12-03-2024	J. Lawler BSc MSc PGeo EurGeol FGS	P. Quigley BEng CEng MICE MIEI FGS RoGEP Adviser

TABLE OF CONTENTS

Foreword

- 1. Introduction
- 2. Fieldworks
 - **2.1** General
 - 2.2 Trial Pits & Foundation Inspection Pits
 - 2.3 Cable Percussion Boreholes
 - 2.4 Soakaway Tests (to BRE 365)
 - 2.5 Slit Trenching
 - 2.6 Rotary Core Drillholes
 - 2.7 Surveying of Exploratory Hole Locations
- 3. Laboratory Testing
- 4. Desk Study
 - 4.1 GSI / OSI Database Information
 - 4.2 Archived Reports
- **5.** Ground Conditions & Groundwater
 - 5.1 Ground Profile Superficial Deposits
 - 5.2 Bedrock
 - 5.3 Groundwater
- 6. Ground Assessment & Engineering Recommendations
 - 6.1 General
 - **6.2** Foundations
 - 6.3 Groundwater / Infiltration
 - 6.4 Slopes / Batters
 - 6.5 Buried Concrete
 - **6.6** Waste Acceptance Criteria [WAC] & Environmental Testing Soils destined for Landfill

References

FIGURES

Figure 1	- Location Plan
Figure 2	- Tailte Éireann (OSI) historical imagery (1829-41) together with aerial
•	orthophotograph showing the site in 2013-2018.
Figure 3	- City Basin and Grand Canal Harbour, Illustrated London News, 1846, and
J	reproduced in Cullen (2015)
Figure 4	- Archaeologial works at a dig site to the eastern extent of St. James's Linear
· ·	Park near Fatima Luas stop (The Liberties, Dublin, 2023)
Figure 5	- Quaternary Soils Plot for the Basin View Site
Figure 6	- Bedrock Geological Map for the Basin View Site
Figure 7	- Trial bore layout on the Basin Street Upper site (The Irish Piling &
5	Construction Company, 1962)
Figure 8	- SPT Plot versus Depth for Cable Percussion Boreholes. Red data points
J	denote test drives / partial test drives in MADE GROUND.
Figures 9A & 9B	- Sidewall profiles photographed during trial pitting
ga. 00 0. t 0. 0 2	orac nam promoc priotographical carmig and priang
Figures 9A & 9B	- Sidewall profiles photographed during trial pitting

TABLES

Table 1	 Depth to MADE GROUND measured in on site cable percussion boreholes
Table 2	- Water measurements in on-site exploratory holes
Table 3	 Measured infiltration rates (f) expressed as exposed area (metre) per unit time (minute)
Table 4	- Occurrence of Asbestos (Chemtest Report 24-06640-1)

APPENDICES

Appendix 1	- Trial Pit Logs & Photographs
Appendix 2	- Foundation Pit Logs
Appendix 3	 Cable Percussion Borehole Logs / SPT Calibration Sheet (Er)
Appendix 4	- Soakaway Records
Appendix 5	- Slit Trench Logs & Photographs
Appendix 6	 Rotary Drillhole Logs & Core Photographs / SPT Calibration Sheet (Er)
Appendix 7	- Geotechnical Laboratory Results (Soil)
Appendix 8	- Geo-Environmental & Chemical Laboratory Results (Soils)
Appendix 9	- Exploratory Hole Location Plans

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project (**NDFA Social Housing Bundles 4/5 - Lot 4 – Basin View**) have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as Engineers Ireland Specification for Ground Investigation (2nd Ed, 2016), BS 5930 (2015+A1:2020) and BS 1377 (Parts 1 to 9) and the following European Norms:

- EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- EN ISO 14688-1:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- EN ISO 14688-2:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Principles for a classification
- EN ISO 14689-1:2017 Geotechnical Investigation and Testing Identification, description & classification of rock

The Eurocode 7, Part 2 – Ground Investigation and Testing GI specification shall be read in conjunction with the Specification and Related Documents for Ground Investigation in Ireland, 2nd Edition, published by Engineers Ireland in 2016.

Reporting

No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations. The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for MORCE and the information should not be used without their prior written permission. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

Boring Procedures

Where required, 'shell and auger' or cable percussive boring technique is employed as defined by Section 6.3 of IS EN ISO 22475-1:2006. The boring operations, sampling and in-situ testing meet with the recommendations set out in IS EN 1997-2:2007 and BS 1377:1990 and EN ISO 22476-3:2005. The shell and auger boring technique allows for continuous sampling in clay and silt above the water table and sand and gravel below the water table (Table 2 of IS EN ISO 22475-1:2006).

It is highlighted that some disturbance and variation is unavoidable in particular ground (e.g. blowing sands, gravel / cobble dominant glacial deposits etc). Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

In-Situ Testing

Where required, Standard Penetration Tests (SPT's) are conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is

available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Soil Sampling

Three categories of sampling methods are outlined in EN ISO 22475-1:2006. The categories are referenced A, B and C for any given ground conditions and are shown in Tables 1 and 2 of EN ISO 22475-1:2006. Reference should be made to EN 1997-2:2002 for guidelines on sample class and quality for strength and compressibility testing. Samples of quality classes 1 or 2 can only be obtained by using Category A sampling methods.

Class 1 thin wall undisturbed tube samples (UT100) were obtained in fine grained soils and strictly meet the requirements of EN 1997-2:2002 and EN ISO 22475-1:2006. Soil samples for laboratory tests are divided into five classes with respect to the soil properties that are assumed to remain unchanged during sampling, handling transport and storage. The minimum sample quality required for testing purposes to Eurocode 7 compatibility (EN 1997-2:2002) is shown in Table A.

Table A – Details of Sample Quality Requirements

EN 1997 Clause	Test	Minimum Sample Quality Class
5.5.3	Water Content	3
5.5.4	Bulk Density	2
5.5.5	Particle Density	N/S
5.5.6	Particle Size Analysis	N/S
5.5.7	Consistency Limits	4
5.5.8	Density Index	N/S
5.5.9	Soil Dispersivity	N/S
5.5.10	Frost Susceptibility	N/S
5.6.2	Organic Content	4
5.6.3	Carbonate Content	3
5.6.4	Sulphate Content	3
5.6.5	pН	3
5.6.6	Chloride Content	3
5.7	Strength Index	1
5.8	Strength Tests	1
5.9	Compressibility Tests	1
5.10	Compaction Tests	N/S
5.11	Permeability	2

N/S – not stated. Presume a representative sample of appropriate size.

Samples recovered from trial pits or trenches meet the requirements of IS EN ISO 22475-1. It is highlighted that unforeseen circumstances such as variations in geological strata may lead to lower quality sample classes being obtained.

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible, drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are

subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2017 and IS EN ISO 14688-2:2017. Rock weathering classification conforms to IS EN ISO 14689-1:2017 along with discontinuities (bedding planes, joints, cleavages, faults etc) as classified in Section 6.4 of IS EN ISO 14689-1:2017 and Annex C of same. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Where peat has been encountered, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 and Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986.

Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material will be discarded. Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

1. INTRODUCTION

An investigation of subsoil conditions was undertaken by IGSL Limited at the site of a proposed social housing development at Basin Street Flats, Basin View, Dublin 8. The works were undertaken for Malone O'Regan Consulting Engineers [MORCE] on behalf of the National Development Finance Agency (the "NDFA"). The site is occupied by a number of multistorey flat complexes with intervening grassed and pavement areas. The site is bound by Basin Street Lower to the north and Brandon Terrace to the east. The Red Line Luas and St James' Hospital campus lie to the west (Figure 1).

Figure 1 - Location Plan

Retrieved from Google Earth Professional (Dated 07/2022)

The investigations comprised cable percussion boreholes, machine-dug trial pits, slit trenches, foundation inspection pits and soakaway tests (to BRE365). The investigations were executed in accordance with BS 5930, Code of Practice for Site Investigations (2015+A1:2020) and EN 1997-2 Eurocode 7 Part 2 Ground Investigation & Testing and supervised by an IGSL geotechnical engineer.

Geotechnical, chemical and environmental laboratory testing was scheduled on a range of soil samples. The geotechnical soil testing included moisture contents, Atterberg Limits and particle size distribution [PSD] testing in addition to hydrometer testing. Suites of both chemical testing and environmental testing were undertaken on soils. This report presents an interpretation of the data and an assessment of the key geotechnical issues. The exploratory hole locations are plotted on the site plans in Appendix 9.

2. FIELDWORK

2.1 General

The fieldworks were undertaken during January and February 2024 and comprised the following:

- Trial Pit (13 No.) of which 4 no. are Foundation Inspection Pits
- o Cable Percussion Boring (13 No.)
- o Soakaway Tests (to BRE 365) (2 No.)
- Slit Trenches (4 No.)
- Rotary Core Drilling
- Surveying of Exploratory Hole Locations

2.2 Trial Pits & Foundation Inspection Pits

Trial pitting was performed at thirteen locations across the site. Four of the trial pits prefixed TP/FP were undertaken adjacent to existing structures to examine the depth of existing building footings. All thirteen trial pits were excavated, logged and sampled under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). Bulk disturbed samples (typically 20 to 30kg) were taken as the pits progressed.

The bulk samples were placed in heavy-duty polyethylene bags. The trial pits were backfilled with the as-dug arisings and reinstated to the satisfaction of IGSL's site geotechnical engineer. The trial pit logs and photos are presented in Appendix 1 and include descriptions of the soils encountered, groundwater conditions and stability of the pit sidewalls.

As mentioned, in order to establish the depth and projection of existing foundations associated with the buildings currently occupying the site, foundation inspection pits were undertaken at four locations at the base of external facing walls. As with pits, the inspection pits were excavated and logged under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). Machine-assisted hand digging was used at each location with pits ranging in depth from 0.40 to 1.60m bgl. The pit logs and photos are presented in Appendix 2 and include descriptions of the soils encountered, the foundations exposed and any groundwater conditions noted during the excavation, if observed.

2.3 Cable Percussion Boreholes

Cable percussive boring (200mm diameter) was conducted at thirteen locations [BH_] using a Dando 2000 rig. The boreholes extended to depths of between 4.10m and 6.60m. At each location, boring commenced through hand-dug service inspection pits. Disturbed bulk samples were recovered at 1m intervals or change of strata during boring and these are denoted 'B' on the engineering logs.

Standard Penetration Tests (SPT's) were performed in the boreholes and given the nature of the soils, a solid cone was used. It is noted that the SPT N-Values reported are the number of blows for 300mm increment penetration (e.g. BH01 at 2.0m where N=21). These exclude the seating blow values, which represent the initial 150mm depth of penetration. Where partial penetration was achieved during testing, the number of blows is shown for the actual penetration depth achieved (e.g. BH01 at 6.0m where N=50/150mm). It is highlighted that the SPT N-Values reported on the engineering logs are uncorrected for energy ratio.

Groundwater monitoring standpipes were installed in both boreholes BH06 and BH12. The standpipes consisted of 50mm diameter HDPE pipework with proprietary 1mm slots and incorporated a pea gravel filter pack and cement / bentonite grout seal. Headwork covers were concreted in place.

Descriptions of the soils encountered, in-situ tests undertaken and samples recovered are presented on the borehole records in Appendix 3. Details of groundwater strikes and hard strata boring (i.e. chiselling) are also presented on the aforementioned records.

2.4 Soakaway Tests (to BRE 365)

Two number infiltration tests were performed to assess the suitability of the sub-soils for dispersion of storm water through a soakaway system. The infiltration tests were each performed in accordance with BRE Digest 365 'Soakaway Design'. To obtain a measure of the infiltration rate of the sub-soils, water was poured into each test pit, with records taken of the fall in water level against time. Following the first soak cycle, the procedure was repeated to ensure saturation of the sub-soils. The infiltration rate is the volume of water dispersed per unit of exposed area per unit of time, and is generally expressed as metres / minute or metres / second. Designs are based on the slowest infiltration rate, which is generally calculated from the final soak cycle. The soakaway design logs are presented in Appendix 4.

2.5 Slit Trenching

Slit trenching was undertaken at four locations on the site. The machine-assisted hand-dug trenches were opened to reveal the track of potential existing buried services running in a grassed area to the west of the flat complex.

Detailed records of the pit findings including depth, diameter and type of service (where found) are presented in Appendix 5. The soil profile provided on the slit trench logs describes the majority of the soils across the transverse trench. The location of trench extremities (X and Y) were surveyed to ITM using GPS techniques. Photographs taken during excavation are also presented with the logs in Appendix 5.

2.6 Rotary Core Drillholes

To be completed

2.7 Surveying of Exploratory Hole Locations

Following completion of the exploratory works, surveying was carried out using GPS techniques. Co-ordinates (x, y) were measured to Irish Transverse Mercator and ground levels (z) established to Malin Head. The co-ordinates and ground levels are incorporated on the exploratory hole logs with locations shown on the exploratory hole plans in Appendix 9.

3. LABORATORY TESTING

Geotechnical laboratory testing was carried out at IGSL's INAB-accredited laboratory in accordance with the methods set out in BS1377; British Standard Methods of Test for Soils for Civil Engineering Purposes; British Standards Institute:1990. The laboratory applies best practice management systems as per International Standard IS EN ISO/IEC 17025. The geotechnical testing included moisture contents, Atterberg Limits, particle size distribution [PSD] and hydrometer testing. The results from geotechnical testing on selected trial pit and cable percussive borehole soil samples are presented in Appendix 7.

Chemical analysis incorporating BRE SD1 Suite B (Brownfield – Pyrite Present) was scheduled on recovered soils. The soil chemical results are presented in Appendix 8. A total of thirty soil samples were selected for Waste Acceptance Criteria (WAC) analysis as per the *Rilta* Suite of testing. The results can be used to classify the material with regard to its potential for disposal to landfill. The results are enclosed in the report in Appendix 8.

4. DESK STUDY

4.1 GSI / OSI Database Information

Reference to the OSI drawings from the nineteenth century (1829-41) show a reservoir on the site termed 'City Basin'. The feature survives to the 1897-1913 where it is noted as 'James's Basin'.

Figure 2 – Tailte Éireann (OSI) historical imagery (1829-41) together with aerial orthophotograph showing the site in 2013-2018. Approximate site outline in red.

Reproduced from Tailte Éireann Irish Townland & Historical Map Viewer

The City Basin or reservoir, illustrated in the early maps, took water from the *R*. Poddle and supplied 18th century Dublin with potable water. The Basin was built off James's Street in 1721. It was capable of supplying 25 million gallons of water, a three month supply, and of supplying water to 90 streets. The corporation raised and reconstructed the level of the Basin in the final development of the Poddle water supply to the city.

By 1735, the Poddle could no longer meet the water needs of the City. As the Grand Canal passed just south of the City Basin (the then terminus completed in 1785), it was decided that water from this source would be passed to the Basin by means of sluice gates (Brunkard, 2014).

A clear description of the elevated nature of the reservoir, as well as its Victorian dimensions, is recounted in History of the City of Dublin Volume 2 (Gilbert, 1859).

"Its distinction as a reservoir to supply an extensive city with water rendered it necessary to give its surface as great an elevation as was consistent with moderate expense; for this purpose it is supported by a firm embankment of earth several feet higher than the adjacent fields, on the summit of which is a walk, bounded on both sides by quick-set hedges, judiciously kept low not to interrupt the view, while the outer fence is planted with elms, still in a good state of preservation, with their branches expanded so as to entwine with each other and form graceful arches; and these, from the moisture of the soil, are clothed in spring and summer with luxuriant verdure, they add much to the beauty of this charming scene. The form of the basin is a parallelogram, 1210 feet in length and 225 to 250 feet in breadth. The entrance is by a neat iron gate from Basin Lane and Pig Town, the latter appropriately so called, from

being perpetually infested with those animals, and forming by its filth a strong contrast to the salubrious air and cheerful tranquillity of the scene within."

Eventually, the supply of water from the canal was inadequate and unsafe and this supply to the City Basin ceased in 1869, paving the way for a new water supply from the Vartry River (Brunkard, 2014).

Figure 3 – City Basin and Grand Canal Harbour, Illustrated London News, 1846, and reproduced in Cullen (2015)

In March 2023, as part of ongoing works for the St James's Linear Park, excavation works unearthed some cutstone blockwork which highlight the stepped, elevated nature of the reservoir and neighbouring canal. With the closure of this branch of the Grand Canal in 1974, both the canal and basin were infilled (McAuley, 2023).

Figure 4 – Archaeologial works at a dig site to the eastern extent of St. James's Linear Park near Fatima Luas stop (The Liberties, Dublin, 2023)

The Quaternary Soils plot for the area (Figure 5 - retrieved from GSI website) reveals largely unclassified urban cover. There are both tills (TLs) and gravels (GLs) near the site. The presence of over-consolidated till was proven by the investigation with clay-dominant till proven in all boreholes.

Reference to the GSI map for the area (Figure 6, 1:100,000 Solid Geology series) shows that the site is underlain by Lower Carboniferous, Lucan Formation. The Lucan Formation (Nolan 1986, 1989) forms the bulk of the basinal rocks throughout the geologically termed 'Dublin Basin', and is characterised by graded, intraclastic skeletal packstone/grainstone interbedded with anoxic calcareous mudstone / black shale, laminated calcisiltite and argillaceous micrite (i.e. impure limestone with clay minerals).

Its base is defined by the first appearance of thick graded beds of limestone, and a marked decrease in the proportion of interbedded shale, compared with the underlying Tober Colleen Formation. The Lucan Formation is widely known as the Calp Limestone (Marchant and Sevastopulo, 1980) but is also referred to as the Upper Dark Limestone and has long been a source of building materials and aggregate for Dublin. The Calp is largely undifferentiated geologically.

Figure 6 - Bedrock Geological Map for the Basin View Site (retrieved from the GSI website)

4.2 Archived Reports

There are a number of reports presented online on the GSI database which by inference, shed light on the possible ground conditions on site. One such report is that undertaken by The Irish Piling & Construction Company in 1962 on the site in question.

4.2.1 Trial Borings at Basin Street Upper, Dublin (The Irish Piling & Construction Company, 1962)

The project comprised four boreholes positioned close to the building footprints. Sketched logs revealed depths achieved of between 5feet and 17feet 6ins depth, the deepest being an equivalent of ca. 5.33m. All boreholes ended in 'black boulder clay' at depths ranging 3feet to 11feet below the existing ground level. This equates to 0.90m to 3.30m bgl. No water was reported in any of the boreholes.

Trial bore No.1 encountered a mere 0.90m of 'Large stone and blocks' before encountering the 'black boulder Clay'. Similarly, at No.3, a 1.20m cover of 'Big stones and fill' was documented prior to meeting the 'black boulder Clay'. In the case of the other two bores on the site, a 'Yellow Clay'

was found in both ahead of the 'Black boulder Clay'. It extended to $3.30 \, \text{m}$ (No.2) and to $1.20 \, \text{m}$ (No.4) before the till was unearthed.

Figure 7 – Trial bore layout on the Basin Street Upper site (The Irish Piling & Construction Company, 1962).

5. GROUND CONDITIONS & GROUNDWATER

5.1 Ground Profile - Superficial Deposits

The following is a summary of the ground conditions encountered across the site.

MADE GROUND

- Of the thirteen trial pits conducted, only trial pits TP07, TP10 and TP11 encountered natural deposits unearthed at depth. For the remainder, beneath what was typically an upper cover of Topsoil, a clay dominant Made Ground persisted for the depth of each respective pit. It should be noted however that many of the pits ended on shallow obstructions in the Made Ground thus preventing a deeper indigenous stratum from being exposed. In pits where exclusively Made Ground was met, the pit depths generally ranged from 0.40m to 1.70m bgl (18.68m OD). The deepest Made Ground was found was in TP09 where a (Medium dense) silty sandy Gravel with glass, rubbish, red brick and concrete rubble was logged to a depth of 2.20m (18.03m OD).
- o In slit trenches ST01, ST03 and ST06, an approximately 500mm wide limestone plinth was exposed at depths ranging 400mm to 700mm bgl. The slit trenches each extended to a depth of 1.50m, with ST07 extending locally to 1.60m in an effort to expose the second water main (two were found in nearby ST06). As with the majority of trial pits, only Made Ground was unearthed in slit trenches to their bases. The soil was described as a gravelly sandy Silt/Clay with a low to medium cobble content.
- This 500mm wide robust limestone linear feature found in each of ST01, ST03 and ST06 may be a remnant of the City Basin structure.
- The thirteen boreholes on site can be split into two distinct categories. Table 1 lists the depth to Made Ground in each. It can be seen that seven boreholes intercepted Made Ground to depths greater than 2m, and to almost 4m in the case of BH03 (3.90m bgl / 16.50m OD). Elsewhere, six boreholes noted Made Ground to depths of less than 2m. It is noted that aside from both BH01 and BH03 (which are located towards the northern extent of the site), all of the deeper accumulations of Made Gorund were found in bores placed along the central N-S axis of the site. This suggests the former City Basin was deepest along the centre of the site, ie., where the infill was found to be greatest.
- The findings of the boreholes also corroborate the findings in trial pitting where indigenous soils only appeared in peripheral pits 07, 10 and 11.

Table 1 – Depth to MADE GROUND measured in on site cable percussion boreholes

Catego	ry 1 – MADE GROUND >2m	Category 2 – MADE GROUND <2m (Peripheral Bores)			
BH No.	Depth to base MADE GROUND m bgl (m OD)	BH No.	Depth to base MADE GROUND m bgl (m OD)		
BH01	3.10 (17.01)	BH04	1.70 (18.64)		
BH02	2.60 (17.60)	BH05	1.90 (18.41)		
BH03	3.90 (16.50)	BH07	1.60 (18.49)		
BH06	3.0 (17.16)	BH08*	1.80 (19.43)		
BH09	2.20 (18.02)	BH10	1.30 (18.79)		
BH12	3.60 (16.77)	BH11*	1.70 (19.30)		
BH13	3.40 (16.99)				

^{*}Possible MADE GROUND

Uppermost Indigenous Sediments – Weathered Till

- In the three aforementioned trial pits where natural deposits were thought to be found, the soils were variably described as 'firm brown sandy gravelly CLAY (Possible MADE GROUND)' in TP07 and 'Soft to firm and firm greyish brown sandy gravelly CLAY with a low cobble content' in TP10 and TP11.
- Along the western flank of the site, the natural ground was found in trial pits 07 and 11 at depths of 1.30m and 1.50m bgl corresponding to elevations of between 19.88m OD and 19.70m OD. Towards the east in TP10 the level of Made Ground was measured at 18.74m OD (1.40m bgl). The three pits ended at depths ranging 2.20m to 2.60m bgl.
- In the case of the six peripheral bores, where the Made Ground was not found to such depths (<2m depth), the placed deposits were found to lie on firm occasionally soft to firm grey and brown sandy gravelly SILT/CLAY. This increased in consistency to stiff generally before meeting the very stiff black till at depth.

GLACIAL DEPOSITS (Lodgement Till)

- Where the Made Ground cover measured >2m (See Table 1), a very stiff black Clay till was sampled in each of the seven bores. It was logged directly beneath the anthropogenic cover in each of boreholes BH01, BH02, BH13 and within 200mm to 500mm of the base of infill in each of BH03, BH04, BH12. At BH09, the Made Ground was found to lie on a stiff colour mottled CLAY from 2.20m bgl underlain at 3.10m bgl (17.12m OD) by the very stiff black sandy gravelly CLAY with cobbles and boulders.
- The entry of over-consolidated till in each of the deep Made Ground holes corresponded to levels ranging 16.10m to 17.60m OD. Each of the seven bores ended in this material at depths of between 4.10m to 6.60m.
- o In the case of the six peripheral bores, the very stiff black till was logged at depths ranging 2.90m (17.19m OD) to 3.80m (17.20m OD).

In-situ testing was undertaken during the construction of the thirteen boreholes. The standard penetration test [SPT] allows for an appraisal of the ground stiffness. A plot showing the blowcounts generated from testing at each hole is presented in Figure 8. The tests undertaken in Made Ground are coloured red.

The plot initially in the upper metre to 2m depth shows an inconsistent scatter of points indicative of a broad strength profile. As the majority of tests undertaken in the uppermost 2metres lie in Made Ground, the presence of obstructing anthropogenic constituents in the material only serve to obstruct test drives and thereby deliver erroneous results.

Those points which were conducted in indigenous soils are coloured black. They suggest the natural soils are soft to firm and firm in the upper 2metres. 'Low strength' deposits are those where N values of <10 blows are present. Based on SPT testing, by 3m depth, with the exception of BH04 and BH05, the soils are consistently stiff. From 4m, all soils are stiff to very stiff.

Figure 8 – SPT Plot versus Depth for Cable Percussion Boreholes. Red data points denote test drives / partial test drives in MADE GROUND.

Figures 9A & 9B – Sidewall profiles photographed during trial pitting. Fig 9A TP10 Topsoil overlying Made Ground comprising greyish brown sandy gravelly CLAY with a low cobble and boulder content (up to 450mm) with glass, concrete, red brick and nails. Underlying the Made Ground layer was a soft to firm greyish brown sandy gravelly CLAY to the pit base at 2.50m. A seepage was noted at 1.90m. Fig 9B At TP13, boulders and possible concrete was observed at 0.60m indicative of the presence of large obstructing material at shallow depths. The pit was terminated at this depth (19.77m OD).

Fig 9A Fig 9B

5.2 Bedrock

Consultation of the GSI map for the area suggests the bedrock underlying the site is that of the Lucan Formation limestone and shales (See Section 4). Rotary drilling had not yet been completed at the time of draft report preparation.

5.3 Groundwater

Given the shallow termination depths recorded in many of the trial pits, it is not surprising that groundwater was encountered in just one trial pit. TP10 intercepted a seepage at 1.90m bgl (18.24m OD). The seepage was recorded in natural subsoils described as soft to firm sandy gravelly CLAY.

Water strikes were often encountered in boreholes at depths of ca. 4.0m bgl. They were recorded as largely seepages or slow water strikes and were seated in very stiff, largely impermeable Clay till.

Immediately post boring completion, groundwater was dipped by the driller with levels generally measuring the same as that of the initial strike. In line with this, once struck, groundwater did not appear to ascend inside the drill casing to any appreciable extent, in some cases not at all. Table 2 outlines where water was met in each of the exploratory holes. The potential does exist for there to be seasonal changes in groundwater level. The works were carried out during winter / early spring 2024.

Table 2 - Water measurements in on-site exploratory holes

	Exploratory Hole No.	Water Struck m bgl (m OD)	Stratum Description	Rate of Flow	Remarks / Stratum of water ingress (m OD)
Cable Percussion Boreholes	BH03	-	-	-	Water was noted at 4.0m bgl (16.40m OD) in the borehole upon removal of the drill casing. BH ended at 6.0m. (18-01-24)
	BH04	4.0 (16.34)	Very stiff black sandy gravelly CLAY with some cobbles and occasional boulders	Seepage - water did not rise during 20min observation period	-
	BH07	4.60 (15.49)	Very stiff black sandy gravelly CLAY with cobbles and occasional boulders	Slow – water rose to 4.30m in 20min. Sealed at 4.90m.	Water was noted at 4.30m bgl (15.79m OD) in the borehole upon removal of the drill casing. BH ended at 6.20m. (13-02-24)
	BH10	4.0 (16.09)	Very stiff black sandy gravelly CLAY with some cobbles and occasional boulders	Seepage - water did not rise during 20min observation period	Water was noted at 4.0m bgl (16.09m OD) in the borehole upon removal of the drill casing. BH ended at 6.20m. (23-01-24)

Cont.

Cable Percussion Boreholes	BH12 3.80 (16.57)		Interface of MADE GROUND with underlying Stiff grey brown sandy gravelly SILT/CLAY with occasional cobbles	Slow – water rose to 3.50m in 20min. Sealed at 4.20m.	Water was noted at 3.50m bgl (16.87m OD) in the borehole upon removal of the drill casing. BH ended at 6.60m. (07-02-24)	
	BH13	2.90 (17.49)	MADE GROUND comprising firm grey mottled brown and black sandy gravelly SILT/CLAY with cobbles, red brick fragments and tree roots.	Slow – water rose to 2.40m in 20min. Sealed at 3.90m.	Water was noted at 2.30m bgl (18.09m OD) in the borehole upon removal of the drill casing. BH ended at 6.20m. (31-01-24)	
Trial Pits	TP10	1.90 (18.24)	Soft to firm greyish brown sandy gravelly CLAY with a low cobble and boulder content (up to 300mm)	Seepage	Trial Pit remarked as stable. Pit ended at 2.50m.	

6. GROUND ASSESSMENT & ENGINEERING RECOMMENDATIONS

6.1 General

In light of the ground investigation findings, the following geotechnical issues are developed and discussed:

- Foundations
- Groundwater / Infiltration
- Slopes / Batters
- Buried Concrete
- Waste Acceptance Criteria [WAC] & Environmental Testing
 - Soils destined for Landfill

6.2 Foundations

The ground investigation findings demonstrate a variable sequence of soils mantling the site, thought to be Made Ground in the upper 1 to 3m, thickening to 3.90m in BH03. The findings in all of the cable percussive boreholes suggest a stiff to very stiff over-consolidated CLAY underlies the cover of MADE GROUND. Where Made Ground was noted to thin towards the peripheral exploratory holes, a natural firm becoming firm to stiff and stiff colour motted CLAY was logged ahead of the black till. This is thought to be the "Yellow Clay" observed in bores undertaken in 1962 (See Section 4.2.1). The depth to the basal very stiff and stiff till is quite consistent in that it ranges from 3 to 4m below ground level in all boreholes save for BH02. At BH02, the black till enters the stratigraphy at 2.60m bgl.

The potential to intercept Made Ground to appreciable depths (up to 3.90m / 16.50m OD in BH03) suggests there is a significant variability in soil composition on the site, most likely attributable to historical periods of infilling at the site. Based on SPT N-Values, there are areas with soft to firm deposits to depths of ca. 3.0m, both comprising Made Ground and in natural deposits.

Foundation inspection pits positioned at existing multi-storey buildings on the site offer little in clarity as to the type of foundation. Given the infill history of the site, it is likely the buildings are built on footings that extend to the underlying over-consolidated black till, ie., at ca. 3.0m to 4.0m bgl.

Given the prominence of Made Ground (varying from 1.30m to 3.90m) and presence of soft to firm soils, the selected foundation solution will have to be founded within deeper competent strata to support structural loads.

Piles are recommended to support the structural loads and negate the risk of unacceptable settlement in the Made Ground and underlying low to medium strength soils. The use of piles would also eliminate the need to form excavations in potentially water-bearing near-surface soils (refer to Section 6.3). The use of a bored displacement pile system would curb the volume of arisings which would otherwise be generated using bored / CFA piles. However, advice should be sought from the piling contractor (or their designer) with regard to the most suitable pile type for the ground conditions.

Given the depth of rockhead (unproven currently - the GSI GeoUrban Viewer predicts rock in the range 15-25m), it is expected that adequate embedment in the lower CLAY layer will mobilise skin friction and end bearing. Ahead of coring, pile safe working load capacity (compression) should not be dependent on achieving end-bearing on the bedrock. Trial piling (at least 2 No.) would be advised to confirm embedment or penetration depths and more importantly validate that settlements would be acceptable at safe working load (SWL).

The pile designer should consider negative skin friction from the Made Ground and soft to firm CLAY (upper 2-3m) on the selected piling technique. Floor slab loadings for the building unit are unknown but a suspended floor slab is recommended in view of the presence of potentially compressible Made

Ground across the site. It may be possible, if the existing fill is rolled and capped with a layer of SR21 Annex E compliant granular material, an adequate support for floor slabs could be generated, unless unusually high pressures are envisaged. Given the occasionally elevated concentrations of total organic carbon detected in shallow soils (See Section 6.6), ground gas may be present on site. Measures should be incorporated in the ground slab design for the inclusion of a barrier to any such subterranean gases.

An engineered fill platform or piling mat to support the piling plant should be designed in accordance with BRE 470. The thickness and granular fill type (most likely T0 to SR21) should be selected for the ground conditions and specific rig loadings. It is assumed that imported granular fill used will remain in situ under the footprint of the building after piling works are completed, therefore it should meet the chemical and durability / soundness parameters listed in Annex E of SR21:2014+A1:2016. Drainage and maintenance are key factors or considerations in pile platform design and to ensure successful piling operations. It is noted that T0 will not permit free draining conditions, hence surface water management and maintenance of the piling is advised as set out in BRE 470.

Plate bearing tests could be undertaken across the site to assess the performance of the existing Made Ground layer and the results used design platform thickness. Assuming the Made Ground is to be left in place, compaction using a smooth drum roller without vibration with a mass per metre of roll of not less than 5400 kg should be used and achieve an improvement in the performance (stiffness) of the Made Ground before constructing a piling platform.

6.3 Groundwater / Infiltration

As noted in Section 5.3, groundwater strikes were largely absent in shallow excavation, albeit the trial pits failed to extend to depths greater than 1.50m to 2m given the obstructive constituents in the Made Ground. Strikes in the boreholes remained around 4.0m bgl with only one strike occurring in the uppermost 3m, BH13 at 2.90mbgl. The absence of water entry in seven of the thirteen bores may be attributed to the permeability of the natural CLAY (or lack thereof). This should limit the ingress of groundwater where excavations are formed solely in fine soils. Therefore, shallow temporary excavation should generally see an absence of water ingress in natural deposits. It should be noted that groundwater can exist in perched waterbodies often hosted in mixed Made Ground.

Should water be encountered during deeper digs / excavations it is likely that de-watering will be required through a combination of strategic sump pumping and / or perimeter drains. As mentioned in Section 5.3, the potential does exist for there to be seasonal changes in groundwater level. The works were carried out during winter/early spring 2024. It may be the case that the various waterbodies at depth are subject to seasonal variations.

Two soakaway tests were conducted on the site. Both tests were carried out primarily in the Made Ground Clay soils within open excavations. The impermeable fine grained nature of the soils may account for the low infiltration rates obtained.

It is likely that such soils would not be suitable for conventional soakaways being classified as offering only low natural infiltration (Table 3).

Table 3 – Measured infiltration rates (f) expressed as exposed area (metre) per unit time (minute)

Soakaway Test No.	Depth of Test (m bgl)	f (m/min)	f (m/sec)		
SA01	1.0	0.00039 m/min	6.492E -06 m/sec		
SA12	1.10	0.00029 m/min	4.915E -06 m/sec		

6.4 Slopes / Batters

A maximum temporary slope angle of 1V to 1.5H (33°) is anticipated for batters constructed within the upper medium strength fine grained soils. A slope angle of 1V to 2H (26°) should be appropriate for long term batters in the same soils. Instability is likely in loosely bound Made Ground (where it occurs) in addition to the uppermost lower strength soft to firm deposits. Where deep excavation works are required in the superficial deposits, the use of trench box support is advised. In addition, the uppermost fine subsoils will be susceptible to softening and degradation and surface water or groundwater ingress can lead to a significant reduction in shear strength. Perched water can exist locally and this should be considered in risk assessments for excavations. Presence of ground gas should also be a consideration given the drape of Made Ground on the site.

Site operatives or personnel should not enter unsupported excavations and should be informed of potential risks. Where site operatives or engineering staff work in close proximity to temporary slopes or batters, these should be inspected and approved by a suitably experienced civil engineer, preferably with geotechnical experience. Where there is a risk of spalling of battered slopes, the use of a geogrid is recommended. The geogrid should be anchored at the top and bottom of the ridge face to contain particles such as gravel, cobbles and / or boulders, anthropogenic materials that may become dislodged.

6.5 Buried Concrete

The chemical analysis tests on natural soil samples (BRE SD1 analysis suite) show pH (2.5:1) values ranging from 8.2 to 8.6. The sulphate aqueous extract (SO₄) results from borehole and trial pit samples determined values of <10 and 230mg/l. This would suggest the 'as-received' soil samples tested could be categorised as BRE Class DS-1.

Table C2 ACEC for brownfield sites in BRE SD 1 (2005) can be used in the selection and design of concrete. If mobile groundwater conditions prevail at the site and given the pH values obtained from the testing, then ACEC class AC-1 would be expected to be appropriate for buried concrete in the soils. In line with I.S. EN 206-1:2013, given the elevated acid soluble sulphate contents reported, concrete could be manufactured to Class XA2 where founded or positioned in the upper soils (Class XA2 being >3000 and \leq 12000 SO₄²⁻ mg/kg).

6.6 Waste Acceptance Criteria [WAC] & Environmental Testing – Soils destined for Landfill Thirty soil samples from boreholes and trial pits were analysed for their compliance to the criteria set out in the 2002 European Landfill Directive (2003/33/EC). The results from testing feature in Appendix 8.

It would be prudent, given the volume of analysis, that a waste characterisation assessment of the results would be carried out in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015). We would recommend that a specialist environmental consultant (e.g. O'Callaghan Moran Consultants) be engaged to undertake this assessment.

Asbestos (<0.001% to 0.095%) levels in the form of both Chrysotile and Amosite were found in samples from 0.30m to 2.0m depth. Given the abundance of rubble noted in the Made Ground cover on site, the potential to intercept similar "fibres/clumps" cannot be discounted. Table 4 lists where fibres / clumps were encountered.

Table 4 – Occurrence of Asbestos (Chemtest Report 24-06640-1)

Sample Location	Sample Depth	ACM type	Asbestos Identification	Asbestos by Gravimetry / Total Asbestos	Sample Description
TP04	0.30	Fibres/Clumps	Chrysotile	<0.001%	CLAY (MG)
TP05	0.60	Fibres/Clumps	Chrysotile	0.008%	cl/si GRAVEL (MG)
TP08	0.40	Fibres/Clumps	Chrysotile	0.018%	CLAY (MG)
BH09	2.0	Fibres/Clumps	Amosite / Chrysotile	0.095%	SILT/CLAY (MG)
BH12	1.0	Fibres/Clumps	Chrysotile	<0.001%	SILT/CLAY (MG)
BH13	1.0	Fibres/Clumps	Chrysotile	<0.001%	SILT/CLAY (MG)

MG = Made Ground cl/si = clayey/silty

REFERENCES

- 1.0 Brunkard, B. (2014). A Snippet of Dublin History (Part 8) Basin Street Harbour. Retrieved March 11, 2024, from the Fountain Resource Group website https://www.frg.ie/local-history/a-history-of-the-grand-canal-harbour-basin-lane/
- **2.0** BS 5930 (2015+A1:2020) Code of Practice for Site Investigation, British Standards Institution (BSI).
- 3.0 BS 1377 (1990) Methods of Testing of Soils for Civil Engineering Purposes, BSI.
- 4.0 Cullen, F. (2015). Dublin 1847: City of the Ordnance Survey. RIA, Dublin
- **5.0** Eurocode 7, Part 2: Ground Investigation & Testing (EN 1997-2:2007)
- **6.0** Gilbert, J.T. (1859). A History of the City of Dublin, Volume 2. McGlashan and Gill, Dublin.
- 7.0 Irish Standard IS 888:2016, NSAI (Published in March 2016)
- **8.0** Marchant T.R. and Sevastopulo G. D. (1980). The Calp of the Dublin District. Journal of Earth Sciences, 3(2), pp195-203
- 9.0 McAuley, E. (March 16, 2023). Workers unearth old Dublin city basin that was a social hotspot in the 1830s. Retrieved March 11, 2024, from The Journal website https://www.thejournal.ie/dublin-city-history-6021378-Mar2023/
- **10.0**Nolan, S. C. (1986). The Carboniferous geology of the Dublin area. Unpublished Ph.D. Thesis, University of Dublin.
- **11.0**Site Investigation Practice: Assessing BS 5930 (1986), Geological Society Special Publication, No. 2.
- 12.0 Sowers, G.F. (1962) Shallow Foundations, Foundation Engineering, McGraw Hill
- 13.0SR21:2014+A1:2016 Guidance on the use of IS EN 13242+A1:2007
- **14.0**Terzaghi, K., Peck, R.B., & Mesri, G. (1996). Soil Mechanics in Engineering, 3rd Edition. New York, Wiley.
- **15.0** The Irish Piling & Construction Company (1962). Trial Borings Basin Street Upper, Dublin. Retrieved March 12, 2024 from the GSI website https://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde2a aac3c228
- 16.0 The Liberties, Dublin (2023, March 16). Work at St James Linear Park uncovers some fabulous archaeology, thought to be an early basin along what was the original Grand Canal alignment. Retrieved March 11, 2024 from X website, https://twitter.com/libertiesdublin/status/1636308268250279936

Appendix 1

Trial Pit Logs & Photographs

REPORT NUMBER

100	3SL		INIAL PIT	NECO	טחי					250	00-4	
CON	ITRACT	NDFA Social Housing Bun	dles 4/5 - Lot 4- Basin	View				TRIAL P	IT NO.	TP0) 1 et 1 of 1	
LOG	GED BY	PN	CO-ORDINAT	ES	713,766.42 E 733,779.72 N			DATE S		19/0	01/2024	
CLIE	NT INEER	NDFA MORCE	GROUND LEV	/EL (m)	20.03			EXCAVA METHOI		Midi Tracked Excavator		l
			·						Sample	S	a)	neter
	Geotechnical Description				Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	MADE GROUND comprising greyish brown sandy gravely Clay/Silt with a low cobble content. Cobbles are subangular to subrounded. Gravel is subangular to subrounded medium to coarse. Sand is fine to coarse Pit ended on obstruction at 1.0m End of Trial Pit at 1.00m			1.00	19.73		AA210349) В	0.60-0.60			
Grou	undwater	Conditions										
Stab	sility											
Good	d											
	eral Rema terminate	arks ed due to obstruction / boulde	ers									

REPORT NUMBER

Je	BL	'	NIAL PIT	NECO	עח					250	00-4	
CON	TRACT	NDFA Social Housing Bundles 4/5	5 - Lot 4- Basin	View				TRIAL P	IT NO.	TP0 Shee	1 2 et 1 of 1	
LOGGED BY CLIENT ENGINEER		PN	CO-ORDINATE		DRDINATES 713,776.61 E 733,762.67 N			DATE STARTE		19/01	1/2024 1/2024	
		NDFA	GROUND LEV	/EL (m)	20.17			EXCAVA METHOD	TION	Midi	Tracked	
ENGI	NEER	MORCE										
							_		Sample	s	(Pa)	romete
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO				0.20	19.97						
	MADE (Gravel. fine.	GROUND comprising (Loose) blue g Gravel is angular to subangular med	rey sandy dium. Sand is		0.20			AA210351	В	0.30-0.30		
1.0	MADE (a low co fragmer rounded				0.40	19.77			J	0.00		
	Pit ende	ed on obstruction at 1.40m Frial Pit at 1.40m			1.40	18.77		AA210352	В	1.20-1.20		
- - - - 2.0												
-												
Grou	ndwater (Conditions										
Stabi Good												
	ral Rema terminate	rks ed due to obstruction / boulders										

REPORT NUMBER

ાઉદ	3L/		IIIAEIII	IILOO						250	00-4	
CONTRACT NDFA Social Housing Bundles 4/5 - Lot 4- E		les 4/5 - Lot 4- Basir	View				TRIAL P	IT NO.	TP0	P03 neet 1 of 1		
LOGGED BY PN		CO-ORDINA		733,76	48.16 E 61.61 N		DATE STARTED DATE COMPLETED EXCAVATION METHOD			1/2024 1/2024		
		GROUND LE	EVEL (m)	20.35					Midi Exca	Midi Tracked Excavator		
									Samples		a)	neter
	Geotechnical Desc		otion	Legend Depth (m) Elevation		Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)	
-	MADE G gravely (subangu subround	ROUND comprising Greyish Clay/Silt with a low cobble cor llar to subrounded. Gravel is a ded medium to coarse. Sand	brown sandy ntent. Cobbles are subangular to is fine to coarse	y es are o arse	0.35	20.00		AA210350	В	0.50-0.50		
- - - - _{1.0} F - -	Pit ende End of T	d on obstruction at 0.90m rial Pit at 0.90m			0.90	19.45						
- - - -												
2.0												
Ground	dwater C	Conditions		ı	<u> </u>	<u> </u>	<u> </u>			1	<u> </u>	<u> </u>
Stability Good	ty											
	al Remar erminate	rks d due to obstruction / boulder	s									
Stability Good												

REPORT NUMBER

IGSL	INIAL PII	NECO	עחי					250	00-4					
CONTRACT NDFA Social Housing Bundles	s 4/5 - Lot 4- Basin	View				TRIAL PI	IT NO.							
LOGGED BY PN	CO-ORDINAT	ΓES	713,75 733,74	59.24 E 42.36 N		DATE ST		19/0	1/2024					
CLIENT NDFA ENGINEER MORCE	GROUND LE	VEL (m)	19.72			EXCAVA METHOD			Vane Test (KPa) Hand Penetrometer					
							Sample	s	a)	neter				
Geotechnical Description	on	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KP	Hand Penetrometer (KPa)				
MADE GROUND comprising greyish bro gravelly CLAY with a low cobble and bot bricks, concrete, glass and plastic bags. boulders are angular to subrounded (up Gravel is subangular medium. Sand is fi			0.40	19.32		AA210348	В	0.30-0.30						
End of Trial Pit at 0.40m														
Groundwater Conditions														
Stability														
Good														
General Remarks Hole terminated due to obstruction / boulders														

REPORT NUMBER

	BSL		·····AE · · · ·	11200						250	00-4	
CON	TRACT	NDFA Social Housing Bundles 4,	/5 - Lot 4- Basin	View				TRIAL P	IT NO.	TP0)5 et 1 of 1	
CLIENT ENGINEER		PN	CO-ORDINAT	ES	713,83 733,76	30.23 E 67.50 N		DATE ST			1/2024 1/2024	
		NDFA MORCE	GROUND LE	VEL (m)	20.30	20.30		EXCAVATION METHOD		Midi Tracked Excavator		
									Samples	3	a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
	Gravel i is fine.	GROUND comprising grey clayey/s with a low cobble and boulder contest are angular to subrounded (up to a subangular to subrounded fine to subround	ilty sandy ent. Cobble and 450mm). medium. Sand		1.40	18.90		AA210353	в	0.60-0.60		
Grou	indwater (Conditions										
Stab Good												
	eral Rema terminate	rks ed due to obstruction / boulders										

REPORT NUMBER

IGSL									250	25000-4		
CONTRACT	NDFA Social Housing Bundles 4/	5 - Lot 4- Basin	View				TRIAL PI	T NO.	TP0	6 et 1 of 1		
LOGGED BY	PN	CO-ORDINAT	ES	713,80 733,73	03.38 E 30.82 N		DATE ST			1/2024 1/2024		
CLIENT ENGINEER	NDFA MORCE	GROUND LEV	VEL (m)	20.03			EXCAVATION METHOD		Midi	Tracked vator	racked	
			Legend	Depth (m)				Samples	ì	a)	neter	
	Geotechnical Description				Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)	
Sand w	GROUND comprising (Loose) grey of the medium cobble and boulder conal red and yellow brick fragment. Estare angular to subangular (up to 80 lar to subangular medium to coarse.	ler content and		0.30	19.73	,	AA210360	В	0.20-0.20			
End of	Trial Pit at 0.60m			1.50	18.53		AA210361	В	1.30-1.30			
2.0												
Groundwater	Conditions		•	I			<u> </u>		-			
Stability												
Side wall colla												
General Rema Hole terminate	arks ed due to obstruction / boulders											

REPORT NUMBER

/IGSL									250	00-4	
CONTRAC	T NDFA Social Housing Bundles 4/9	View				TRIAL PI	T NO.	TP0 Shee			
LOGGED BY PN		CO-ORDINAT	ES	713,75 733,7	52.88 E 15.38 N		DATE ST		18/01	01/2024	
		GROUND LEV	/EL (m)	21.20			EXCAVATION METHOD		Midi Tracked Excavator		
								Samples	3	a)	neter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
MAI grav 450 Gra	PSOIL DE GROUND comprising greyish brown relly Clay with a low cobble and boulder mm) with rare glass, red brick, concrete vel is subangular to subrounded mediur d is coarse to fine.	sandy content (up to and nails. n to coarse.		0.30	20.90		AA210339	В	0.20-0.20		
Firm (Pos	n brown sandy gravelly Clay with a low ossible MADE GROUND)	cobble content	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.50	19.70		AA210340	В	1.30-1.30		
End	of Trial Pit at 2.20m		0 0	2.20	19.00		AA210341	В	2.20-2.20		
Groundwa	ter Conditions		•	•	•	•					
Stability Good											
General Re	emarks										

REPORT NUMBER

IGSL	'	NIAL PII	NECO	עחי					250	00-4	
CONTRACT	NDFA Social Housing Bundles 4/5	5 - Lot 4- Basin	View				TRIAL P	IT NO.	TP0 Shee	18 et 1 of 1	
LOGGED BY	PN	CO-ORDINAT	ES	713,76 733,70	69.18 E 04.58 N		DATE ST			1/2024 1/2024	
CLIENT ENGINEER	NDFA MORCE	GROUND LE	VEL (m)	20.10			EXCAVA METHOL	TION	Midi	Tracked avator	
								Sample	s	a)	neter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
Pit ende	GROUND comprsied of greyish brow CLAY with a low cobble and boulde concrete, glass and plastic bags. Cos are angular to subrounded (up to 4 s subangular medium. Sand is fine to the compression of the com	vn sandy silty er content with bbles and 400mm). to medium.		0.60	19.50		AA210362	В	0.40-0.40		
Groundwater (Conditions										
Stability Good											
General Rema Hole terminate	ed due to obstruction / boulders										

REPORT NUMBER

/J@	3SL/									250	00-4	
CON	TRACT	NDFA Social Housing Bundles 4	l/5 - Lot 4- Basin	View				TRIAL PI	T NO.	TP0 Shee	9 et 1 of 1	
LOG	GED BY	PN	CO-ORDINAT	ES	713,8 733,6	10.69 E 94.28 N		DATE ST			1/2024 1/2024	
CLIEI	NT NEER	NDFA MORCE	GROUND LEV	/EL (m)	20.23			EXCAVA METHOD	TION)	Midi Exca	Tracked vator	
									Samples	3	' a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	MADE (Gravel v Gravel is fine to c	GROUND comprising (Medium der vith glass, rubbish, red brick and c s rounded to subrounded fine to m	nse) silty sandy oncrete rubble. nedium. Sand is		0.20	20.03		AA210354	В	0.10-0.10		
1.0								AA210355	В	1.00-1.00		
2.0	End of 1	rial Pit at 2.20m			2.20	18.03		AA210356	В	2.10-2.10		
Stabi	lity	Conditions										
Good		rke										
Gene	ral Rema	irs										

REPORT NUMBER

/10	BSL/									250	00-4	
CON	TRACT	NDFA Social Housing Bundle	es 4/5 - Lot 4- Basin	View				TRIAL P	IT NO.	TP1		
	OED DV	DN	CO-ORDINAT	ES		39.08 E		SHEET DATE ST	TARTED		t 1 of 1 /2024	
LOG	GED BY	PN	GROUND LEV	/El (m)	733,68	37.65 N		DATE CO			/2024	
CLIE ENG	NT INEER	NDFA MORCE	GROOND LL	V LL (III)	20.14			METHOE		Midi ⁻ Exca	Tracked vator	
									Samples	s	а)	neter
		Geotechnical Descript	tion				ķe				t (KP	etron
				Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	IL										
								AA210357	В	0.20-0.20		
		2001110			0.40	19.74						
	gravelly	GROUND comprising Greyish to Clay with a low cobble and bo with glass, red brick, concrete	ulder content (up to									
	is suban	igular to subrounded medium t	to coarse. Sand is									
1.0												
					1.40	18.74		AA210358	В	1.30-1.30		
	Soft to fi	rm greyish brown sandy grave and boulder content (up to 300 s are suborunded. Gravel is su	lly CLAY with a low mm). Cobbles and		1.40	10.74						
	subroun	s are suborunded. Gravel is su ded medium to coarse. Sand i	s fine to medium									
							(Seepage)					
2.0												
								AA210359	В	2.10-2.10		
	End -47	Frial Bit at 2 50m		2 2	2.50	17.64						
	End of 1	rial Pit at 2.50m										
Grou Seer	I Indwater (Dage at 1.9	Conditions		I			<u> </u>					
	ago at 1.											
Stab Good												
Gene	eral Rema	rks										

REPORT NUMBER

	3SL/								250	00-4	
CON	ITRACT NDFA Social Housing Bundles	4/5 - Lot 4- Basin	View				TRIAL PI	T NO.	TP1	1 et 1 of 1	
LOG	GED BY PN	CO-ORDINAT	ES	713,7 733,6	70.32 E 71.65 N		DATE ST		18/01	1/2024 1/2024	
CLIE	INT NDFA	GROUND LEV	VEL (m)	21.18			EXCAVA METHOD	TION	Midi	Tracked vator	J
								Samples	3	a)	neter
	Geotechnical Descriptio	n	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	MADE GROUND comprising soft to firm sandy gravelly Clay with a low cobble an (up to 450mm) and with glass, red brick, nails. Gravel is subangular to subrounde coarse. Sand is fine to coarse.	greyish brown d boulder content concrete and d medium to		0.30	20.88		AA210342	В	0.20-0.20		
-1.0	Soft to firm and firm greyish brown sand with a low cobble content (Possible MAD	/ gravelly Clay E GROUND)		1.30	19.88		AA210343	В	1.20-1.20		
2.0	End of Trial Pit at 2.60m			2.60	18.58		AA210344	В	2.40-2.40		
Grou	undwater Conditions		1	<u> </u>		<u> </u>					
Stab Good											
Gene	eral Remarks										

REPORT NUMBER

•	THE THE	III_OO						250	00-4	
NDFA Social Housing Bundles 4/5	5 - Lot 4- Basin	View				TRIAL PI	T NO.			
PN	CO-ORDINAT	ES	713,79 733,63	99.26 E 33.66 N						
NDFA MORCE	GROUND LE	EVEL (m) 20.38				EXCAVA	TION	Midi Tracked Excavator		
							Samples	;	'a)	neter
Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KP	Hand Penetrometer (KPa)
GROUND comprising (Loose) greyis y Sand with a low cobble content, steints, red bricks and concrete. Cobble ounded. Gravel is fine to medium. Sase.	sh brown silty sel pipe s are angular and is medium		1.70	20.13			В			
Conditions										
	PN NDFA MORCE Geotechnical Description DIL GROUND comprising (Loose) grevis	NDFA Social Housing Bundles 4/5 - Lot 4- Basin PN NDFA MORCE Geotechnical Description GROUND comprising (Loose) greyish brown silty y Sand with a low cobble content, steel pipe ints, red bricks and concrete. Cobbles are angular ounded. Gravel is fine to medium. Sand is medium se.	GROUND comprising (Loose) greyish brown silty y Sand with a low cobble content, steel pipe ints, red bricks and concrete. Cobbles are angular rounded. Gravel is fine to medium. Sand is medium se.	NDFA Social Housing Bundles 4/5 - Lot 4- Basin View PN	NDFA Social Housing Bundles 4/5 - Lot 4- Basin View PN	NDFA Social Housing Bundles 4/5 - Lot 4- Basin View CO-ORDINATES 713,799.26 E 733,633.66 N 20.38 ROPA GROUND LEVEL (m) 20.38 Geotechnical Description GROUND comprising (Loose) greyish brown silty Sand with a low cobble content, steel pipe ints, red bricks and concrete. Cobbles are angular ounded. Gravel is fine to medium. Sand is medium see. 1.70 18.68	NDFA Social Housing Bundles 4/5 - Lot 4- Basin View PN CO-ORDINATES 713,799.26 E 733,633.66 N GROUND LEVEL (m) 20.38 Geotechnical Description Geotechnical Description DIL GROUND comprising (Loose) greyish brown sitty y Sand with a low cobble content, steel pipe mist, sed bricks and concrete. Cobbles are angular ounded. Gravel is fine to medium. Sand is medium se. AA210345 AA210346 AA210346	NDFA Social Housing Bundles 4/5 - Lot 4- Basin View PN CO-ORDINATES 713,799.26 E 733,633.36 N ROPE ROUND LEVEL (m) Date COMPLET EXCAVATION METHOD Samples Geotechnical Description Dill GROUND comprising (Loose) greyish brown silty y Sand with a low cobble content, steel pipe rounded. Gravel is fine to medium. Sand is medium see. 1.70 18.68 TRIAL PIT NO. SHEET DATE STARTED DATE COMPLET EXCAVATION METHOD Samples Samples Date Complete Samples Samples Samples Samples 1.70 18.68	NDFA Social Housing Bundles 4/5 - Lot 4- Basin View PN CO-ORDINATES 713,799.26 E 733,633.66 N GROUND LEVEL (m) PN NDFA MORCE Geotechnical Description Geotechnical Description DIL GROUND comprising (Loose) greyish brown silty y Sand with a low cobble content, steel pipe inst, red bricks and concrete. Obbles are angular ounded. Gravel is fine to medium. Sand is medium see. 1,70 1,70 1,868 TRIAL PIT NO. TP1 Shee DATE STARTED 18/0 EXCAVATION Midd METHOD AA210345 B 0,20-0.20 AA210345 B 0,20-0.20 AA210345 B 1,50-1.50	NDFA Social Housing Bundles 4/5 - Lot 4- Basin View TRIAL PIT NO. Sheet 1 of 1 DATE STARTED DATE COMPLETED 18/01/2024 EXCAVATION Midl Tracked METHOD Samples Oc. O-RDINATES 713,799.26 E 733,653.96 N GROUND LEVEL (m) 20.38 Geotechnical Description Page 4

REPORT NUMBER

\	BSL	'	RIAL PIT H	RECO	RD					250	00-4	
CON	TRACT	NDFA Social Housing Bundles 4/5	5 - Lot 4- Basin V	iew				TRIAL P	PIT NO.	TP1	3 et 1 of 1	
LOG	GED BY	PN	CO-ORDINATE	S	713,84 733,64	41.71 E 44.68 N		DATE S		18/0	1/2024 1/2024	
CLIE	NT NEER	NDFA MORCE	GROUND LEVI	EL (m)	20.37			EXCAVA METHO			Tracked vator	
									Sample	es	(E	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	with a lo	GROUND comprising brown silty gra by cobble and boulder content (up to is subangular to subrounded mediun medium.	velly Sand o 400mm). n to coarse.		0.25	20.12		AA210347	' В	0.40-0.40		
- - - - 1.0	concret	ed on obstruction at 0.60m - Boulder e Trial Pit at 0.60m	s and possible		0.60	19.77						
- - - - 2.0												
Grou	ndwater	Conditions										
Stab Good												
	eral Rema terminate	arks ed due to obstruction / boulders										

<u>TP01</u>

<u>TP02</u>

<u>TP03</u>

<u>TP04</u>

<u>TP05</u>

<u>TP06</u>

<u>TP07</u>

<u>TP08</u>

<u>TP09</u>

<u>TP10</u>

<u>TP11</u>

<u>TP12</u>

<u>TP12</u>

<u>TP13</u>

Appendix 2

Foundation Pit Logs

REPORT NUMBER

25000-4

Contract: NDFA Social Housing Bundles 4/5 - Lot 4 - Basin View

Location: FP04 (at TP04)
Engineer MORCE
Client: NDFA
Logged by: PN
Date: 18/01/2024

PHOTOS

TRIAL PIT NO.

FP04

Summary of ground conditions

- 1			•	
	from	to	Description	Ground water
	0.00		MADE GROUND comprising greyish brown sandy silty gravelly CLAY with a low cobble and boulder content and bricks, concrete, glass and plastic bags	
				Dry
		Note	Excavation hampered due to presence of 4" black PVC pipes	

Samples: AA210348

 Location:
 Easting
 Northing
 Elevation

 713759.241
 733742.359
 19.72

REPORT NUMBER

25000-4

Contract: NDFA Social Housing Bundles 4/5 - Lot 4 - Basin View

Location: FP06 (at TP06)
Engineer MORCE
Client: NDFA
Logged by: PN
Date: 22/01/2024

PHOTOS

TRIAL PIT NO.

FP06

Summary of ground conditions

from	to	Description	Ground water
0.00	0.50	TOPSOIL	
0.50		MADE GROUND comprising (Loose) grey clayey gravelly Sand with a medium cobble and boulder content and occasional red and yellow brick fragment.	Dry
			1

Samples: AA210360, AA210361

<u>Location:</u> Easting Northing Elevation 713803.375 733730.82 20.028

REPORT NUMBER

25000-4

NDFA Social Housing Bundles 4/5 - Lot 4 - Basin View Contract:

Location: FP08 (at TP08) MORCE Engineer NDFA Client: PN 22/01/2024 Logged by: Date:

PHOTOS

Summary of ground conditions

from	to	Description	Ground water
0.00		MADE GROUND comprsied of greyish brown sandy silty gravelly CLAY with a low cobble and boulder content with bricks, concrete, glass and plastic bags	
			Dry
	Note	Dig terminated due to restricted access	
			1

Samples: AA210362

Easting 713769.18 Location: Northing Elevation 733704.58 20.098

REPORT NUMBER

25000-4

Contract: NDFA Social Housing Bundles 4/5 - Lot 4 - Basin View

Location: FP09 (at TP09)
Engineer MORCE
Client: NDFA
Logged by: PN
Date: 22/01/2024

TRIAL PIT NO.

FP09

PHOTOS

	l conditions

from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	1.60	(Medium dense) Silty gravelly Sand (MADE GROUND)	
			Dry

Samples: AA210354, AA210355

<u>Location:</u> Easting Northing Elevation 713810.685 733694.279 20.233

Appendix 3

Cable Percussion Borehole Logs

SPT Calibration Sheet (Er)

GEOTECHNICAL BORING RECORD

REPORT NUMBER

СО	NTRAC	T NDF	A Social F	lousing Bundles	4/5 - Lot 4- F	Basin View	,				BOREHO	LE NO.	BH01	
	-ORDIN	ATES LEVEL (m	733,77	49.89 E 73.50 N 20.11		PE OLE DIAM OLE DEPT		nm)	Dando 20 200 6.30	000		Sheet 1 of 1 ED 17/01/2024 ED 18/01/2024		
	ENT	NDF		20.11		MMER RE	• •		SA7		BORED E		DT	
ENG	GINEER	MOF	RCE		ENERG	Y RATIO (9	%)		74.07		PROCES	SED BY	FC	
(_	<u> </u>		San	nples	_		a d
Deptn (m)			Desc	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
)	TOPS						20.01	0.10						
			D compris LAY. Grav	ing brown sandy el is fine.	slightly		19.61	0.50	AA210276	В	0.50			
	MADE	GROUN	D compris	ing grey/brown s	andy								NI O	
ı	and re	ed brick fr	agments.	occasional coddie	es/boulders				AA210277	В	1.00		N = 8 (0, 2, 2, 2, 2, 2)	
							18.51	1.60						
				ing grey/white sa										
2	white	ravelly SILT/CLAY with cobbles, concrete, red hite brick fragments.							AA210278	В	2.00		N = 21 (7, 5, 5, 5, 5, 6)	
	Vary	tiff black	eandy aray	elly CLAY with s	ome		17.01	3.10	AA210279	В	3.00		N = 34 (5, 6, 8, 8, 9, 9)	
	cobble	es and oc	casional b	oulders	onie									
							1		AA210280	В	4.00		N = 52 (8, 10, 10, 15, 15, 12)	
													(-, -, -, -, -, -,	
							1							
									AA210281	В	5.00		N = 64 (9, 7, 14, 16, 17, 17)	
													(3, 7, 14, 10, 17, 17)	
						Dec								
									AA210282	В	6.00		N = 50/150 mm	
	Obstri	ıction				POXI	13.81	6.30	\dashv				(15, 10, 20, 30)	
			e at 6.30 m	1										
1	DD CT	DATA DO	DINO/CLUS	YELLIN'S									TED OTDUCE SEE	L.
_			Time C	omments		Wate		sing	Sealed	Ris		me c	TER STRIKE DET omments	AIL
_	m (m) .80	To (m) 6.00	(h) C	OHINGHES		Strik	e De	epth	At	To) (m	iiri)		
	.20	6.30	1.5									1	No water strike	
												GRO	OUNDWATER PRO	GR
IS	TALLA	TION DET	AILS			Dat	te	Hole Depth	Casing Depth	De W	oth to ater	Commen	ts	
_	Date	Tip Dep	th RZ Top	RZ Base	Туре									
F	MVBKG	Safety f	encing ero	cted around work	carea CAT	scanned lo	cation	Sami	nle Logon					
_'		and han	d dug insp	ection pit carried	out.	Journal IV	JuliOII	B - Bulk	ple Legen Ill Disturbed (tub) Disturbed			Sample	disturbed 100mm Diameter	
								LB - Lar Env - Er	ge Bulk Disturbe nvironmental San	a nple (Jar -	+ Vial + Tub)	P - Und W - Wa	isturbed Piston Sample ter Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

CO	NTRAC	T NDF	A Social F	lousina Rur	ndles 4/5 - Lot 4-	Basin View	, ,				BOREHO	DLE NO.	BH02	
	-ORDIN				RIG TY		•		Dando 20		SHEET		Sheet 1 of 1	
		EVEL (m	713,77 733,78 OD)		BOREH	IOLE DIAM		nm)	200 4.10				ED 18/01/2024 ED 19/01/2024	
:LI	ENT	NDF	A		SPT HA	MMER RE	F. NO.		SA7		BORED I	вү	DT	
ENC	GINEER	MOF	RCE		ENERG	Y RATIO (9	%)		74.07		PROCES	SED BY	f FC	
Ē							_	Ē			nples		_	90
Deptin (m)			Desc	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0	TOPS	OIL				******	20.10	0.10	_			+-		
	SILT/0		•	ng brown s	andy gravelly		19.60 19.40	0.60	AA210283	В	0.50			
1	MADE	GROUN CLAY with	D comprisi	ng brown s ooulders an	andy gravelly d red/white brick				AA210284	В	1.00		N = 50/75 mm (25, 50)	
2							17.60	2.60	AA210285	В	2.00		N = 50/75 mm (14, 11, 50)	
3	Very s with so	Very stiff dark grey/black sandy silty gravelly CLAY with some cobbles and occasional boulders							AA210286	В	3.00		N = 51 (8, 15, 15, 10, 10, 16)	
4		Obstruction End of Borehole at 4.10 m					16.10	4.10	AA210287	В	4.00		N = 50/75 mm (25, 50)	
5 6 7														
HA	ARD STI	RATA BOI	RING/CHIS			Wate	or Co	eina	Sealed	Ris	O T:		ATER STRIKE DETA	AILS
	• •	To (m)	(11)	omments		Strik		sing epth	At	To		me nin) C	comments	
	.80	3.00 4.10	1 1.5										No water strike	
												GRO	DUNDWATER PRO	GRES
NS	TALLA	TION DET	AILS			Dat		Hole Depth	Casing Depth	De W	oth to ater	Commer	nts	
	Date	Tip Dept	h RZ Top	RZ Base	Туре			- 10001						
REI	MARKS	Safety fe	encing ered d dug insp	ection pit ca	I work area. CAT arried out.	scanned lo	cation	B - Bulk I LB - Larg	DIE Legen Disturbed (tub) Disturbed Je Bulk Disturbe vironmental San	d	+ Vial + Tub)	Sample P - Und	ndisturbed 100mm Diameter e disturbed Piston Sample ater Sample	

IGSL.GDT

GPJ

25000-

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-4

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 4- Basin View **BOREHOLE NO. BH03** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 713,827.35 E **DATE COMMENCED 17/01/2024 BOREHOLE DIAMETER (mm)** 733,792.51 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.00 **DATE COMPLETED** 18/01/2024 20.40 CLIENT SPT HAMMER REF. NO. SA7 WB NDFA **BORED BY ENGINEER** PROCESSED BY MORCE **ENERGY RATIO (%)** 74.07 FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 TOPSOIL 20.20 0.20 MADE GROUND comprising brown sandy gravelly SILT/CLAY with root fibres 19.70 0.70 MADE GROUND comprising brown sandy gravelly CLAY with plastic pieces and red brick fragments N = 12AA198339 В 1.00 (2, 3, 4, 2, 3, 3)18.60 1.80 MADE GROUND comprising brown sandy gravelly N = 9 (2, 2, 2, 3, 2, 2) AA198340 В 2.00 SILT/CLAY with occasional cobbles and some root AA198341 В 3.00 (1, 1, 2, 2, 4, 3) 16.50 3.90 0 - ° 0 -Dense grey/brown very sandy GRAVEL (Possibly very N = 374.00 AA198342 (2, 4, 5, 9, 11, 12) 16.10 4.30 gravelly Sand) 0 1. 0 1 Very stiff black sandy gravelly CLAY with occasional ... cobbles N = 64 (5, 12, 14, 19, 17, 14) AA198343 В 5.00 <u>-</u> - 14.40 6.00 N = 50/75 mm (25, 50) AA198344 В 6.00 Obstruction End of Borehole at 6.00 m 9 HARD STRATA BORING/CHISELLING **WATER STRIKE DETAILS** Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike То (h) Depth Αt (min) 5.80 6.00 1.5 No water strike **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Туре End of BH 18-01-24 6.00 Nil 4.00 REMARKS Safety fencing erected around work area. CAT scanned location Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) and hand dug inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

IGSL.GDT

GPJ

SITE 4.

25000-

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-4

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 4- Basin View BOREHOLE NO. **BH04** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 713,753.39 E **DATE COMMENCED 15/01/2024 BOREHOLE DIAMETER (mm)** 733,754.46 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.30 **DATE COMPLETED** 16/01/2024 20.34 CLIENT SPT HAMMER REF. NO. SA7 NDFA **BORED BY** DT **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 74.07 FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Recovery Field Test Legend Depth (Depth (Description Depth (m) ype Results - 0 TOPSOIL 20.24 0.10 MADE GROUND comprising brown sandy gravelly A210269 В SILT/CLAY 0.50 19.54 Large BOULDER 19.34 N = 16(0, 2, 3, 4, 4, 5) A210270 В 1.00 MADE GROUND comprising brown sandy gravelly SILT/CLAY with cobbles and red brick fragments 18.64 1.70 Firm grey sandy gravelly SILT/CLAY with occasional N = 50/75 mm -2 cobbles AA210271 В 2.00 (25, 50)0 - 3 N = 11 (1, 2, 2, 4, 3, 2) AA210272 В 3.00 16.74 3.60 Very stiff black sandy gravelly CLAY with some cobbles and occasional boulders N = 64AA210273 4.00 (7, 8, 14, 15, 16, 19) N = 49 (7, 10, 12, 12, 13, 12) AA210274 R 5.00 N = 50/150 mm (11, 14, 34, 16) AA210275 В 6.00 -6 14.04 6.30 Obstruction End of Borehole at 6.30 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike Αt То (h) Depth (min) 2.00 2.40 4.00 4.00 Nο 20 0.75 Nο Seepage 3.20 3.00 6.30 1.5 6.20 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type REMARKS Safety fencing erected around work area. CAT scanned location Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) and hand dug inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

GEOTECHNICAL BORING RECORD

REPORT NUMBER

	NTRAC			Housing Bund								BOREHO SHEET		Sheet 1 of 1	
	ORDIN OUND L	ATES .EVEL (n	733,7	32.52 E 71.44 N 20.31	ВО		: LE DIAM LE DEPT		nm)	Dando 20 200 5.50				CED 16/01/2024 ED 16/01/2024	
LII	ENT	ND	FA		SPT	ГНАМ	MER REI	F. NO.		SA7		BORED	ву	DT	
NC	SINEER	MC	RCE		ENI	ERGY	RATIO (%	%)		74.07		PROCES	SSED B	Y FC	
								_	(F)			nples	1 -		Ф
Deptin (m)			Des	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
)	TOPS	OIL					71 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	20.11	0.20				+-		
		GROUI		sing brown sa	andy slightly			19.81	0.50						
ı	MADE	GROUI with cob	ND compris	sing brown sa rete pieces al	andy gravelly nd red brick			× × × × × × × × × ×		AA198354	В	1.00		N = 9 (2, 2, 3, 2, 2, 2)	
2	Soft to occas	o firm bro ional cob	own sandy obles	gravelly SILT	/CLAY with		××××××××××××××××××××××××××××××××××××××	18.41	1.90	AA198355	Б	2.00		N = 9 (2, 2, 2, 2, 3, 2)	
	Vorys	tiff black	sandy gra	volly CLAV w	vith somo	· · · · · · · · · · · · · · · · · · ·	×	16.71	3.60	AA198356	В	3.00		N = 11 (1, 1, 1, 2, 3, 5)	
		Very stiff black sandy gravelly CLAY with some cobbles				\(\frac{1}{2}\)				AA198357	В	4.00		N = 37 (2, 3, 9, 7, 10, 11)	
	Obstru							14.81	5.50	AA198358	В	5.00		N = 44 (5, 7, 10, 10, 10, 14) N = 50/75 mm (25, 50)	
66 177 177 178 179 1															
ΗA	RD STI	RATA BO	ORING/CHI	SELLING										ATER STRIKE DET	AILS
rom (m) To (m) Time (h) Comments					Wate Strike		sing epth	Sealed At	Ris To		me nin)	Comments			
5.	30	5.50	1.5											No water strike	
									Holo	Casina	D-	oth to		OUNDWATER PRO	GRE
		TION DE					Dat	e	Hole Depth	Casing Depth) De	pth to later	Comme	nts	
	Date			RZ Base	Type										
ĒΝ	MARKS	Safety and ha	fencing ere	ected around bection pit ca	work area. C rried out.	AT sc	anned lo	cation	B - Bulk LB - Lar	ple Legen III Disturbed (tub Disturbed ge Bulk Disturbe avironmental Sar	ed	. Vial . Tub	Samp P - Ur	Undisturbed 100mm Diameter ole	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

	NTRAC				ndles 4/5 - Lot		iew			D l - 00	200	BOREH SHEET		Sheet 1 of 1	
		NATES LEVEL (1	733	,787.42 E ,728.91 N 20.16		EHOLE DI EHOLE DE			ım) i	Dando 20 200 6.20	000			CED 08/02/2024 TED 09/02/2024	
	ENT)FA		I	HAMMER		NO.	;	SA7		BORED		DT	
ENG	INEEF	R MC	DRCE		ENE	RGY RATIO	O (%)	1		74.07		PROCE	SSED B	Y FC	1
Depth (m)			De	escription		Legend		Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
0	TOPS	SOIL						и 0.06	0.10	= =	07		<u> </u>		M
	MAD grave MAD	E GROU elly SILT/ E GROU	CLAY ND comp	rising light bro	own sandy			9.86	0.30						
1	fragm	elly SIL I/ nents and	d large col	n yellow and r obles through	ed brick out					AA220290	В	1.00		N = 7 (0, 1, 1, 2, 2, 2)	
2										AA220291	В	2.00		N = 11 (2, 2, 2, 3, 2, 4)	
3	cobbl	es			with occasional	<u> </u>		7.16 6.66	3.00	AA220292	2 B	3.00		N = 22 (2, 4, 4, 5, 5, 8)	0 0
4	Very stiff black sandy silty gravelly CLAY with some cobbles and occasional cobbles						XC			AA220293	В	4.00		N = 58 (7, 6, 10, 14, 16, 18)	0 0
5										AA220294	В	5.00		N = 49 (17, 8, 10, 11, 14, 14)	0 0
6	Obstr	uction				——————————————————————————————————————	1	3.96	6.20	AA220295	В	6.00		N = 50/75 mm (15, 10, 50)	0 0
7	End o	of Boreho	ole at 6.20) m											
9															
шл	DD CT	DATA D	ODING/CL	HSELLING										VATER CIRILE DE	FAUL C
		To (m)	Time	Comments			ater			Sealed	Ris		ime (Comments	AILO
	10	6.20	(h) 1.5	Comments		S	trike	De	pth	At	To) (r	min)	No water strike	
									Uolo	Coolne		mallo de	GR	OUNDWATER PRO	OGRES
[TALLA Date 02-24	Tip De 6.20		op RZ Base 0 6.20	Type 50mm SP		Date		Hole Depth	Casing Depth	De W	pth to later	Comme	ents	
REN	MARKS	Safetv	fencina e		car, cones havir d work zone. CA arried out.			tion	B - Bulk I LB - Larg	DIE Legen Disturbed (tub) Disturbed	d	+ Vial + Tuh)	Samp P - Ur	Undisturbed 100mm Diameter ple disturbed Piston Sample Vater Sample	

GPJ IGSL.GDT

25000-

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-4

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 4- Basin View **BOREHOLE NO. BH07** SHEET Sheet 1 of 1 Dando 2000 **CO-ORDINATES** 713,835.65 E **DATE COMMENCED 12/02/2024 BOREHOLE DIAMETER (mm)** 733,724.91 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.20 **DATE COMPLETED** 13/02/2024 20.09 CLIENT NDFA SPT HAMMER REF. NO. SA7 DT **BORED BY ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 74.07 FC Samples Standpipe Details $\widehat{\Xi}$ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Description Depth (Depth (m) Results - 0 TOPSOIL 19.89 0.20 MADE GROUND comprising light brown sandy 19.69 0.40 gravelly SILT/CLAY В AA216801 0.50 MADE GROUND comprising grey/brown sandy gravelly SILT/CLAY with yellow and red brick AA216802 В 1.00 N = 7(0, 1, 1, 2, 2, 2) fragments and large cobbles throughout 18.49 1.60 Firm light grey sandy gravelly SILT/CLAY with some <u>~</u> cobbles N = 15 (2, 2, 3, 3, 4, 5) -2 AA216803 В 2.00 17.59 2.50 Stiff mottled grey sandy silty gravelly CLAY with some <u>~</u> cobbles - 3 N = 24AA216804 В 3.00 0. (3, 4, 5, 5, 6, 8) \bigcirc 16.59 3.50 Very stiff black sandy gravelly CLAY with cobbles and occasional boulders N = 57 (8, 10, 14, 14, 14, 15) AA216805 4.00 N = 55 (10, 15, 10, 16, 14, 15) AA216806 R 5.00 N = 50/75 mm (25, 50) F6 AA216807 В 6.00 13.89 6.20 Obstruction End of Borehole at 6.20 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike То (h) Depth At (min) 4.30 Slow 6.10 6.20 4.60 4.60 4.90 20 1.5 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base 13-02-24 End of BH Type 6.20 Nil 4.30 REMARKS Safety fencing erected around work area. CAT scanned location Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) and hand dug inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

IGSL.GDT

GPJ

25000-

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-4

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 4- Basin View **BOREHOLE NO. BH08** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 713,750.98 E **DATE COMMENCED 24/01/2024 BOREHOLE DIAMETER (mm)** 733,736.54 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.20 **DATE COMPLETED** 25/01/2024 21.23 CLIENT SPT HAMMER REF. NO. SA7 NDFA **BORED BY** DT **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 74.07 FC Samples Standpipe Details $\widehat{\Xi}$ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 11/2 1/1/2 TOPSOIL 21.03 0.20 Brown sandy slightly gravelly SILT/CLAY. Gravel is 20.83 0.40 XO-В XO-AA220258 0.50 Soft grey/brown sandy gravelly SILT/CLAY (Possible ___ Made Ground) .____ N = 7(0, 2, 2, 1, 2, 2) AA220259 В 1.00 -X-___ - 19.43 1.80 Firm light brown sandy gravelly SILT/CLAY with <u>~</u> N = 16 (2, 3, 3, 4, 4, 5) -2 AA220260 В 2.00 occasional cobbles _X(18.83 2.40 Stiff grey/brown sandy silty gravelly CLAY with <u>~</u>_ occasional cobbles 0. N = 22AA220261 В 3.00 (5, 5, 4, 5, 6, 7) 17.53 3.70 Very stiff black sandy gravelly CLAY with some cobbles and occasional boulders N = 454.00 AA220262 (7, 9, 9, 10, 12, 14) N = 42 (8, 8, 10, 7, 10, 15) AA220263 R 5.00 6 N = 50/150 mm (19, 6, 27, 23) В AA220264 6.00 -6 15.03 6.20 Obstruction End of Borehole at 6.20 m 9 HARD STRATA BORING/CHISELLING **WATER STRIKE DETAILS** Water Casing Sealed Rise Time From (m) To (m) Comments Comments То (h) Depth Αt (min) 4.10 6.20 No water strike 5.00 5.10 0.75 6.10 6.20 1.5 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type REMARKS Safety fencing erected around work area. CAT scanned location Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) and hand dug inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

GEOTECHNICAL BORING RECORD

REPORT NUMBER

	NTRAC			Housing Bundle					D 1 60		SHEET		Sheet 1 of 1	
	ORDIN DUND L	ATES .EVEL (m	733,69	01.50 E 90.42 N 20.22		PE OLE DIAM OLE DEPT		nm)	Dando 20 200 6.20				CED 23/01/2024 ED 23/01/2024	
CLIE	ENT	NDI	-A		SPT HA	MMER REI	F. NO.		SA7		BORED	BY	DT	
NG	INEER	MOI	RCE		ENERG	Y RATIO (9	%)		74.07		PROCES	SSED BY	f FC	
_							_	<u></u>		_	nples		_	Ф
Deptin (m)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
0	TOPS	OIL					20.02	0.20				+ -		-
				ing brown sand	y slightly									
			LAY. Grav	el is fine. ing brown sand	v gravelly		19.62 19.32	0.60		В	0.50			
	SILT/0	CLAY					10.02	0.50	AA220252	В	1.00			
		ly SILT/C		ing grey/brown cobbles and red										
	Stiff m	ottled bro	own sandv	silty gravelly Cl	AY with		18.02	2.20	AA220253	В	2.00		N = 23 (2, 5, 5, 6, 5, 7)	
	Stiff mottled brown sandy silty gravelly CLAY with occasional cobbles						17.10	0.40					N 27	
	Very s	tiff black es and oc	sandy grav casional b	velly CLAY with oulders	some		17.12	3.10	AA220254	В	3.00		N = 37 (5, 5, 7, 8, 8, 14)	
									AA220255	В	4.00		N = 64 (10, 10, 14, 16, 18, 16)	
									AA220256	В	5.00		N = 50/225 mm (7, 8, 10, 15, 25)	
							14.02	6.20	AA220257	В	6.00		N = 50/75 mm (25, 50)	
,	Obstru End o		e at 6.20 m	1										
ΙA	RD STI	RATA BO	RING/CHIS	SELLING		1						W	ATER STRIKE DETA	LL.
rom (m) To (m) Time (h) Comments				Wate Strike	Water Casi		Sealed At	Ris To		ime nin)	Comments			
1.20 1.70 1 6.10 6.20 1.5				Guilli	<u> </u>	epth	7.10	- 10			No water strike			
								11.2		-		GR	OUNDWATER PRO	GRI
IS	TALLA	TION DET	AILS			Dat	e	Hole Depth	Casing Depth	De W	pth to ater	Comme	nts	
	Date	Tip Dep	th RZ Top	RZ Base	Туре			J						
ΕN	MARKS	Safety f	encing ere	cted around wo ection pit carrie	rk area. CAT	scanned lo	cation	B - Bulk LB - Lar	ple Legen Ill Disturbed (tub Disturbed ge Bulk Disturbe avironmental Sar	d		Sampl P - Un	ndisturbed 100mm Diameter e disturbed Piston Sample ater Sample	

IGSL.GDT

GPJ

25000-

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-4

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 4- Basin View **BOREHOLE NO. BH10** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 713,839.04 E **DATE COMMENCED 22/01/2024 BOREHOLE DIAMETER (mm)** 733,684.97 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.20 **DATE COMPLETED** 23/01/2024 20.09 CLIENT SPT HAMMER REF. NO. SA7 NDFA **BORED BY** DT **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 74.07 FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 TOPSOIL 19.89 0.20 19.69 0.40 MADE GROUND comprising brown sandy slightly gravelly SILT/CLAY. Gravel is fine. AA210292 В 0.50 MADE GROUND comprising brown sandy gravelly 0.90 19.19 SILT/CLAY N = 16 (2, 2, 3, 4, 4, 5) AA210293 В 1.00 MADE GROUND comprising grey/brown sandy 18.79 1.30 gravelly SILT/CLAY with cobbles and red brick fragments Firm to stiff mottled brown sandy silty gravelly CLAY 0 N = 24 (2, 2, 3, 5, 7, 9) with occasional cobbles AA210294 В 2.00 17.19 2.90 Very stiff black sandy gravelly CLAY with some N = 35AA210295 В 3.00 (5, 5, 6, 7, 9, 13) cobbles and occasional bouders AA210296 N = 464.00 (7, 9, 8, 12, 14, 12) N = 59 AA210297 В 5.00 (10, 8, 9, 18, 19, 13) N = 50/75 mm (8, 17, 50) В F6 AA210298 6.00 13.89 6.20 Obstruction End of Borehole at 6.20 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike То (h) Depth Αt (min) 5.20 6.20 4.00 4.00 Nο 20 0.75 Nο Seepage 6.10 6.20 1.5 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date End of BH Type 23-01-24 6.20 Nil 4.00 REMARKS Safety fencing erected around work area. CAT scanned location Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) and hand dug inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-4

	ORDIN	ATES	733,6	81.73 E 43.01 N		/PE HOLE DIAM HOLE DEP1		nm)	Dando 20 200 5.80	00			Sheet 1 of 1 CED 29/01/2024	
	ENT		nob))FA	21.00		AMMER RE	. ,		5.80 SA7		BORED I		ED 30/01/2024 DT	
NC	SINEER	MC	DRCE		ENERG	GY RATIO (%)		74.07	ı	PROCES	SED BY	f FC	
_							_	<u>-</u>			ples		_	Ф
nebin (iii)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
+	TOPS					7/1/2 7/1/2	20.80	0.20						
	Soft b (Poss	rown sa ible Mac	ndy slightly le Ground)	gravelly SILT/0	CLAY	X			AA220265	В	0.50			
	Soft g	rey/brow ional col	n sandy gr bbles (Pos	avelly SILT/CL sible Made Gro	AY with und)	×— — — — — — — — — — — — — — — — — — —	20.00	1.00	AA220266	В	1.00		N = 8 (1, 1, 2, 2, 2, 2)	
		o stiff gr ional col		andy silty grave	elly CLAY with		19.30	1.70	AA220267	В	2.00		N = 19 (2, 3, 4, 4, 5, 6)	
							17.00	2.00	AA220268	В	3.00		N = 24 (4, 4, 5, 6, 6, 7)	
	Very s	stiff black es and o	sandy gra ccasional b	velly CLAY with oulders	n some		17.20	3.80	AA220269	В	4.00		N = 48 (6, 6, 10, 12, 12, 14)	
							2		AA220270	В	5.00		N = 50/150 mm (15, 10, 28, 22)	
	Obstri End o		ole at 5.80 r	n			15.20	5.80					N = 50/75 mm (18, 21, 50)	
	DD 6		DIN 10 121	OFILING.										
			Time /			Wate	er Ca	sing	Sealed	Rise	e Ti	mρ	ATER STRIKE DET	AIL
	70	To (m) 5.80	(h)	Comments		Strik		epth	At	То		nin)	No water strike	
												GRO	OUNDWATER PRO	GR
IS	TALLA	TION DE	TAILS			Da		Hole Depth	Casing Depth	Der	oth to ater	Commer	nts	
_	Date	Tip De	pth RZ Top	RZ Base	Туре			Jopui	Борш	''				

IGSL.GDT

GPJ

25000-

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-4

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 4- Basin View **BOREHOLE NO. BH12** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 713,797.59 E **DATE COMMENCED** 06/02/2024 **BOREHOLE DIAMETER (mm)** 733,638.15 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.60 DATE COMPLETED 07/02/2024 20.37 CLIENT SPT HAMMER REF. NO. SA7 DT NDFA **BORED BY ENGINEER** PROCESSED BY MORCE **ENERGY RATIO (%)** 74.07 FC Samples Standpipe Details $\widehat{\Xi}$ Ξ Elevation Ref. Number Sample Recovery Field Test Legend Depth (Depth (Description Depth (m) ype Results - 0 TOPSOIL 20.17 0.20 MADE GROUND comprising grey/brown sandy gravelly SILT/CLAY with cobbles and yellow/red brick fragments N = 14AA202083 В 1.00 (0, 2, 3, 4, 4, 3)N = 12 (1, 2, 2, 2, 3, 5) AA202084 В 2.00 -2 17.37 3.00 N = 50/75 mmAA202085 В 3.00 Possible large BOULDER (18, 25, 50) 16.77 3.60 Stiff grey/brown sandy gravelly SILT/CLAY with **XO**: 16.57 3.80 occasional cobbles $\overline{\otimes}$ N = 30AA202086 4.00 O x Very stiff black sandy silty gravelly CLAY with some (2, 3, 5, 7, 7, 11) cobbles and occasional boulders N = 60 (6, 12, 14, 14, 15, 17) AA202087 R 5.00 AA202088 В 6.00 13.77 6.60 N = 50/75 mmAA202089 В 6.50 (25, 50) Obstruction End of Borehole at 6.60 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike То (h) Depth At (min) 4.20 Slow 3.00 3.60 3.80 3.50 20 1.5 3.80 6.50 6.60 1.5 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date 07-02-24 End of BH Type 6.60 Nil 3.50 07-02-24 6.60 1.00 6.60 50mm SP **REMARKS** 2hrs moving rig into position due to very wet ground conditions. Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) Safety fencing erected around work zone. CAT scanned location Sample P - Undisturbed Piston Sample and hand dug inspection pit carried out. W - Water Sample

IGSL.GDT

GPJ

25000-

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-4

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 4- Basin View **BOREHOLE NO. BH13** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 713,818.82 E **DATE COMMENCED 31/01/2024 BOREHOLE DIAMETER (mm)** 733,640.04 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.20 DATE COMPLETED 31/01/2024 20.39 CLIENT NDFA SPT HAMMER REF. NO. SA7 **BORED BY** DT **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 74.07 FC Samples Standpipe Details $\widehat{\Xi}$ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Description Depth (Depth (m) Results - 0 TOPSOIL 20.29 0.10 MADE GROUND comprising brown sandy gravelly 19.79 0.60 SILT/CLAY with roots and occasional cobbles A220271 В 0.50 Firm mottled grey/brown/black sandy gravelly SILT/CLAY with cobbles and red brick fragments and N = 8 (0, 1, 2, 2, 1, 3) AA220272 В 1.00 tree roots (MADE GROUND) N = 19 (2, 3, 4, 4, 5, 6) -2 AA220273 В 2.00 17.39 3.00 N = 50/75 mmLarge BOULDER/COBBLES (MADE GROUND) 16.99 3.40 Very stiff grey sandy gravelly SILT/CLAY with AA220274 В 3.50 occasional cobbles 16.59 3.80 Very stiff black sandy silty gravelly CLAY with some $\overline{\otimes}$ N = 61 (8, 13, 14, 14, 16, 17) AA220275 4.00 cobbles and occasional boulders N = 52 (15, 10, 14, 10, 16, 12) - 5 AA220276 R 5.00 N = 50/75 mm (25, 28, 50) AA220277 В 6.00 -6 14.19 6.20 Obstruction End of Borehole at 6.20 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike То (h) Depth At (min) 3.90 Slow 3.00 3.40 2.90 2.90 2.40 20 1.5 6.10 6.20 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base End of BH Type 31-01-24 2.30 6.20 Nil REMARKS Safety fencing erected around work area. CAT scanned location Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) and hand dug inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

SPT Calibration Report

Hammer Energy Measurement Report

SPT Hammer Type of Hammer Test No EQU2023 59 Client IGSL

Test Depth (m) 9.70 Mass of hammer m = 63.5 kgFalling height h = 0.76m $m \times g \times h = 473$ J $E_{\text{theor}} =$

Characteristics of the instrumented rod

Key

- 2 Part of instrumented rod
- 3 Drive Rod
- 4 Strain Gauge
- 5 Accelerometer
- 6 Ground
- F Force
- d_r Diameter of rod

Fig. B.1 and B.2

BS EN ISO 22476-3: 2005 + A1: 2011

 $d_r = 0.052 \,\mathrm{m}$ Diameter Length of instrumented rod 0.558 m

Area A = 11.61 cm² Modulus $E_a = 206843 \text{ MPa}$

DATE OF TEST

VALID UNTIL

HAMMER ID

06/03/2023 05/03/2024 \$ 47

 $E_{\text{meas}} =$ **0.350** kN-m

E theor = **0.473** kN-m

Comments

Energy Ratio (Er) =

Equipe SPT Analyzer Operator

JL

Certificate prepared by

Certificate checked by

Certificate date

10/03/2023

Appendix 4

Soakaway Records

Joaka	way Des	ngri i -value	from fiel	ia tests		(F2C) IGSL
Contract:		Housing Bundles 4/5 - Lot	4 - Basin View	ı	Contract No.	25000-4
Test No.	SA01				Easting	713750.234
Engineer	MORCE				Northing	733754.733
Date:	23/01/2024				Elevation (m OD)	20.513
	f ground condi					
from	to	Descriptio	n			Ground water
0.00	0.30	TOPSOIL				
0.30	1.00	MADE GROUND comprise	ed of gravelly s	andy Clay wit	h a low cobble	DRY
	+	and boulder content				
1.00 Notes:		Obstruction - Large boul	ders			
Notes.						
<u>Field Data</u>			Field Test			
Depth to	Elapsed	¬	Depth of Pi	+ (D)	1.00	m
Depth to Water	Time		Width of Pi		0.40	m m
(m)	(min)		Length of P		1.40	
(111)	(111111)		Length of P	IL (L)	1.40	m
0.450	1.00	\dashv	Initial denth	n to Water =	0.44	lm
0.455	2.00	┥	Final depth		0.54	m
0.460	3.00	\dashv	Elapsed tim		60.00	
0.465	4.00	\dashv	Liapseu tiiti	ie (iiiiis)=	00.00	
0.470	5.00	\dashv	Top of perr	meable soil		m
0.475	6.00	\dashv		meable soil		m
0.475	7.00	\dashv	base of per	THEADIC 30II		ļ''''
0.480	8.00	\dashv				
0.480	9.00	7				
0.480	10.00	7				
0.485	12.00	7	Base area=		0.56	m2
0.485	14.00	*Av. side area of permea				m2
0.485	16.00	T	Total Expos		2.396	m2
0.490	18.00	7				
0.490	20.00	7				
0.505	30.00	Infiltration rate (f) =	Volume of v	water used/u	nit exposed area	/ unit time
0.520	40.00	7			·	
0.530	50.00	f= 0.0003	9 m/min	or	6.492E-06	m/sec
0.540	60.00	\dashv	,5 111/111111	OI .	0.1322 00	111/ 300
0.340	60.00					
		Depth of water vs	Elapsed Time	(mins)		
	70.00					\neg
(8)	50.00				•	\dashv
ë	FO 00					
e(r	30.00				•	
	40.00				•	
L P						
Se	30.00				*	_
<u> </u>	20.00				•	
ш					*	
	10.00					\dashv
	0.000	0.100 0.200	0.300	0.400	0.500	 0.600
			U.5UU	0.400	0.500	UU0.
	0.000	0.100 0.200	0.000			

		sign f -value			.S	(F2C) IGSL
Contract:	NDFA Social I	Housing Bundles 4/5 - Lot	4 - Basin View	1	Contract No.	25000-4
Test No.	SA02				Easting	713796.277
Engineer	MORCE				Northing	733690.212
Date:	23/01/2024				Elevation (m OD) 20.101
Summary of	of ground con-	ditions				
from	to	Description	า			Ground water
0.00	0.30	TOPSOIL				
0.30	1.10	MADE GROUND comprised	d of sandy grav	vely Clay with	n low a cobble	DRY
0.30	1.10	and boulder content				4
Notes:		1				•
Field Data			Field Test			
		-				7
Depth to	Elapsed		Depth of Pit		1.10	m
Water	Time		Width of Pit		0.40	m
(m)	(min)		Length of Pi	it (L)	1.30	m
	<u> </u>					_
0.430	1.00		Initial depth	to Water =	0.43	m
0.430	2.00		Final depth		0.52	m
0.435	3.00		Elapsed time	e (mins)=	60.00	
0.435	4.00			,		_
0.435	5.00		Top of perm	neable soil		m
0.440	6.00	7	Base of peri			m
0.440	7.00	1	2400 C. po			1
0.445	8.00	-				
0.445	9.00	<u>-</u>				
0.450	10.00	-				
0.460	12.00	-	Base area=		0.52	lm2
0.465	14.00	*Av. side area of permeal		or tost pario		m2
0.465	16.00	Av. side area of permean	Total Expos		2.645	m2
0.470	18.00	-	TOTAL EXPOS	eu area =	2.043]1112
0.470	20.00	-				
0.470	30.00	Infiltration rate (f) =	Valuma of w	untar wood /w	nit exposed area	/ unit time
	ł — — — — — — — — — — — — — — — — — — —		volume of v	vater used/ui	iii exposed area	/ unit time
0.500	40.00					
0.510	50.00	f= 0.0002	9 m/min	or	4.915E-06	m/sec
0.520	60.00					
	70.00	Depth of water v	s Elapsed Time	e (mins)		
3	<u>~</u> 60.00 +				•	
•	E					
3	50.00				₩	
	⊑ 40.00 ↓				•	
F	5					
	% 30.00 +				•	\dashv
<u>;</u>	20.00				*	
	10.00			4	**	
	0.00	0.100	0.000	0.400	0.500	
	0.000	0.100 0.200	0.300	0.400	0.500	0.600

L

Appendix 5

Slit Trench Logs & Photographs

SLIT TRENCH RECORD

FACING DIRECTION:

16/01/2024

Project:	NDFA Social Housing Bundles 4/5 - Lot 4 - Basin View	

Engineer: MORCE Client: NDFA Crew: PN / ESK

		Survey		Slit Trench No.
	Easting (m)	Northing (m)	Elevation (mOD)	Sheet
Start of Trench	713759.535	733740.623	20.538	Date Commenced
End of Trench	713747.172	733737.449	21.301	Date Completed

 Slit Trench No.
 ST01

 Sheet
 1 of 1

 Date Commenced
 16/01/2024

Ground	Conditions	
Ere	nm /m)	

From (m)	To (m)	Soil Description
0	0.25	TOPSOIL
0.25	1 5	MADE GROUND comprising gravelly sandy Silt/Clay with a low to medium cobble content

	Trench Dimensi	ons
LHS of Trench (m)	0.0	
RHS of Trench (m)	11.50	
Trench Depth (m)	1.50	
Trench Width (m)	0.5	

Facing Direction

Excavation Quantities							
Surface	Length (m)	Material					
Road							
Path (LHS)							
Path (RHS)							
Grass Verge (LHS)							
Grass Verge (RHS)							
Other	11.5	Grass					
Total Length	11.5						

racing realures	Looking South
Groundwater	None encountered

South

AA210331		
AA210332		

SAMPLES

Zero Metres Taken As: Fence on LHS

Limestone plinth

						Section	LIME	STONE PLINTH 8.30 - 8	3.80m	-	
0	1	2	3	4	5	6	7	8	9	10	11
0.2											
0.4			Î								В
0.6			φ						_		c_
0.8								و ا			
1								Į į.			<u> </u>
1.2								Limest			
1.4											
			<u> </u>			<u> </u>					
						Plan					
		2	3	4	5	6	_	8	9	10	11

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	100	PVC	Black	3	0.4	70
Service B	13	Copper Cable	Black Cable	10.7	0.6	90
Service C	150	PVC	Red ESB	11	0.75	90
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						

SLIT TRENCH RECORD

FACING DIRECTION:

NDFA Social Housing Bundles 4/5 - Lot 4

Project: - Basin View Engineer: MORCF

ingineer.	WORGE
Client:	NDFA
Crew:	PN / ESK

		Slit Trench No.		
	Easting (m)	Northing (m)	Elevation (mOD)	Sheet
Start of Trench	713763.717	733719.622	20.483	Date Commenced
End of Trench	713753.351	733718.15	21.178	Date Completed

Slit Trench No. Sheet Date Commenced

ST03 1 of 1 16/01/2024 16/01/2024

From (m)	To (m)	Soil Description	
0	0.25	TOPSOIL	
0.25	1.5	MADE GROUND comprising gravelly sandy Silt/Clay with a low to medium cobble content	
			1
			Ī

	Trench Dimension	ons
LHS of Trench (m)	0.0	
RHS of Trench (m)	10.00	
Trench Depth (m)	1.30	
Trench Width (m)	0.5	

Facing Direction

Exoditation additities						
Length (m)	Material					
10	Grass					
10.0						
	Length (m)					

i acing i catalos	Looking Coulin
Groundwater	None encountered

South

	SAMPLES	
A210333		
A210334		•

Zero Metres Taken As: LHS (Fence)

					6	INTH located 0.70 .10 - 6.60m			
0	1 2	3	4	5	6	7	8	3	10
0.2					Α				_
0.4					0				_
0.6								ВС	
0.8								0 0	
0.0						£			
1.2						pineston ton ton			
1.2						_			
				Plan					
0	1 2	3	4	5	6	7	8	9	10
						e plinth			
						e p			

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	75	PVC	Orange corrugated ducting	5.85	0.3	90
Service B	125	PVC	Red ESB	9.3	0.63	90
Service C	125	PVC	Red ESB	9.65	0.63	90
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						

SLIT TRENCH RECORD

FACING DIRECTION:

NDFA	Social	Housing	Rundles	4/5 -	. I ot	4
14017	Ooolai	i ioaoii ig	Darialco	1/0	LOI	

Project: - Basin View
Engineer: MORCE

Client: NDFA
Crew: PN / ESK

	Survey								
	Easting (m)	Northing (m)	Elevation (mOD)						
Start of Trench	713770.249	733686.853	20.693						
End of Trench	713761.429	733683.79	21.205						

Slit Trench No. Sheet

Date Commenced

Date Completed

ST06 1 of 1 16/01/2024 16/01/2024

Ground Conditions

From (m)	To (m)	Soil Description
0	0.25	TOPSOIL
0.25		MADE GROUND comprising gravelly sandy Silt/Clay with a low to medium cobble content

	Trench Dimension	١			
LHS of Trench (m)	0.0				
RHS of Trench (m)	10.00				
Trench Depth (m)	1.40				
Trench Width (m)	0.5				

L	Acavation Quantities	
Surface	Length (m)	Material
Road		
Path (LHS)		
Path (RHS)		
Grass Verge (LHS)		
Grass Verge (RHS)		
Other	10	0

Facing Direction	South
Facing Features	Towards Basketball Court
Groundwater	None encountered

AA210335	Total Length
AA210336	Zero Metres Tal
	Zero Metres Tai

Zero Metres Taken As: LHS (Fence)

	LIMESTO	ONE PLINTH locate 3.0 - 3.50m		X-Section					
0 1	2	3	4	5	6	7	8	9	10
0.2		Α			В				
0.4					•	_			
0.6		e _			С	D			
0.8		imestone Plinth							
1.2		<u></u>							
1.4									
				Plan					
0 1	2	3	4	5	6	7	8	9	10
		g							
		nestone Plinth							

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)	
Service A	75	PVC	Orange PVC corrugated ducting	3.5	0.35	90	
Service B	13	Copper Cable	Black Copper Cable	5.6	0.3	90	
Service C	500	PVC	Blue PVC pipe	6.1	0.85	90	
Service D	500	Steel	Steel pipe	6.9	0.73	90	
Service E							
Service F							
Service G							
Service H							
Service I							
Service J							
Service K							
Service L							
Service M							

SLIT TRENCH RECORD

NDFA Social Housing Bundles 4/5 - Lot 4 – Project: Basin View			Survey		Slit Trench No.	ST07
Engineer: MORCE		Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Client: NDFA	Start of Trench	713777.052	733669.602	20.521	Date Commenced	16/01/2024
Crew: PN / ESK	End of Trench	713768.622	733666.489	21.307	Date Completed	16/01/2024

Ground Conditions	3					
From (m)	To (m)		Soil Description		Photograph	
0	0.25	TOPSOIL		ACAMMAN IN	NACTOR OF THE OWNER	
0.25	1.5	MADE GROUND comprisin content	ng gravelly sandy Silt/Clay with a low to medium cobb	ble	######################################	American Commence
	Trench Dimens	ons	Location	E	xcavation Quantities	
LHS of Trench (m)	0.0			Surface	Length (m)	Material
RHS of Trench (m)	9.80			Road		
Trench Depth (m)	1.60		ST07-0	Path (LHS)		
Trench Width (m)	0.5		ST07-1	Path (RHS)		
				Grass Verge (LHS)		
				Grass Verge (RHS)		
Facing Direction	South		SAMPLES	Other	9.8	Grass
Facing Features	Looking South		AA210337	Total Length	9.8	
Groundwater	None	e encountered	AA210338	Zero Metres Taken	As: LHS (Fence)	

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	75	PVC	Orange corrugated pipe	4.1	0.2	90
Service B	500	PVC	Blue PVC pipe (Water Main)	6.8	1	90
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L			·			
Service M			·			

<u>ST01</u>

<u>ST01</u>

<u>ST03</u>

<u>ST03</u>

<u>ST06</u>

<u>ST06</u>

<u>ST07</u>

<u>ST07</u>

Appendix 6

Rotary Drillhole Logs & Core Photographs

SPT Calibration Sheet (Er)

Appendix 7

Geotechnical Laboratory Results (Soil)

IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

NDFA Social Housing - Site 4 Basin View Report No. R154536 Contract No. 25000-4 Contract Name:

Customer MORCE

Samples Received: 28/02/24 Date Tested: 28/02/24

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description
BH01	AA210279	3.0	A24/0706	В	21	47	NP	NP	37	WS	4.4		Grey/brown sandy gravelly SILT
BH01	AA210280	4.0	A24/0707	В	13	25	14	11	48	WS	4.4	CL	Grey slightly sandy, gravelly, CLAY
BH01	AA210282	6.0	A24/0708	В	15	30	12	18	61	WS	4.4	CL	Black slightly sandy, slightly gravelly, CLAY
BH02	AA210286	3.0	A24/0709	В	21	53	NP	NP	33	WS	4.4		Grey silty, very sandy, GRAVEL
BH03	AA198340	2.0	A24/0710	В	24	45	22	23	76	WS	4.4	СІ	Brown sandy gravelly CLAY
BH03	AA198344	6.0	A24/0712	В	8.8	29	14	15	65	WS	4.4	CL	Brown slightly sandy, slightly gravelly, CLAY with some cobbles
BH04	AA210271	2.0	A24/0713	В	30	46	NP	NP	41	WS	4.4		Grey/brown sandy gravelly SILT
BH04	AA210273	4.0	A24/0714	В	7.3	33	16	17	55	WS	4.4	CL	Black slightly sandy, gravelly, CLAY with some cobbles
BH04	AA210275	6.0	A24/0715	В	15	35	17	18	59	WS	4.4	CL	Black slightly sandy, slightly gravelly, CLAY
BH05	AA198355	2.0	A24/0716	В	18	32	17	15	42	WS	4.4	CL	Brown sandy gravelly CLAY
BH05	AA198356	3.0	A24/0717	В	16	31	15	16	44	WS	4.4	CL	Grey/brown sandy gravelly CLAY
BH05	AA198358	5.0	A24/0718	В	8.6	27	13	14	41	WS	4.4	CL	Brown slightly sandy, gravelly, CLAY with some cobbles
BH06	AA220293	4.0	A24/0719	В	8.8	30	14	16	59	WS	4.4	CL	Black slightly sandy, gravelly, CLAY
BH06	AA220295	6.0	A24/0720	В	14	33	14	19	66	WS	4.4	CL	Black slightly sandy, slightly gravelly, CLAY
BH07	AA216804	3.0	A24/0721	В	15	34	16	18	56	WS	4.4	CL	Brown sandy gravelly CLAY

Preparation: WS - Wet sieved

AR - As received

NP - Non plastic

4.3 Cone Penetrometer definitive method

Liquid Limit Clause: 4.4 Cone Penetrometer one point method Sample Type: B - Bulk Disturbed Remarks:

U - Undisturbed

Results relate only to the specimen tested, in as received condition unless otherwise noted.

NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.

Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.

This report shall not be reproduced except in fullwithout written approval from the Laboratory.

IGSL Ltd Materials Laboratory

Persons authorized to approve reports

H Byrne (Laboratory Manager)

Approved by 4 Byon

Date Page 07/03/24 1 of 1 IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

Report No. R154537 Contract No. 25000-4 Contract Name: NDFA Social Housing - Site 4 Basin View

Customer MORCE

Samples Received: 28/02/24 Date Tested: 28/02/24

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	·	Classification (BS5930)	Description
BH07	AA216805	4.0	A24/0722	В	13	33	19	19	64	WS	Clause 4.4	C L	Brown slightly sandy, slightly gravelly, CLAY with occasional cobbles
BH07	AA216807	6.0	A24/0723	В	14	39	17	22	58	WS	4.4	СІ	Grey slightly sandy, gravelly, CLAY
BH08	AA220259	1.0	A24/0724	В	23	57	NP	NP	45	WS	4.4		Grey/brown sandy gravelly SILT
BH08	AA220261	3.0	A24/0725	В	12	35	15	20	51	WS	4.4	CL	Brown slightly sandy, slightly gravelly, CLAY
BH08	AA220263	5.0	A24/0726	В	10	35	15	20	55	WS	4.4	CL	Black slightly sandy, slightly gravelly, CLAY
BH09	AA220254	3.0	A24/0727	В	20	36	20	16	57	WS	4.4	СІ	Brown sandy gravelly CLAY
BH09	AA220255	4.0	A24/0728	В	9.8	34	19	15	59	WS	4.4	CL	Black slightly sandy, slightly gravelly, CLAY with many cobbles
BH09	AA220257	6.0	A24/0729	В	12	30	14	16	59	WS	4.4	CL	Brown slightly sandy, gravelly, CLAY
BH10	AA210294	2.0	A24/0730	В	27	41	20	21	67	WS	4.4	СІ	Brown sandy gravelly CLAY
BH10	AA210296	4.0	A24/0731	В	12	29	15	14	59	WS	4.4	CL	Grey/brown slightly sandy, gravelly, CLAY with some cobbles
BH10	AA210298	6.0	A24/0732	В	8.2	32	14	18	50	WS	4.4	CL	Black slightly sandy, gravelly, CLAY
BH11	AA220266	1.0	A24/0733	В	27	43	20	23	69	WS	4.4	СІ	Brown sandy gravelly CLAY
BH11	AA220268	3.0	A24/0734	В	12	33	17	16	63	WS	4.4	CL	Brown slightly sandy, slightly gravelly, CLAY with some cobbles
BH11	AA220270	5.0	A24/0735	В	14	33	16	17	57	WS	4.4	CL	Grey slightly sandy, gravelly, CLAY
BH12	AA202086	4.0	A24/0736	В	12	35	16	19	50	WS	4.4	CL	Brown sandy gravelly CLAY

Preparation: WS - Wet sieved

Liquid Limit

Clause:

AR - As received

NP - Non plastic

4.3 Cone Penetrometer definitive method 4.4 Cone Penetrometer one point method

Sample Type: B - Bulk Disturbed

U - Undisturbed

Remarks:

Results relate only to the specimen tested, in as received condition unless otherwise noted.

NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.

Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.

This report shall not be reproduced except in fullwithout written approval from the Laboratory.

Persons authorized to approve reports IGSL Ltd Materials Laboratory

H Byrne (Laboratory Manager)

PI-2

Approved by Date Page 4 Byon 07/03/24

1 of 1

IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

Report No. R154538 Contract No. 25000-4 Contract Name: NDFA Social Housing - Site 4 Basin View

Customer MORCE

Samples Received: 28/02/24 Date Tested: 28/02/24

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample	Moisture	Liquid	Plastic	Plasticity		Preparation		Classification (BS5930)	Description
				Type*	Content %	Limit %	Limit %	Index	<425μm		Clause		
BH12	AA202088	6.0	A24/0737	В	15	29	13	16	53	WS	4.4	CL	Grey/brown sandy, slightly gravelly, CLAY
BH12	AA202089	6.5	A24/0738	В	12	27	12	15	50	WS	4.4	CL	Grey/brown sandy gravelly CLAY
BH13	AA220274	3.5	A24/0739	В	18	41	21	20	51	WS	4.4	СІ	Brown sandy gravelly CLAY
BH13	AA220275	4.0	A24/0740	В	13	31	14	17	55	WS	4.4	CL	Grey/brown slightly sandy, gravelly, CLAY
BH13	AA220277	6.0	A24/0741	В	15	29	14	15	44	WS	4.4	CL	Grey/brown sandy gravelly CLAY
TP10	AA210359	2.1	A24/0742	В	32	47	21	26	86	WS	4.4	СІ	Brown slightly sandy, slightly gravelly, CLAY
	1		1										
	1												

Preparation: WS - Wet sieved

Liquid Limit

Clause:

AR - As received

NP - Non plastic

4.3 Cone Penetrometer definitive method4.4 Cone Penetrometer one point method

Sample Type: B - Bulk Disturbed

U - Undisturbed

Remarks:

Results relate only to the specimen tested,in as received condition unless otherwise noted.

NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.

Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.

This report shall not be reproduced except in fullwithout written approval from the Laboratory.

IGSL Ltd Materials Laboratory

Persons authorized to approve reports

H Byrne (Laboratory Manager)

Approved by

 Date
 Page

 07/03/24
 1 of 1

Determination of Particle Size Distribution

particle	%		С	Contract No.	25000	Report No.	R154539			
size	passing		C	Contract Name :	NDFA Social	Housing Site	4 Basin View		Results relate only to the speci	men tested in as received
75	100	COBBLES	В	BH/TP No.	BH01				condition unless otherwise note	ed. * denotes Customer
63	100	COBBLES	S	Sample No.*	AA210280	Lab. Sample	No.	A24/0707	supplied information. Opinions a	and interpretations are
50	100		S	Sample Type:	В				outside the scope of accreditat	ion.
37.5	100		D	Depth* (m)	4.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	100		D	ate Received	27/02/2024	Date Testing	g started	27/02/2024	the written approval of the Lab	oratory.
20	97		D	escription:	Grey slightly	sandy, gravel	lly, CLAY			
14	92	GRAVEL								
10	86	UIVAVLL	R	temarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 have bee	n superseded by ISO17892-4:	2016.	
6.3	78						0.15	0.3 .425 0.6	3 32	7.
5	74		100				0.063	0.3 0.425 0.6 1.18	2 3.35 6.3 10 10 20	37. 50. 53. 75.
3.35	67		100							
2	60		90							
1.18	54		80 							
0.6	49		8 70 -							
0.425	46	SAND	(%) 70 —							
0.3	43		<u>8</u> 50							
0.15	37		Percentage 30 — 30 —							
0.063	31		30 -							
0.038	28									
0.027	26		20 —							
0.017	22	SILT/CLAY	10		7					
0.010	19	,	0	1 0001	1	0.01	0.1	1	10	100
0.007	17		0.000			0.01	0.1	1	10	100
0.005	14				CLAY	SILT	Sieve size (mm	n) SAND	GRAVEL	
0.002	11								In .	In
		IGSL I	td Materia	ls Laboratory			Approved by		Date:	Page no:
		IOOL L	_ca i-iacona	io Euboratory			A Bejon	-	08/03/24	1 of 1

A Ryane

Determination of Particle Size Distribution

particle	%		Con	ntract No.	25000	Report No.	R154540		•	
size	passing		Con	ntract Name :	NDFA Social I	Housing Site 4	4 Basin View		Results relate only to the specin	men tested in as received
75	100	COBBLES	BH/	TP No.	BH01				condition unless otherwise note	d. * denotes Customer
63	100	CODDLES	Sam	nple No.*	AA210282	Lab. Sample	No.	A24/0708	supplied information. Opinions a	nd interpretations are
50	100		Sam	nple Type:	В				outside the scope of accreditati	ion.
37.5	100		Dep	oth* (m)	6.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	98		Dat	e Received	27/02/2024	Date Testing	g started	27/02/2024	the written approval of the Labo	oratory.
20	94		Des	scription:	Black slightly	sandy, slight	ly gravelly, CLAY			
14	91	GRAVEL								
10	89	GIVAVLL	Rem	narks	Note: **Clause 9.2 an	d Clause 9.5 of BS137	77:Part 2:1990 have been su	perseded by ISO17892-4:	2016.	
6.3	83						63	0.3 .425 0.6 1.18	Ω 2	r.
5	81		100				0.063	0.3 0.425 0.6 1.18	2 3.3.3 6.3 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 7 8 7 7 8 7 7 8 7 7 8 7	37. 37. 50. 50. 50. 50.
3.35	77		100							
2	71		90							
1.18	66		80							
0.6	60		§ 70 —						 	
0.425	57	SAND	(%) 70							
0.3	54		50							
0.15	50		Percentage							
0.063	44		30 							
0.037	40									
0.027	37		20							
0.017	33	SILT/CLAY	10							
0.010	28	0.2.7 02.11	0	0.001		0.01	0.1	1	10	100
0.007	25		0.0001	0.001		0.01	0.1	I	10	100
0.005	22			(CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
0.002	16								In .	
		IGSL I	td Materials	Laboratory			Approved by:		Date:	Page no:
		IOOL L	-ca maccinals	Laboratory			A Bejone		08/03/24	1 of 1

A Ryane

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154541			
size	passing		•	Contract Name :	NDFA Social	Housing Site	4 Basin View		Results relate only to the speci	men tested in as received
75	100	COBBLES		BH/TP No.	BH02				condition unless otherwise note	ed. * denotes Customer
63	100	COBBLEG		Sample No.*	AA210286	Lab. Sample	e No.	A24/0709	supplied information. Opinions	and interpretations are
50	100			Sample Type:	В				outside the scope of accreditat	ion.
37.5	100			Depth* (m)	3.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	100			Date Received		Date Testin	•	27/02/2024	the written approval of the Lab	oratory.
20	98			Description:	Grey silty, ve	ery sandy, GR	AVEL			
14	93	GRAVEL								
10	88	GIVAVLL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS13	77:Part 2:1990 have be	en superseded by ISO17892-4:2	2016 .	
6.3	78						0.15	0.3 1.425 0.6	2 3.35 5.3 10 14	r.
5	74		100				0.063	0.3 0.425 0.6 1.18	3.3	37.0
3.35	65		100							
2	56		90							
1.18	48		<u> </u>							
0.6	39		👸 70 🗕							
0.425	36	SAND	Percentage passing (%)							
0.3	32		8 50 -						1	
0.15	24		40 t							
0.063	16		30							
								/		
			20							
		SILT/CLAY	10							
		0.2.7, 02.1.	0 -	21	.1	0.01			10	1.00
			0.000	0.00		0.01	0.1	I	10	100
					CLAY	SILT	Sieve size (mr	n) SAND	GRAVEL	
	<u> </u>	ICC! '	4 d M - 4 - 4 -	- - -			Approved b	y:	Date:	Page no:
		IGSL L	ta materia	als Laboratory	/		A Bejon	~-	08/03/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154542		•	
size	passing			Contract Name:	NDFA Social	Housing Site	4 Basin View		Results relate only to the speci	men tested in as received
75	100	COBBLES		BH/TP No.	BH03				condition unless otherwise note	ed. * denotes Customer
63	88	CODDLLS		Sample No.*	AA198342	Lab. Sample	No.	A24/0711	supplied information. Opinions a	and interpretations are
50	77			Sample Type:	В				outside the scope of accreditat	ion.
37.5	73			Depth* (m)	4.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	70			Date Received	27/02/2024	Date Testing	g started	27/02/2024	the written approval of the Lab	oratory.
20	60			Description:	Brown clayey	//silty, very s	andy, GRAVEL v	with some cobbles		
14	54	GRAVEL								
10	50	GIVAVEL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 have bee	n superseded by ISO17892-4:	2 Sample size did not meet the requirements of BS1377	
6.3	47						0.15	0.3 .425 0.6	3 32	5.
5	45		100				0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 7 7 7 7 7 7	37.0
3.35	42		100							
2	38		90							
1.18	35		© 80							
0.6	31		<u>ී</u> 70						+ + + + + + + + + + + + + + + + + + +	
0.425	29	SAND	issi 60							
0.3	27		ω 50							
0.15	22		Percentage passing (%) 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.063	16		30 sicer						1	
			20 -							
		SILT/CLAY	10							
			0.0	001 0.00)1	0.01	0.1	1	10	100
				3100	CLAY		Sieve size (mm) <i>SAND</i>	GRAVEL	. 55
					02/1/	OIL I	OICTC SIZC (IIIII	1) 0/1140	ONTVLL	
		ICCL I	+d Mata				Approved by	:	Date:	Page no:
		IGSL L	Lu Mater	ials Laborator	/		A Began		08/03/24	1 of 1

Determination of Particle Size Distribution

particle	%			Contract No.	25000	Report No.	R154543			
size	passing			Contract No.		Housing Site			Results relate only to the speci	man tasted in as resulted
75	84		1	BH/TP No.	BH03	riousing site	4 Dasiii view			
63	80	COBBLES			AA198344	Lab Cample	. No	A24/0712	condition unless otherwise note	
50	79			Sample No.*		Lab. Sample	e NO.	A24/0/12	supplied information. Opinions	
37.5	79 79			Sample Type:	В	0 -1			outside the scope of accreditat	
				Depth* (m)	6.00	Customer:	MORCE	27/02/2024	This report shall not be reprodu	
28	79 76			Date Received		4 Date Testin	-	27/02/2024 LAY with some cob	the written approval of the Lab	oratory.
20	76			Description:	Brown slighti	iy sandy, siigr	itly gravelly, C	LAT WITH SOME COD	bies	
14	74	GRAVEL		Remarks					_	
10	72			Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS13	77:Part 2:1990 have be		2 Sample size did not meet the requirements of B\$1377	
6.3	68						0.063	0.3 0.425 0.6 1.18	2 3.35 5 6.3 10 14 20	2 C C C C C C C C C C C C C C C C C C C
5	66		100 -				0.0	0.4.0	7	7 60 17 60 V
3.35	62		90 -							
2	58									
1.18	54		© 80 -							
0.6	49		<u>ම</u> 70 -							
0.425	47	SAND	iss 60 -							
0.3	45		Percentage passing (%) 00 00 00 00 00 00 00 00 00 00 00 00 00							
0.15	40		tage 40 -							
0.063	35		30 -							
0.037	31									
0.027	29		20 -							
0.017	26	SILT/CLAY	10 -							
0.010	22	OIL I / CLAI	0 -							
0.007	19		0.0	0.00	1	0.01	0.1	1	10	100
0.005	17				CLAY	SILT	Sieve size (mi	n) SAND	<i>GRAVEL</i>	
0.002	12									
		ICCL I	td Mata	iolo I oborotor			Approved b		Date:	Page no:
		IG2L L	_tu mater	ials Laborator	<i>'</i>		A Bejer	~	08/03/24	1 of 1

Determination of Particle Size Distribution

particle	%			Contract No.	25000	Report No.	R15454	1		
size	passing			Contract Name :		Housing Site 4			Results relate only to the specir	men tested in as received
75	100	CODDITE		BH/TP No.	BH04	-			condition unless otherwise note	d. * denotes Customer
63	86	COBBLES		Sample No.*	AA210273	Lab. Sample	No.	A24/0714	supplied information. Opinions a	nd interpretations are
50	82			Sample Type:	В				outside the scope of accreditati	ion.
37.5	75			Depth* (m)	4.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	69			Date Received	27/02/2024	l Date Testing	g started	28/02/2024	the written approval of the Labo	oratory.
20	63			Description:	Black slightly	sandy, grave	lly, CLAY w	ith some cobbles		
14	57	GRAVEL								
10	55	GRAVEL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	7:Part 2:1990 ha	ve been superseded by ISO17892-4:	2 Sample size did not meet the requirements of BS1377	
6.3	52						03	3 25 18	3 35	r¿.
5	50		100				0.063	0.15 0.3 0.425 0.6	2 3.3.3. 6.3 20 20 20	37.5 37.5 53 63 63
3.35	47		100							
2	43		90							
1.18	40		80							
0.6	36		Š 70							
0.425	34	SAND	(%) bassing (%) 60 60							
0.3	32		g 50							
0.15	30		Percentage 05							
0.063	27		30							
0.038	24									
0.027	22		20							
0.017	20	SILT/CLAY	10							
0.010	17	01217 027 11	0	001		0.01			10	100
0.007	15		0.0	0.00)	0.01	0.1	1	10	100
0.005	14				CLAY	SILT	Sieve size	(mm) SAND	<i>GRAVEL</i>	
0.002	11								In .	
		IGSL I	td Mate	rials Laborator	V		Approve		Date:	Page no:
I		IOOL L	_ta Matci	idio Edboracor	7		HE	18me	08/03/24	1 of 1

Determination of Particle Size Distribution

particle	%		Сс	ontract No.	25000	Report No.	R154545		•	
size	passing		Co	ontract Name :	NDFA Social	Housing Site 4	4 Basin View		Results relate only to the specin	men tested in as received
75	100	COBBLES	Bl	H/TP No.	BH04				condition unless otherwise note	ed. * denotes Customer
63	100	CODDLES	Sa	ample No.*	AA210275	Lab. Sample	No.	A24/0715	supplied information. Opinions a	and interpretations are
50	100		Sa	ample Type:	В				outside the scope of accreditat	ion.
37.5	100		D€	epth* (m)	6.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	100		Da	ate Received	27/02/2024	l Date Testino	g started	28/02/2024	the written approval of the Lab	oratory.
20	97		D€	escription:	Black slightly	sandy, slight	ly gravelly, CLAY			
14	92	GRAVEL								
10	89	GIVAVLL	Re	emarks	Note: **Clause 9.2 an	nd Clause 9.5 of BS137	7:Part 2:1990 have been su	perseded by ISO17892-4:	2 Sample size did not meet the requirements of BS1377	
6.3	83						63	0.3 .425 0.6 1.18		7.
5	81		100				0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 70 10 10 20	37. 50. 53. 75.
3.35	78		100							
2	72		90							
1.18	67		80 							
0.6	61		<u>\$</u> 70 —						1	
0.425	58	SAND	%) 70 ———————————————————————————————————							
0.3	54		<u>8</u> 50							
0.15	50		90							
0.063	44		30							
0.038	39									
0.027	35		20							
0.017	31	SILT/CLAY	10							
0.010	27	0.27, 02.71	0	1 0.001		0.01	0.1	1	10	100
0.007	24		0.0001			0.01	0.1	I	10	100
0.005	21			(CLAY	SILT	Sieve size (mm)	SAND	<i>GRAVEL</i>	
0.002	13								In .	In
		IGSL I	td Material	s Laboratory			Approved by:		Date:	Page no:
		IGOL L	-ca maconal	c Laboratory			A Begane	_	08/03/24	1 of 1

A Ryane

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		C	Contract No.	25000	Report No.	R154546			
size	passing			Contract Name :	NDFA Social	Housing Site 4	4 Basin View		Results relate only to the speci	men tested in as received
75	100	COBBLES	В	3H/TP No.	BH05				condition unless otherwise note	ed. * denotes Customer
63	92	COBBLES	S	Sample No.*	AA198358	Lab. Sample	No.	A24/0718	supplied information. Opinions a	and interpretations are
50	92		S	Sample Type:	В				outside the scope of accreditat	ion.
37.5	92			Depth* (m)	5.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	92			Date Received	27/02/2024	l Date Testing	g started	28/02/2024	the written approval of the Lab	oratory.
20	89			Description:	Brown slightl	y sandy, grav	elly, CLAY with s	ome cobbles		
14	85	GRAVEL								
10	79	GRAVEL	R	Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 have been s	superseded by ISO17892-4:	2016 .	
6.3	71						63	3 25 5 3	3 22	r.
5	66		100				0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 7 7 7 7 7 7	37. 50. 53. 7. 50.
3.35	62		100							
2	56		90 —							
1.18	49		80							
0.6	42		<u></u> 70 —							
0.425	39	SAND	(%) bassing (%) —							
0.3	35		<u>8</u> 50 —						1	
0.15	29		14age 40							
0.063	22		9 Percentage 40 — 30 —							
0.038	19									
0.027	18		20 —							
0.017	16	SILT/CLAY	10		-					
0.010	14	,	0 -	1 000	1	0.01	0.1	1	10	100
0.007	13		0.000			0.01	0.1	I	10	100
0.005	11				CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
0.002	9								In .	In
		IGSL I	td Materia	als Laboratory			Approved by:		Date:	Page no:
		IOOL L	_ca macona	iio Laboratory			A Regare		08/03/24	1 of 1

A Ryane

Determination of Particle Size Distribution

particle	%		(Contract No.	25000	Report No.	R154547		•	
size	passing		(Contract Name :	NDFA Social	Housing Site 4	4 Basin View		Results relate only to the specir	men tested in as received
75	100	COBBLES	E	BH/TP No.	BH06				condition unless otherwise note	d. * denotes Customer
63	100	COBBLES		Sample No.*	AA220293	Lab. Sample	No.	A24/0719	supplied information. Opinions a	nd interpretations are
50	89			Sample Type:	В				outside the scope of accreditate	ion.
37.5	89		[Depth* (m)	4.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	85		[Date Received	27/02/2024	l Date Testing	g started	28/02/2024	the written approval of the Lab	oratory.
20	82		[Description:	Black slightly	sandy, grave	elly, CLAY			
14	79	GRAVEL								
10	76	GRAVEL	F	Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 have b	een superseded by ISO17892-4:	2 Sample size did not meet the requirements of BS1377	
6.3	72						63	3 25	3 35	r.
5	70		100				0.063	0.3 0.425 0.6	2 3.3.3 6.3 6.3 7 8 7 8 7 8 7 8 7	37. 50 53 75
3.35	66		100							
2	61		90 —							
1.18	58		80 							
0.6	53		<u></u> 70 –							
0.425	51	SAND	%) 70 —						 	
0.3	48		<u>8</u> 50							
0.15	44		14age							
0.063	40		Percentage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.037	36									
0.027	33		20							
0.017	29	SILT/CLAY	10							
0.010	26	,	0	0.00	1	0.01	0.1	1	10	100
0.007	23		0.000			0.01		I	10	100
0.005	21				CLAY	SILT	Sieve size (m	m) SAND	GRAVEL	
0.002	14								In	In.
		IGSL I	td Materia	als Laboratory	,		Approved k		Date:	Page no:
		.302 2		= = = = = = = = = = = = = = = = = =			A Byen	ue-	08/03/24	1 of 1

A Ryane

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contra	ct No. 2	5000	Report No.	R154548			
size	passing		Contra	ct Name : N	DFA Social	Housing Site 4	4 Basin View		Results relate only to the speci	men tested in as received
75	100	COBBLES	BH/TP	No. BI	H06				condition unless otherwise note	ed. * denotes Customer
63	100	COBBLES	Sample	No.* A	A220295	Lab. Sample	No.	A24/0720	supplied information. Opinions a	and interpretations are
50	100		Sample	e Type: B					outside the scope of accreditat	ion.
37.5	100		Depth ³	f (m) 6	.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	100		Date R	eceived 2	7/02/2024	Date Testing	g started	28/02/2024	the written approval of the Lab	oratory.
20	98		Descrip	otion: Bl	ack slightly	sandy, slight	ly gravelly, CLA	ΛY		
14	95	GRAVEL								
10	91	GIVAVLL	Remark	KS No	te: **Clause 9.2 an	nd Clause 9.5 of BS137	77:Part 2:1990 have beer	n superseded by ISO17892-4:	2	
6.3	88						63	0.3 .425 0.6	3 22	τĊ
5	86		100				0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 7 7 7 7 7 7	37. 750 753 753
3.35	81		100							
2	76		90							
1.18	72		80							
0.6	67		8 70 							
0.425	65	SAND	(%) 70							
0.3	62		50							
0.15	58		tage 40							
0.063	52		90 Percentage							
0.038	46					1111				
0.027	42		20							
0.017	37	SILT/CLAY	10							
0.010	34	0.2.7 02.11	0	0.001		0.01	0.1	1	10	100
0.007	30		0.0001	0.001		0.01	0.1	1	10	100
0.005	27			CL	AY	SILT	Sieve size (mm) SAND	GRAVEL	
0.002	14								To .	In
		IGSL I	td Materials La	ahoratory			Approved by		Date:	Page no:
		IOOL L	Lu Matchals L	abol atol y			A Bejan		08/03/24	1 of 1

A Ryane

Determination of Particle Size Distribution

particle	%		Contract No.	25000 Report No.	R154561		
size	passing		Contract Name :	NDFA Social Housing Site	4 Basin View	Results relate only to the speci	men tested in as received
75	100	COBBLES	BH/TP No.	BH07		condition unless otherwise note	d. * denotes Customer
63	100	CODDLLS	Sample No.*	AA216805 Lab. Sampl	e No. A24/0722	supplied information. Opinions a	and interpretations are
50	94		Sample Type:	В		outside the scope of accreditat	ion.
37.5	91		Depth* (m)	4.00 Customer:	MORCE	This report shall not be reprodu	ced except in full without
28	91		Date Received	27/02/2024 Date Testir	•	the written approval of the Lab	oratory.
20	89		Description:	Brown slightly sandy, slig	htly gravelly, CLAY with occasiona	al cobbles	
14	85	GRAVEL					
10	82	GIVAVLL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1:	377:Part 2:1990 have been superseded by ISO17892-4	:2	
6.3	78				0.15 0.3 0.6 0.6	35	ιċ
5	75		100		0.063 0.15 0.3 0.425 0.6	2 3.35 5.3 6.3 10 14 20	3 7 8 9 7 9 7 9 7 9 7 9 7 9 7 9 9 7 9 9 9 9
3.35	72		100				
2	68		90				
1.18	64	SAND	80				
0.6	59		× 70				
0.425	57		Dercentage passing (%) 40 30				
0.3	54		8 50 -				
0.15	49		143 de 14				
0.063	43	SILT/CLAY	Ce J				
0.038	37						
0.027	34		20				
0.017	30		10	+1+++++			
0.010	25		0	<u> </u>	 		
0.007	23		0.0001 0.	.001 0.01	0.1 1	10	100
0.005	19			CLAY SILT	Sieve size (mm) SAND	GRA VEL	
0.002	12				Approved by:		
		Date:	Page no:				
		08/03/24	1 of 1				

Determination of Particle Size Distribution

particle	%		Contr	act No.	25000	Report No.	R154559		•	
size	passing		Contr	act Name :	NDFA Social	Housing Site	4 Basin View		Results relate only to the speci	men tested in as received
75	100	COBBLES	BH/T	P No.	BH07				condition unless otherwise note	ed. * denotes Customer
63	100	CODDLES	Samp	le No.*	AA216807	Lab. Sample	e No.	A24/0723	supplied information. Opinions a	and interpretations are
50	92		Samp	le Type:	В				outside the scope of accreditat	ion.
37.5	85		Deptl	n* (m)	6.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	83		Date	Received	27/02/2024	1 Date Testing	g started	28/02/2024	the written approval of the Lab	oratory.
20	81		Desci	ription:	Grey slightly	sandy, gravel	lly, CLAY			
14	77	GRAVEL								
10	73	GIVAVLL	Rema	rks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 have	been superseded by ISO17892-4:	2	
6.3	69						63	0.15 0.3 1.425 0.6	3 22	r.
5	67		100				0.063	0.15 0.425 0.6 1.18	2 3.33 6.3 6.3 7 7 7 7 7 7	37. 0 53.0 55.0 55.0
3.35	64		100							ПИШ
2	60		90							
1.18	56		80							
0.6	52		S 70							
0.425	50	SAND	(%) 70							
0.3	47		50							
0.15	44		Percentage							
0.063	39		30							
0.038	34									
0.027	31		20							
0.017	27	SILT/CLAY	10							
0.010	23	0.2.7 02.11	0	0.00	,	0.01	0.1	1	10	100
0.007	21		0.0001	0.00		0.01	0.1	1	10	100
0.005	18				CLAY	SILT	Sieve size (r	nm) <i>SAND</i>	GRAVEL	
0.002	11								To .	
		IGSL I	td Materials L	aboratory			Approved		Date:	Page no:
		IGGE E	-ca maccinals L	-abolatoly			A By	en-	08/03/24	1 of 1

A Ryane

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154549			
size	passing			Contract Name :	NDFA Social	Housing Site	4 Basin View	1	Results relate only to the specin	men tested in as received
75	100	COBBLES		BH/TP No.	BH08				condition unless otherwise note	ed. * denotes Customer
63	100	CORRES		Sample No.*	AA220261	Lab. Sample	No.	A24/0725	supplied information. Opinions a	and interpretations are
50	100			Sample Type:	В				outside the scope of accreditat	ion.
37.5	96			Depth* (m)	3.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	94			Date Received	27/02/2024	Date Testing	g started	28/02/2024	the written approval of the Lab	oratory.
20	90			Description:	Brown slightl	y sandy, sligh	ntly gravelly,	CLAY		
14	85	GRAVEL								
10	81	GRAVEL		Remarks	Note: **Clause 9.2 an	d Clause 9.5 of BS137	77:Part 2:1990 have	been superseded by ISO17892-4:2	2	
6.3	77						63	225	3 35	r.
5	75		100				0.063	0.15 0.425 0.6 1.18	2 3.35 5.3 6.3 10 10 20	37.5 37.5 633 633
3.35	71		100 T							
2	66		90							
1.18	61		80 +							
0.6	55		8 70 							
0.425	52	SAND	(%) bassing (%) 60 +						1	
0.3	49		<u>8</u> 50 +							
0.15	44		Percentage - 05 - 20 - 20 - 20 - 20 - 20 - 20 - 20							
0.063	40		30							
0.037	35									
0.027	32		20							
0.017	30	SILT/CLAY	10							
0.010	27	5/L1/ 6L/11	0 4	201		0.01			10	100
0.007	24		0.00	0.00)]	0.01	0.1	1	10	100
0.005	21				CLAY	SILT	Sieve size (r	mm) SAND	<i>GRAVEL</i>	
0.002	12								-	
		IGSL I	td Materi	als Laboratory	,		Approved		Date:	Page no:
		IUSE E	Lu Matell	ais Laboratory	7		A By	en-	08/03/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154550			
size	passing			Contract Name :	NDFA Social	•		,	Results relate only to the specia	men tested in as received
75	100	COBBLES		BH/TP No.	BH08				condition unless otherwise note	ed. * denotes Customer
63	100	CORRES		Sample No.*	AA220263	Lab. Sample	No.	A24/0726	supplied information. Opinions a	and interpretations are
50	100			Sample Type:	В				outside the scope of accreditat	ion.
37.5	97			Depth* (m)	5.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	93			Date Received	27/02/2024	Date Testing	g started	28/02/2024	the written approval of the Lab	oratory.
20	91			Description:	Black slightly	sandy, slight	ly gravelly, (CLAY		
14	88	GRAVEL								
10	84	GRAVEL		Remarks	Note: **Clause 9.2 an	d Clause 9.5 of BS137	77:Part 2:1990 have	been superseded by ISO17892-4:2	2	
6.3	80						63	0.15 0.3 425 0.6	35	r.
5	77		100				0.063	0.15 0.425 0.6 1.18	2 3.35 6.3 10 20	37.5 37.5 633 633
3.35	73		100							
2	68		90 -							
1.18	64		© 80 -							
0.6	59		<u>8</u> 70 -							
0.425	57	SAND	%) bassing (%) 60 +							
0.3	54		<u>a</u> 50 +							
0.15	48		Percentage - 08 - 20 - 20 - 20 - 20 - 20 - 20 - 20							
0.063	42		30 -							
0.037	35									
0.027	32		20 -							
0.017	28	SILT/CLAY	10 -							
0.010	26	5.2.7 52.11	0 +	01 000	<u> </u>	0.01	0.1	1	10	100
0.007	24		0.00	0.00		0.01	0.1	I	10	100
0.005	21				CLAY	SILT	Sieve size (r	nm) <i>SAND</i>	<i>GRAVEL</i>	
0.002	13								In .	In
		IGSL I	td Materi	ials Laboratory	,		Approved		Date:	Page no:
		IJUL L		als Eastratory	7		A By	en-	08/03/24	1 of 1

Determination of Particle Size Distribution

particle	%			Contract No.	25000	Report No.	R154551			
size	passing		-	Contract Name:	NDFA Social	Housing Site	4 Basin Vie	N	Results relate only to the speci	imen tested in as received
75	74	COBBLES		BH/TP No.	BH09				condition unless otherwise not	ed. * denotes Customer
63	61	CODDLES		Sample No.*	AA220255	Lab. Sample	No.	A24/0728	supplied information. Opinions	and interpretations are
50	61			Sample Type:	В				outside the scope of accredita	tion.
37.5	58			Depth* (m)	4.00	Customer:	MORCE		This report shall not be reprodu	uced except in full without
28	56			Date Received	27/02/2024	4 Date Testing	g started	28/02/2024	the written approval of the Lab	ooratory.
20	55			Description:	Black slightly	/ sandy, slight	ly gravelly,	CLAY with many cobb	oles	
14	54	GRAVEL								
10	52	GRAVEL		Remarks	Note: **Clause 9.2 a	nd Clause 9.5 of BS137	77:Part 2:1990 hav	ve been superseded by ISO17892-4:	2 Sample size did not meet the requirements of BS1377	
6.3	49						63	3 3 25 5 5 18	35	7.
5	48		100				0.063	0.15 0.3 0.425 0.6	2 3.3 5.3 6.3 10 14 12 20	28 37.8 750 753 753
3.35	46		100							
2	44		90							
1.18	41		80							
0.6	38		× 70 ·							
0.425	36	SAND	isi 60							
0.3	34		g 50 -							
0.15	30		tage 40							
0.063	27		Percentage passing (%) 00 00 00 00 00 00 00 00 00 00 00 00 00							
0.038	23									
0.027	21		20 -							
0.017	19	SILT/CLAY	10 -							
0.010	16	SIL 17 CLAT	0 -						<u> </u>	
0.007	14		0.0	0.00)1	0.01	0.1	1	10	100
0.005	13				CLAY	SILT	Sieve size ((mm) SAND	<i>GRAVEL</i>	
0.002	10									
		ICSI I	td Mata	rials Laborator		<u> </u>	Approve		Date:	Page no:
		IGSL L	Liu Mater	rials Laborator	/		AB	rene	08/03/24	1 of 1

Determination of Particle Size Distribution

particle	%		(Contract No.	25000	Report No.	R154552	2		
size	passing			Contract Name :	NDFA Social I	•			Results relate only to the specir	men tested in as received
75	100			BH/TP No.	BH09	Transmig Grad			condition unless otherwise note	
63	100	COBBLES		Sample No.*	AA220257	Lab. Sample	e No.	A24/0729	supplied information. Opinions a	
50	100			Sample Type:	В	•			outside the scope of accreditati	
37.5	95			Depth* (m)	6.00	Customer:	MORCE		This report shall not be reprodu	
28	95			Date Received	27/02/2024	Date Testin	g started	28/02/2024	the written approval of the Labo	
20	89		I	Description:	Brown slightly	y sandy, grav	elly, CLAY			
14	86	CDAV/EL								
10	81	GRAVEL	F	Remarks	Note: **Clause 9.2 an	d Clause 9.5 of BS13	77:Part 2:1990 hav	ve been superseded by ISO17892-4:	2	
6.3	77						63	0.15 0.3 .425 0.6	3 22	r.
5	74		100				0.063	0.15 0.3 0.425 0.6	2 3.35 6.3 10 14 20	37.5 37.5 53 63 63
3.35	69		100 —							
2	65		90							
1.18	60		© 80 							
0.6	54		<u>\$</u> 70 —							
0.425	52	SAND	%) 70 —						1	
0.3	49		<u>ω</u> 50 —							
0.15	44		tage 40							
0.063	38		Percentage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.037	34		20							
0.027	30		10							
0.017	27	SILT/CLAY								
0.010	23		0.000	0.00	1	0.01	0.1	1	10	100
0.007	20		0.000	0.00				() (.44/D		100
0.005	18				CLAY	SILT	Sieve size	(mm) SAND	GRAVEL	
0.002	14						Approve	d by:	Date:	Page no:
		IGSL L	_td Materia	als Laboratory	/			iene	08/03/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

		I								
particle	%			Contract No.	25000	Report No.	R154553			
size	passing			Contract Name :	NDFA Social	Housing Site	4 Basin View		Results relate only to the speci	men tested in as received
75	100	COBBLES		BH/TP No.	BH10				condition unless otherwise note	ed. * denotes Customer
63	90	0022220		Sample No.*	AA210296	Lab. Sample	e No.	A24/0731	supplied information. Opinions	and interpretations are
50	84			Sample Type:	В				outside the scope of accreditat	ion.
37.5	79			Depth* (m)	4.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	78			Date Received		4 Date Testin	-		the written approval of the Lab	oratory.
20	73			Description:	Grey/brown	slightly sandy	, gravelly, CLA	Y with some cobbl	es	
14	71	GRAVEL								
10	67	GIVAVLL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS13	77:Part 2:1990 have be	en superseded by ISO17892-4:	2	
6.3	64						63	0.3 .425 0.6	3 22	
5	62		100				0.063	0.3 0.425 0.6 1.18	2 3.3 3.3 6.3 10 10 20	237. 237. 250. 250.
3.35	60		100							
2	55		90							
1.18	52		80							
0.6	47		§ 70 ·							
0.425	46	SAND	Percentage passing (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.3	43		g 50 -						<u> </u>	
0.15	39		tage 40							
0.063	35		30 -							
0.038	31									
0.027	28		20							
0.017	25	SILT/CLAY	10 -		-					
0.010	21	SIL 17 CLAT	0 -					 		
0.007	18		0.0	0.00	11	0.01	0.1	1	10	100
0.005	16				CLAY	SILT	Sieve size (mr	n) SAND	<i>GRAVEL</i>	
0.002	12									
		ורכו ו	td Mata	iolo Laboratar	,		Approved by		Date:	Page no:
		IG9L L	-ca mater	ials Laborator	/		A Bejon	_	08/03/24	1 of 1

Determination of Particle Size Distribution

particle	%		Contract No.	25000	Report No.	R154554			
size	passing		Contract Nam	e: NDFA Social	Housing Site	4 Basin View		Results relate only to the speci	men tested in as received
75	100	COBBLES	BH/TP No.	BH10				condition unless otherwise note	ed. * denotes Customer
63	100	CODDLLS	Sample No.*	AA210298	Lab. Sample	e No.	A24/0732	supplied information. Opinions a	and interpretations are
50	92		Sample Type:	В				outside the scope of accreditat	ion.
37.5	82		Depth* (m)	6.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	77		Date Received	d 27/02/202	4 Date Testin	g started	28/02/2024	the written approval of the Lab	oratory.
20	69		Description:	Black slightl	y sandy, grave	elly, CLAY			
14	65	GRAVEL							
10	62	UIVAVLL	Remarks	Note: **Clause 9.2 a	and Clause 9.5 of BS13	77:Part 2:1990 have	peen superseded by ISO17892-4:2	2	
6.3	58					0.063	0.3 .425 0.6	2 3.35 5.3 10 14 20	7.
5	56		100			0.063	0.3 0.425 0.6	2 20 1 4 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	37.0
3.35	52		100						
2	48		90						
1.18	44		80						
0.6	40		⁸ 70						
0.425	38	SAND	Percentage passing (%) 30 30						
0.3	36		50						
0.15	32		1436e					1	
0.063	29		30						
0.038	24								
0.027	22		20						
0.017	19	SILT/CLAY	10						
0.010	16	SILT/ CLAT	0						
0.007	15		0.0001	0.001	0.01	0.1	1	10	100
0.005	13			CLAY	SILT	Sieve size (n	nm) SAND	<i>GRAVEL</i>	
0.002	10							-	
		ופטו ו	td Materials Labora	tory.		Approved		Date:	Page no:
		IOSE E	itu Materiais Labura	icoi y		A Bys	ne-	08/03/24	1 of 1

Determination of Particle Size Distribution

particle	%			Contract No.	25000	Report No.	R154560			
l '				Contract No.		Housing Site			Describe college college de la	
size 75	passing 81		1			nousing site	4 Dasiii view		Results relate only to the speci	
		COBBLES		BH/TP No.	BH11	Lab Carala	NI.	424/0724	condition unless otherwise note	
63	81			Sample No.*	AA220268	Lab. Sample	e No.	A24/0734	supplied information. Opinions a	
50	81			Sample Type:	В	•			outside the scope of accreditat	
37.5	81			Depth* (m)	3.00	Customer:	MORCE	00/00/000	This report shall not be reprodu	
28	80			Date Received		4 Date Testing	-		the written approval of the Lab	oratory.
20	77			Description:	Brown slighti	iy sandy, siign	itly gravelly, (CLAY with some cob	bies	
14	74	GRAVEL		Damauka						
10	70			Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 have I	been superseded by ISO17892-4:	2	
6.3	67						0.063	0.425 0.425 0.6	2 3.35 5.3 6.3 10 20	2 C C C C C C C C C C C C C C C C C C C
5	65		100 -				0.0	0,000	7	1 to 10 to 1
3.35	62		90 -							
2	58									
1.18	55		80 - Se							
0.6	51		<u>ိ</u> 70 -							
0.425	49	SAND	Percentage passing (%) 00 00 00 00 00 00 00 00 00 00 00 00 00		-					
0.3	47		<u>ω</u> 50 -							
0.15	43		tag 40 -							
0.063	38		30 -							
0.038	34									
0.027	30		20 -							
0.017	27	SILT/CLAY	10 -		1					
0.010	23	3.2.1, GE/ (1	0 -	001 000					10	
0.007	20		0.0	0.00	(I	0.01	0.1	1	10	100
0.005	18				CLAY	SILT	Sieve size (m	nm) SAND	<i>GRAVEL</i>	
0.002	11									
		ICSL I	td Motor	riole Laborator			Approved		Date:	Page no:
		IGOL L	_tu mater	ials Laborator	1		A By	unt-	08/03/24	1 of 1

Determination of Particle Size Distribution

particle	%		Coi	ntract No.	25000	Report No.	R154555		•	
size	passing		Coi	ntract Name :	NDFA Social	Housing Site	4 Basin View		Results relate only to the speci	men tested in as received
75	100	COBBLES	BH.	/TP No.	BH11				condition unless otherwise note	ed. * denotes Customer
63	100	CODDLES	Sar	mple No.*	AA210270	Lab. Sample	No.	A24/0735	supplied information. Opinions a	and interpretations are
50	92		Sar	mple Type:	В				outside the scope of accreditat	ion.
37.5	92		De	pth* (m)	5.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	89		Dat	te Received	27/02/2024	Date Testing	g started	28/02/2024	the written approval of the Lab	oratory.
20	83		Des	scription:	Grey slightly	sandy, gravel	lly, CLAY			
14	80	GRAVEL								
10	76	GIVAVLL	Rer	marks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 have b	een superseded by ISO17892-4:	2	
6.3	73						63	0.3 .425 0.6	3 22	ι.
5	71		100				0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 7 7 7 7 7 7	37. 50. 753. 753.
3.35	68		100							
2	64		90							
1.18	59		© 80 							
0.6	54		° 70 —							
0.425	52	SAND	70						 	
0.3	50		<u>8</u> 50							
0.15	44		Percentage							
0.063	39		30 							
0.038	33		20							
0.027	30									
0.017	26	SILT/CLAY	10							
0.010	23		0.0001	0.00		0.01	0.1	1	10	100
0.007	21		0.0001					I		100
0.005	19				CLAY	SILT	Sieve size (m	m) SAND	GRAVEL	
0.002	13								In	In.
		IGSL I	td Materials	Laboratory			Approved k		Date:	Page no:
1		.302 1					A Byen	ue-	08/03/24	1 of 1

A Ryane

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154556	5		
size	passing			Contract Name :	NDFA Social	Housing Site	4 Basin Vie	W	Results relate only to the specir	men tested in as received
75	100	COBBLES		BH/TP No.	BH12				condition unless otherwise note	ed. * denotes Customer
63	100	CORRES		Sample No.*	AA202088	Lab. Sample	No.	A24/0737	supplied information. Opinions a	and interpretations are
50	100			Sample Type:	В				outside the scope of accreditat	ion.
37.5	100			Depth* (m)	6.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	98			Date Received	27/02/2024	Date Testing	g started	28/02/2024	the written approval of the Lab	oratory.
20	96			Description:	Grey/brown	sandy, slightly	gravelly, (CLAY		
14	94	GRAVEL								
10	89	GRAVEL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 hav	ve been superseded by ISO17892-4:	2	
6.3	85						63	0.15 0.3 .425 0.6	3 22	r.
5	83		100				0.063	0.15 0.3 0.425 0.6	2 3.35 6.3 10 10 20	37.5 37.5 63 63
3.35	80		100 -							
2	75		90 -							
1.18	70		® 80 -							
0.6	62		<u>8</u> 70 -							
0.425	59	SAND	(%) bassing (%) 60 6							
0.3	54		<u>a</u> 50 -							
0.15	47		Percentage 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.					1		
0.063	40		30 -							
0.037	36									
0.027	32		20 -							
0.017	29	SILT/CLAY	10 -							
0.010	26	0.2.7, 0.2.11	0 -	201 0.00	\1	0.01	0.1	1	10	100
0.007	22		0.00	0.00		0.01	0.1	I	10	100
0.005	19				CLAY	SILT	Sieve size	(mm) SAND	GRAVEL	
0.002	13						10	J. I.	In	In.
		IGSL I	td Mater	ials Laboratory	/		Approve		Date:	Page no:
		.00_ L	-13 1-14 (01	=	7		THE	1Rue	08/03/24	1 of 1

Determination of Particle Size Distribution

particle	%			Contract No.	25000	Report No.	R15455	7		
size	passing			Contract Name :		I Housing Site			Results relate only to the specir	men tested in as received
75	100	COBBLES		BH/TP No.	BH13				condition unless otherwise note	d. * denotes Customer
63	100	CORRES		Sample No.*	AA202027	5 Lab. Sample	No.	A24/0740	supplied information. Opinions a	nd interpretations are
50	83			Sample Type:	В				outside the scope of accreditati	ion.
37.5	74			Depth* (m)	4.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	71			Date Received	27/02/202	4 Date Testin	g started	28/02/2024	the written approval of the Labo	oratory.
20	67			Description:	Grey/brown	slightly sandy	, gravelly,	CLAY		
14	64	GRAVEL								
10	61	GRAVEL		Remarks	Note: **Clause 9.2	and Clause 9.5 of BS137	77:Part 2:1990 ha	ve been superseded by ISO17892-4:	2 Sample size did not meet the requirements of BS1377	
6.3	57						93	15 25 18	3 35	r¿.
5	55		400				0.063	0.15 0.3 0.425 0.6	2 3.35 5.3 6.3 10 14 20	37.5 37.5 530.5 53
3.35	52		100 -							
2	47		90 -							
1.18	44		80 -							
0.6	39		Š 70 -							
0.425	38	SAND	(%) bassing (%) 60 -							
0.3	36		<u>8</u> 50 -							
0.15	32		Percentage 08						1	
0.063	29		30 -							
0.038	26									
0.027	23		20 -							
0.017	21	SILT/CLAY	10 -		1					
0.010	19	OIL 17 OL7 (1	0 -						10	100
0.007	17		0.0	0.00)T	0.01	0.1	1	10	100
0.005	15				CLAY	SILT	Sieve size	(mm) SAND	<i>GRAVEL</i>	
0.002	11								1-	
		IGSL I	td Mater	ials Laborator	./		Approve		Date:	Page no:
		IUSE E	Lu Matel	iais Laborator	1		AB	18me	08/03/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000	Report No.	R154558		•	
size	passing		Contract Nan	ne: NDFA Social	Housing Site	4 Basin View		Results relate only to the specin	men tested in as received
75	100	COBBLES	BH/TP No.	TP10				condition unless otherwise note	ed. * denotes Customer
63	100	CODDLES	Sample No.*	AA210359	Lab. Sample	No.	A24/0742	supplied information. Opinions a	and interpretations are
50	100		Sample Type	: В				outside the scope of accreditat	ion.
37.5	100		Depth* (m)	2.10	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	100		Date Receive	d 27/02/202	4 Date Testing	g started	28/02/2024	the written approval of the Lab	oratory.
20	98		Description:	Grey/brown	slightly sandy	, slightly gravelly	, CLAY		
14	96	GRAVEL							
10	94	GIVAVLL	Remarks	Note: **Clause 9.2 a	nd Clause 9.5 of BS137	77:Part 2:1990 have been s	uperseded by ISO17892-4:	2 Sample size did not meet the requirements of BS1377	
6.3	91					63	0.3 .425 0.6 1.18		7.
5	90		100			0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 70 10 10 20	37. 50. 753. 753.
3.35	87		100						
2	84		90						
1.18	81		© 80 						
0.6	77		° 70						
0.425	74	SAND	(%) 70						
0.3	72		50						
0.15	64		40 Ltag						
0.063	55		99 20 40 40 40 40 40 40 40 40 40 40 40 40 40						
0.038	47		20						
0.027	42								
0.017	37	SILT/CLAY	10						
0.010	33		0.0001	0.001	0.01	0.1	1	10	100
0.007	27		0.0001	0.001	0.01		I		100
0.005	24			CLAY	SILT	Sieve size (mm)	SAND	<i>GRAVEL</i>	
0.002	13					A managed b		IData	ID
		IGSL I	td Materials Labora	atory		Approved by:		Date:	Page no:
		.502 1	a.toa.o _abort			A Rejene		08/03/24	1 of 1

A Ryane

Appendix 8

Geo-Environmental & Chemical Laboratory Results (Soils)

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 24-06640-1

Initial Date of Issue: 12-Mar-2024

Re-Issue Details:

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): Darren Keogh

Project 25000-4 Basin View

Quotation No.: Q20-21693 Date Received: 04-Mar-2024

Order No.: Date Instructed: 04-Mar-2024

No. of Samples: 38

Turnaround (Wkdays): 5 Results Due: 08-Mar-2024

Date Approved: 12-Mar-2024

Approved By:

Details: Stuart Henderson, Technical

Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Client: IGSL			Cher	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775125	1775126	1775128	1775129	1775130	1775132	1775134	1775135	1775136
Order No.:			Clier	nt Samp	le Ref.:	BH9	BH10	BH11	BH12	BH12	BH13	TP01	TP02	BH1
			Sample Type			SOIL								
		Top Depth (m			oth (m):	2.00	1.00	1.00	1.00	3.00	1.00	0.60	1.20	1.00
					ampled:	28-Feb-2024								
Determinand	Accred.	SOP	Type	Units	LOD									
Ammonium	U	1220	10:1	mg/l	0.050	0.22	0.24	0.30	0.20	0.25	0.18	0.28	0.30	0.36
Ammonium	N	1220	10:1	mg/kg	0.10	2.3	2.5	3.2	2.1	2.7	2.1	3.0	3.3	3.9

Client: IGSL			Chei	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775137	1775139	1775140	1775142	1775143	1775145	1775146	1775147	1775148
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH2	BH3	BH3	BH4	BH5	BH6	BH7	TP03
		Sample Type			е Туре:	SOIL								
	Top Depth (m				oth (m):	2.00	1.00	1.00	3.00	1.00	1.00	2.00	1.00	0.50
		1 1 (ampled:	28-Feb-2024								
Determinand	Accred.	SOP	Type	Units	LOD									
Ammonium	U	1220	10:1	mg/l	0.050	0.24	0.65	0.30	0.33	0.24	0.23	0.48	0.41	0.21
Ammonium	N	1220	10:1	mg/kg	0.10	2.5	8.7	4.5	3.7	2.6	3.2	5.8	4.5	2.3

Client: IGSL			Cher	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775149	1775150	1775151	1775152	1775153	1775154	1775155	1775156	1775158
Order No.:		Client Sample Re			le Ref.:	TP04	TP05	TP06	TP07	TP08	TP09	TP09	TP10	TP11
			Sample Type			SOIL								
		Top Depth (m			pth (m):	0.30	0.60	1.30	1.30	0.40	1.00	2.10	1.30	1.20
					ampled:	28-Feb-2024								
Determinand	Accred.	SOP	Type	Units	LOD									
Ammonium	U	1220	10:1	mg/l	0.050	0.31	0.72	0.56	0.29	0.26	0.21	0.25	0.24	0.30
Ammonium	N	1220	10:1	mg/kg	0.10	3.1	7.8	6.1	3.1	2.9	2.6	2.7	2.7	3.2

Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775159	1775160	1775161
Order No.:			Clie	nt Samp	le Ref.:	TP11	TP12	TP13
				Sampl	е Туре:	SOIL	SOIL	SOIL
				Top De	oth (m):	2.40	1.50	0.40
				Date Sa	ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024
Determinand	Accred.	SOP	Type	Units	LOD			
Ammonium	U	1220	10:1	mg/l	0.050	0.21	0.21	0.20
Ammonium	N	1220	10:1	mg/kg	0.10	2.2	2.4	2.4

Project. 25000-4 Dasiii view												
Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	est Sam	ple ID.:	1775124	1775125	1775126	1775127	1775128	1775129	1775130
Order No.:			Clie	nt Samp	ole Ref.:	BH8	BH9	BH10	BH10	BH11	BH12	BH12
		1		Sampl	le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		1.00	2.00	1.00	2.00	1.00	1.00	3.00
		1			ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024
		1			tos Lab:	20:02 202:	COVENTRY	COVENTRY	20 : 02 202 :	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	-	-		OOVERTITE	OUVERTITE		COVERTICE	COVERNIA	GGVERTITE
ACM Type	IIIIOE COUC	U	2192	-	N/A		Fibres/Clumps	_		_	Fibres/Clumps	-
7 CONT TYPE		 					Amosite	No Asbestos		No Asbestos	·	No Asbestos
Asbestos Identification		U	2192		N/A		Chrysotile	Detected		Detected	Chrysotile	Detected
Asbestos by Gravimetry		U	2192	%	0.001		0.095				<0.001	
Total Asbestos		U	2192	%	0.001		0.095				<0.001	
Moisture		N	2030	%	0.020	19	22	24	27	21	18	2.5
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones and Roots	Stones and Roots	Stones and Roots	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Clay	Loam	Clay	Clay	Clay	Loam	Clay
pH (2.5:1) at 20C		N	2010		4.0	8.5	Loaiii	Clay	8.6	Clay	Loaiii	Clay
. \ /		M	2120		0.40	0.5	0.88	0.05	0.0	0.55	0.66	4.4
Boron (Hot Water Soluble)		_			_	10.040	0.88	0.95	10.040	0.55	0.66	1.4
Magnesium (Water Soluble)		N	2120		0.010	< 0.010			< 0.010			
Sulphate (2:1 Water Soluble) as SO4		M	2120	g/l	0.010	< 0.010			0.039			
Total Sulphur		U	2175		0.010	0.034	4400		0.090	4.0	4.0	
Sulphur (Elemental)		M	2180		1.0		1100	8.3		< 1.0	< 1.0	3.2
Chloride (Water Soluble)		М	2220	g/l	0.010	< 0.010			< 0.010			
Nitrate (Water Soluble)		N	2220	g/l	0.010	0.013			< 0.010			
Cyanide (Total)		М	2300	mg/kg	0.50		< 0.50	< 0.50		< 0.50	0.60	< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50		45	4.8		3.8	6.4	3.5
Ammonium (Water Soluble)		M	2220	g/l	0.01	< 0.01			< 0.01			
Sulphate (Total)		U	2430	%	0.010		1.2	0.23		0.12	0.91	1.5
Sulphate (Acid Soluble)		U	2430	%	0.010	0.042			0.10			
Arsenic		M	2455	mg/kg	0.5		33	18		21	12	14
Barium		М	2455	mg/kg	0.5		230	150		130	340	340
Cadmium		M	2455	mg/kg	0.10		1.2	2.1		3.4	0.92	0.97
Chromium		М	2455	mg/kg	0.5		14	22		27	12	20
Molybdenum		М	2455	mg/kg	0.5		5.3	2.8		3.3	2.1	2.7
Antimony		N	2455	mg/kg	2.0		2.6	< 2.0		2.3	4.5	3.7
Copper		М	2455				32	63		56	32	28
Mercury		М	2455	mg/kg	0.05		0.28	0.41		0.15	0.39	0.42
Nickel		М	2455			1	38	46		71	18	26
Lead		М	2455			i	330	140		70	780	770
Selenium		M	2455		_	İ	1.3	1.1		1.3	1.5	1.7
Zinc		M	2455	0 0	_	1	260	130		150	290	300
Chromium (Trivalent)		N	2490	0 0	+		14	22		27	12	20
Chromium (Hexavalent)		N	2490	mg/kg	_		< 0.50	< 0.50		< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg			< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780				< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
Allphalic VETT 200-07	I IO_ZD_AL	U U	2/00	mg/kg	0.00		> 0.00	> 0.00		> 0.00	> 0.05	~ 0.00

Project. 25000-4 Basin view												
Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775124	1775125	1775126	1775127	1775128	1775129	1775130
Order No.:			Clie	nt Samp	le Ref.:	BH8	BH9	BH10	BH10	BH11	BH12	BH12
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		1.00	2.00	1.00	2.00	1.00	1.00	3.00
				Date Sa	ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024
				Asbest	os Lab:		COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP		-							
Aliphatic VPH >C7-C8	HS 2D AL	U	2780				< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
Aliphatic VPH >C8-C10	HS 2D AL	Ü	2780	mg/kg			< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	Ü	2780	mg/kg			< 0.25	< 0.25		< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH 2D AL #1	М	2690	mg/kg			7.2	6.2		4.2	5.5	4.8
Aliphatic EPH >C12-C16 MC	EH 2D AL #1	М	2690	mg/kg			< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	М	2690	mg/kg			< 2.0	< 2.0		< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	M	2690	mg/kg			< 3.0	6.3		4.1	3.6	< 3.0
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	_		< 10	< 10		< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH 2D AL #1	M	2690	mg/kg	5.00		9.3	12		8.4	9.1	6.9
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg			< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS 2D AR	Ü	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg			< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.03		< 0.05	< 0.05		< 0.05	< 0.05	< 0.05
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg			1.2	1.4		2.3	1.1	< 1.0
Aromatic EPH >C10-C12 MC Aromatic EPH >C12-C16 MC	EH 2D AR #1	U	2690				< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH 2D AR #1	U	2690	mg/kg			4.5	3.8		4.7	6.9	3.3
		U		mg/kg	2.00		4.5 < 2.0	!		2.1		< 2.0
Aromatic EPH > C21-C35 MC	EH_2D_AR_#1		2690	mg/kg				4.9			2.3	
Aromatic EPH > C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00		< 1.0	1.1		< 1.0	< 1.0 10	< 1.0 5.3
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg			6.6	10		9.0		
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50		< 0.50	< 0.50		< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	_		16	22		17	19	12
Mineral Oil EPH	EH_CU_1D_Total	N	2670	mg/kg	10		< 10	12		< 10	< 10	< 10
Benzene		M	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Toluene		M	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Ethylbenzene		М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
m & p-Xylene		М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
o-Xylene		М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg			< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Naphthalene		М	2800	mg/kg			< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Acenaphthene		М	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Fluorene		М	2800	mg/kg	1		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg			0.17	< 0.10		< 0.10	0.37	0.24
Anthracene		М	2800	mg/kg			< 0.10	< 0.10		< 0.10	0.12	< 0.10
Fluoranthene		М	2800	mg/kg			0.23	0.39		< 0.10	0.59	0.38
Pyrene		М	2800	mg/kg	0.10		0.20	0.30		< 0.10	0.51	0.34
Benzo[a]anthracene		М	2800	mg/kg	0.10		0.13	< 0.10		< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10		0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10

Client: IGSL			Chei	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693			Chemte	st Sam	ple ID.:	1775124	1775125	1775126	1775127	1775128	1775129	1775130
Order No.:			Clie	nt Samp	le Ref.:	BH8	BH9	BH10	BH10	BH11	BH12	BH12
				Sampl	е Туре:	SOIL						
				Top De	oth (m):	1.00	2.00	1.00	2.00	1.00	1.00	3.00
				Date Sa	ampled:	28-Feb-2024						
				Asbest	os Lab:		COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Benzo[k]fluoranthene		M	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		M	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		M	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		M	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Coronene		N	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0		< 1.0	< 1.0		< 1.0	1.6	< 1.0
PCB 28		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	< 0.010
PCB 52		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	< 0.010
PCB 101		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	< 0.010
PCB 118		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	< 0.010
PCB 153		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	< 0.010
PCB 138		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	< 0.010
PCB 180		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	< 0.010
Total PCBs (7 Congeners)		U	2815	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Total Phenols		M	2920	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10

Project: 25000-4 Basin View												
Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775131	1775132	1775133	1775134	1775135	1775136	1775137
Order No.:			Clie	nt Samp	le Ref.:	BH12	BH13	BH13	TP01	TP02	BH1	BH1
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	4.00	1.00	3.50	0.60	1.20	1.00	2.00
				Date Sa	. ,	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024
				Asbest		20 : 02 202 :	COVENTRY	20 : 00 202 :	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units			OOVEIVIIVI		OOVEIVIIVI	COVERTICE	OUVERTING	OUVERTITE
ACM Type	IIIVOL GOGC	U	2192	Office	N/A		Fibres/Clumps		-	_	_	_
,,	+			-					No Asbestos	No Asbestos	No Asbestos	No Asbestos
Asbestos Identification		U	2192		N/A		Chrysotile		Detected	Detected	Detected	Detected
Asbestos by Gravimetry		U	2192	%	0.001		<0.001		Detected	Detected	Detected	Detected
Total Asbestos		U	2192	%	0.001		<0.001					
			2030	%	0.001	45	19	17	16	40	10	19
Moisture		N	•	70		15				18	18	
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones and	Stones and	Stones and	Stones and	Stones	Stones and
						-	Roots	Roots	Roots	Roots		Roots
Soil Texture		N	2040		N/A	Clay	Clay	Clay	Clay	Clay	Clay	Clay
pH (2.5:1) at 20C		N	2010		4.0	8.2		8.6				
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40		0.62		0.92	0.88	< 0.40	0.63
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010		< 0.010				1
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	0.23		0.038				
Total Sulphur		U	2175	%	0.010	0.083		0.045				
Sulphur (Elemental)		М	2180	mg/kg	1.0		5.0		30	1.2	< 1.0	1.9
Chloride (Water Soluble)		М	2220	g/l	0.010	< 0.010		< 0.010				
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010		< 0.010				
Cyanide (Total)		М	2300	mg/kg	0.50		< 0.50		< 0.50	< 0.50	0.50	< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50		5.4		5.2	3.4	3.4	14
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01		< 0.01				
Sulphate (Total)		U	2430	%	0.010		0.11		0.30	0.13	0.083	0.30
Sulphate (Acid Soluble)		U	2430	%	0.010	0.15		0.053				
Arsenic		М	2455	mg/kg	0.5		22		9.8	13	19	11
Barium		М	2455	mg/kg	0.5		200		76	72	230	250
Cadmium		М	2455	mg/kg	0.10		1.9		0.94	2.0	1.2	1.3
Chromium		М	2455	mg/kg			22		15	17	25	13
Molybdenum		М	2455	mg/kg			4.7		2.3	2.7	2.5	3.2
Antimony		N	2455	mg/kg	2.0		5.0		< 2.0	< 2.0	9.0	3.9
Copper		М	2455	mg/kg			100		41	50	120	34
Mercury		M	2455	mg/kg	0.05		0.41		0.16	0.14	0.88	0.26
Nickel		M	2455	mg/kg	0.50		56		36	34	37	38
Lead	+	M	2455	mg/kg			150		63	61	330	600
Selenium	+	M	2455		0.50		1.7		1.2	1.4	1.2	2.9
	+			mg/kg						1.4	280	
Zinc		M	2455	mg/kg			160		100			350
Chromium (Trivalent)		N	2490	mg/kg	1.0		22		15	17	25	13
Chromium (Hexavalent)		N	2490	mg/kg	-		< 0.50		< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05

Project: 25000-4 Basin View												
Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	est Sam	ple ID.:	1775131	1775132	1775133	1775134	1775135	1775136	1775137
Order No.:			Clie	nt Samp	le Ref.:	BH12	BH13	BH13	TP01	TP02	BH1	BH1
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	4.00	1.00	3.50	0.60	1.20	1.00	2.00
				Date Sa	ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024
				Asbest			COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units			0012.1111		001211111	001211111	0012.11111	3312
Aliphatic VPH >C7-C8	HS 2D AL	U	2780	mg/kg			< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg			< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg			< 0.25	 	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH 2D AL #1	M	2690	mg/kg			4.8		5.6	7.0	3.9	3.7
Aliphatic EPH >C12-C16 MC	EH 2D AL #1	M	2690	mg/kg			< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	M	2690	mg/kg			< 2.0		< 2.0	< 2.0	< 2.0	3.1
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	M	2690				5.5	 	3.1	3.1	5.1	10
· ·			_	mg/kg								
Aliphatic EPH > C35-C40 MC	EH_2D_AL_#1	N M	2690	mg/kg	10.00		< 10		< 10	< 10	14	14
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	5.00		10		8.6	11	9.0	18
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg			< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	•		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg			< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25		< 0.25		< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg			< 1.0		1.1	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00		9.2		< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg			5.9		3.8	4.0	83	16
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00		7.6		5.4	4.7	150	12
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00		< 1.0		< 1.0	< 1.0	16	5.9
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00		23		10	9.5	230	29
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50		< 0.50		< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00		33		19	21	240	47
Mineral Oil EPH	EH_CU_1D_Total	N	2670	mg/kg	10		10		< 10	11	23	32
Benzene		М	2760	μg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Toluene		М	2760	μg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene		М	2760	μg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		М	2760	μg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene		М	2760	μg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene		М	2800	mg/kg	0.10		0.14		< 0.10	< 0.10	0.31	< 0.10
Acenaphthylene		N	2800	mg/kg			< 0.10		< 0.10	< 0.10	0.26	< 0.10
Acenaphthene		М	2800	mg/kg			0.59	1	< 0.10	< 0.10	0.75	< 0.10
Fluorene		М	2800	mg/kg			0.52		< 0.10	< 0.10	0.60	< 0.10
Phenanthrene		М	2800	mg/kg			5.1		0.22	0.56	8.9	0.23
Anthracene		М	2800	mg/kg			0.75		< 0.10	0.16	2.9	< 0.10
Fluoranthene		M	2800	mg/kg			5.0	<u> </u>	0.36	1.3	24	0.33
Pyrene		M	2800	mg/kg			4.0		0.36	1.2	21	0.33
Benzo[a]anthracene		M	2800	mg/kg			2.4	 	0.22	0.80	15	< 0.10
Chrysene		M	2800	mg/kg	0.10		2.1	1	0.19	0.67	14	< 0.10
Benzo[b]fluoranthene		M	2800	mg/kg	-		3.1	 	0.35	1.2	20	< 0.10
Donzo[b]nuoraninono		IVI	2000	ilig/kg	0.10		0.1		0.00	1.4	20	` 0.10

		Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
	(Chemte	st Sam	ple ID.:	1775131	1775132	1775133	1775134	1775135	1775136	1775137
		Clie	nt Samp	le Ref.:	BH12	BH13	BH13	TP01	TP02	BH1	BH1
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					4.00	1.00	3.50	0.60	1.20	1.00	2.00
			Date Sa	ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024
			Asbest	os Lab:		COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
HWOL Code	Accred.	SOP	Units	LOD							
	M	2800	mg/kg	0.10		0.99		0.11	0.40	7.1	< 0.10
	M	2800	mg/kg	0.10		2.3		0.28	0.84	16	< 0.10
	М	2800	mg/kg	0.10		1.4		0.15	0.58	9.2	< 0.10
	N	2800	mg/kg	0.10		0.42		< 0.10	< 0.10	2.0	< 0.10
	M	2800	mg/kg	0.10		1.4		0.19	0.58	9.3	< 0.10
	N	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10
	N	2800	mg/kg	1.0		30		2.4	8.3	150	< 1.0
	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010	< 0.010	< 0.010
	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010	< 0.010	< 0.010
	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010	< 0.010	< 0.010
	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010	< 0.010	< 0.010
	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010	< 0.010	< 0.010
	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010	< 0.010	< 0.010
	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010	< 0.010	< 0.010
	U	2815	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10
	М	2920	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10
	HWOL Code	HWOL Code Accred. M M M N N N N U U U U U U U U U U U U	Chemte	Chemtest Samp	M 2800 mg/kg 0.10 M 2800 mg/kg 0.10 M 2800 mg/kg 0.10 N 2800 mg/kg 0.10 U 2815 mg/kg 0.010	Chemtest Sample ID.: 1775131 Client Sample Ref.: BH12 Sample Type: SOIL Top Depth (m): 4.00 Date Sampled: 28-Feb-2024 Asbestos Lab: HWOL Code Accred. SOP Units LOD M	Chemtest Sample ID.: 1775131 1775132	Chemtest Sample ID.: 1775131 1775132 1775133	Chemtest Sample ID.:	Chemtest Sample ID.: 1775131 1775132 1775133 1775134 1775135 Client Sample Ref.: BH12 BH13 BH13 TP01 TP02 Sample Type: SOIL SOIL SOIL SOIL SOIL SOIL Top Depth (m): 4.00 1.00 3.50 0.60 1.20 Date Sampled: 28-Feb-2024 28-Feb-2024 28-Feb-2024 28-Feb-2024 28-Feb-2024 28-Feb-2024 28-Feb-2024 28-Feb-2024 28-Feb-2024 Asbestos Lab: COVENTRY COVENTRY HWOL Code Accred. SOP Units LOD	Chemtest Sample D.: 1775131 1775132 1775133 1775134 1775135 1775136 Client Sample Ref.: BH12 BH13 BH13 TP01 TP02 BH1 Sample Type: SOIL SOIL SOIL SOIL SOIL SOIL SOIL Top Depth (m): 4.00 1.00 3.50 0.60 1.20 1.00 Date Sample: Se-Feb-2024 28-Feb-2024 28-Feb-2024

Project: 25000-4 Basin View	_	_										
Client: IGSL			Chei	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775138	1775139	1775140	1775141	1775142	1775143	1775144
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH2	BH3	BH3	BH3	BH4	BH4
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	3.00	1.00	1.00	2.00	3.00	1.00	2.00
				Date Sa	ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024
		1		Asbest	os Lab:		COVENTRY	COVENTRY		COVENTRY	COVENTRY	
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
ACM Type		U	2192		N/A		-	-		-	-	
71							No Asbestos	No Asbestos		No Asbestos	No Asbestos	
Asbestos Identification		U	2192		N/A		Detected	Detected		Detected	Detected	
Asbestos by Gravimetry		U	2192	%	0.001		20100100	20100104		20100104	20100104	
Total Asbestos		Ü	2192	%	0.001							
Moisture		N	2030	%	0.020	16	20	20	19	11	18	19
Soil Colour		N	2040	70	N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Soli Colodi		IN	2040		14/7	DIOWII	Stones and	Stones and	Stones and	BIOWII	DIOWII	BIOWII
Other Material		N	2040		N/A	Stones	Roots	Roots	Roots	Stones	Stones	Stones
Soil Texture	_	N	2040		N/A	Clay				Clavi	Clavi	Class
						Clay	Clay	Clay	Clay	Clay	Clay	Clay
pH (2.5:1) at 20C		N	2010		4.0	8.6	2.22	0.04	8.5	0.40		8.4
Boron (Hot Water Soluble)		M	2120	mg/kg	0.40	2.212	0.99	0.84		< 0.40	1.3	
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010			< 0.010			< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	0.17			0.071			0.063
Total Sulphur		U	2175	%	0.010	0.15			0.069			0.14
Sulphur (Elemental)		М	2180	mg/kg	1.0		2.0	2.1		< 1.0	2.6	
Chloride (Water Soluble)		М	2220	g/l	0.010	< 0.010			0.030			0.011
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010			< 0.010			< 0.010
Cyanide (Total)		М	2300	mg/kg	0.50		< 0.50	< 0.50		< 0.50	< 0.50	
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50		4.4	5.3		5.3	9.8	
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01			< 0.01			< 0.01
Sulphate (Total)		U	2430	%	0.010		0.17	0.39		0.14	0.090	
Sulphate (Acid Soluble)		U	2430	%	0.010	0.62			0.33			0.22
Arsenic		М	2455	mg/kg	0.5		12	6.5		14	6.6	
Barium		М	2455	mg/kg	0.5		78	51		93	51	
Cadmium		М	2455	mg/kg	0.10		1.3	0.74		3.0	0.72	
Chromium		М	2455	mg/kg	0.5		19	14		18	14	
Molybdenum		М	2455	mg/kg	0.5		2.1	1.6		5.5	1.5	
Antimony		N	2455	mg/kg	2.0		< 2.0	< 2.0		< 2.0	< 2.0	
Copper		М	2455	mg/kg	0.50		45	26		39	26	
Mercury		М	2455	mg/kg	0.05		0.31	0.16	1	0.08	0.16	
Nickel	1	М	2455	mg/kg	0.50		36	25	i	59	25	
Lead	1	M	2455	mg/kg	0.50		110	49	<u> </u>	27	49	
Selenium	+	M	2455	mg/kg	0.25		1.4	1.2	 	1.7	1.2	
Zinc	+	M	2455	mg/kg			180	100	 	120	100	
Chromium (Trivalent)	+	N	2490	mg/kg	1.0		19	14	 	18	14	
Chromium (Hexavalent)	+	N	2490	mg/kg	0.50		< 0.50	< 0.50	 	< 0.50	< 0.50	
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg	0.05		< 0.05	< 0.50	 	< 0.05	< 0.05	
		U							-			
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05	< 0.05	

Project. 25000-4 Basin view												
Client: IGSL			Che	mtest Jo	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775138	1775139	1775140	1775141	1775142	1775143	1775144
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH2	BH3	BH3	BH3	BH4	BH4
				Sampl	е Туре:	SOIL						
				Top Dep	oth (m):	3.00	1.00	1.00	2.00	3.00	1.00	2.00
				Date Sa		28-Feb-2024						
				Asbest	os Lab:		COVENTRY	COVENTRY		COVENTRY	COVENTRY	
Determinand	HWOL Code	Accred.	SOP									
Aliphatic VPH >C7-C8	HS 2D AL	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25		< 0.25	< 0.25		< 0.25	< 0.25	
Aliphatic EPH >C10-C12 MC	EH 2D AL #1	M	2690	mg/kg	2.00		8.3	4.9		6.5	4.7	
Aliphatic EPH >C12-C16 MC	EH 2D AL #1	M	2690	mg/kg	1.00		< 1.0	< 1.0		< 1.0	1.3	
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	M	2690	mg/kg	2.00		< 2.0	< 2.0		< 2.0	< 2.0	
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	M	2690	0 0	3.00		4.2	5.5		< 3.0	9.6	
			_	mg/kg	10.00							
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg			< 10 12	11 10		< 10	11 17	
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	5.00					7.1		
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25		< 0.25	< 0.25		< 0.25	< 0.25	
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00		< 1.0	< 1.0		< 1.0	< 1.0	
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00		< 1.0	< 1.0		< 1.0	7.0	
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00		7.4	8.9		6.6	140	
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00		6.6	6.3		< 2.0	250	
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00		2.1	2.5		1.4	8.9	
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00		14	15		7.0	390	
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50		< 0.50	< 0.50		< 0.50	< 0.50	
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00		26	26		14	410	
Mineral Oil EPH	EH_CU_1D_Total	N	2670	mg/kg	10		12	21		< 10	28	
Benzene		М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Toluene		М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Ethylbenzene		М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	
m & p-Xylene		М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	
o-Xylene		М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Naphthalene		M	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	0.46	
Acenaphthylene		N	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	0.10	
Acenaphthene		M	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	0.96	
Fluorene		M	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	0.84	
Phenanthrene		M	2800	mg/kg	0.10		0.56	0.69		< 0.10	7.5	
Anthracene		M	2800	mg/kg	0.10		0.10	0.15		< 0.10	2.4	
Fluoranthene		M	2800	mg/kg	0.10		0.80	0.13		< 0.10	13	
	+	M	2800	0 0	0.10		0.69	0.63		< 0.10	11	<u> </u>
Pyrene	+	M		mg/kg								—
Benzo[a]anthracene			2800	mg/kg	0.10		0.45	0.43		< 0.10	6.2	——
Chrysene	+	M	2800	mg/kg	0.10		0.40	0.45		< 0.10	6.4	
Benzo[b]fluoranthene		М	2800	mg/kg	0.10		0.54	0.57		< 0.10	7.6	1

Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775138	1775139	1775140	1775141	1775142	1775143	1775144
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH2	BH3	BH3	BH3	BH4	BH4
				Sampl	е Туре:	SOIL						
				Top De	pth (m):	3.00	1.00	1.00	2.00	3.00	1.00	2.00
				Date Sa	ampled:	28-Feb-2024						
				Asbest	os Lab:		COVENTRY	COVENTRY		COVENTRY	COVENTRY	
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Benzo[k]fluoranthene		М	2800	mg/kg	0.10		0.17	0.23		< 0.10	3.2	
Benzo[a]pyrene		М	2800	mg/kg	0.10		0.47	0.53		< 0.10	6.3	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10		0.32	0.26		< 0.10	3.9	
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10		< 0.10	0.15		< 0.10	0.92	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10		0.33	0.31		< 0.10	3.5	
Coronene		N	2800	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0		4.8	5.3		< 1.0	74	
PCB 28		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	
PCB 52		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	
PCB 101		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	
PCB 118		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	
PCB 153		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	
PCB 138		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	
PCB 180		U	2815	mg/kg	0.010		< 0.010	< 0.010		< 0.010	< 0.010	
Total PCBs (7 Congeners)		U	2815	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	
Total Phenols		М	2920	mg/kg	0.10		< 0.10	< 0.10		< 0.10	< 0.10	

Project. 25000-4 Basili view												
Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693			Chemte	est Sam	ple ID.:	1775145	1775146	1775147	1775148	1775149	1775150	1775151
Order No.:			Clie	nt Samp	le Ref.:	BH5	BH6	BH7	TP03	TP04	TP05	TP06
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		1		Top De		1.00	2.00	1.00	0.50	0.30	0.60	1.30
				Date Sa		28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024
	1	1			os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD	0012.1111	0012.1111	0012.1111	0012.1111	0012.1111	001211111	0012:11:11
ACM Type	111102 0000	U	2192	Omico	N/A	-	-	-	_	Fibres/Clumps	Fibres/Clumps	-
						No Asbestos	No Asbestos	No Asbestos	No Asbestos	·	· ·	No Asbestos
Asbestos Identification		U	2192		N/A	Detected	Detected	Detected	Detected	Chrysotile	Chrysotile	Detected
Asbestos by Gravimetry		U	2192	%	0.001					<0.001	0.008	
Total Asbestos		U	2192	%	0.001					<0.001	0.008	
Moisture		N	2030	%	0.020	14	21	16	19	25	12	18
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
						Stones and	Stones and	Stones and	Stones and	Stones and		Stones and
Other Material		N	2040		N/A	Roots	Roots	Roots	Roots	Roots	Stones	Roots
Soil Texture		N	2040		N/A	Clay	Clay	Clay	Clay	Clay	Clay	Clay
pH (2.5:1) at 20C		N	2010		4.0	J,	211.)	J.1.,	0.1.,	J.1.,	J,	, , , , , , , , , , , , , , , , , , ,
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	< 0.40	0.44	< 0.40	1.1	2.6	0.47	0.67
Magnesium (Water Soluble)	+	N	2120	g/l	0.010	70.10	0.11	7 0.10		2.0	0.11	0.07
Sulphate (2:1 Water Soluble) as SO4		M	2120	g/l	0.010							
Total Sulphur	+	U	2175	%	0.010							
Sulphur (Elemental)		M	2180	mg/kg	1.0	9.0	39	9.5	< 1.0	< 1.0	1.4	2.7
Chloride (Water Soluble)	+	M	2220	g/l	0.010	9.0	39	9.5	V 1.0	V 1.0	1.4	2.1
,	+	N	2220	- u	0.010			-			 	
Nitrate (Water Soluble)	+	M	2300	g/l		< 0.50	< 0.50	< 0.50	< 0.50	4 O FO	4 O F O	< 0.50
Cyanide (Total)		_		mg/kg	0.50	3.8	9.0	< 0.50	< 0.50 3.7	< 0.50 3.3	< 0.50 3.9	4.8
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	3.8	9.0	4.5	3.1	3.3	3.9	4.8
Ammonium (Water Soluble)		М	2220	g/l	0.01	0.40	0.44	0.04	0.40	0.11	2.000	0.40
Sulphate (Total)		U	2430	%	0.010	0.18	0.44	0.24	0.12	0.11	0.089	0.16
Sulphate (Acid Soluble)		U	2430	%	0.010							
Arsenic		М	2455	mg/kg	0.5	18	17	13	14	10	11	14
Barium		М	2455	mg/kg	0.5	130	220	89	120	63	91	170
Cadmium		М	2455	mg/kg	0.10	1.2	1.4	0.98	1.1	0.85	1.3	1.5
Chromium		М	2455	mg/kg	0.5	16	18	15	22	18	14	20
Molybdenum		М	2455	mg/kg	0.5	2.9	2.9	2.1	1.8	1.5	2.2	1.8
Antimony		N	2455	mg/kg	2.0	2.6	2.0	2.9	2.9	< 2.0	< 2.0	5.7
Copper		М	2455	mg/kg	0.50	44	50	49	120	39	33	35
Mercury		М	2455	mg/kg	0.05	0.35	0.37	0.36	0.35	0.24	0.18	0.27
Nickel		М	2455	mg/kg	0.50	33	38	32	35	27	34	33
Lead		М	2455	mg/kg	0.50	180	240	120	140	130	96	180
Selenium		М	2455	mg/kg	0.25	0.97	2.9	0.97	1.2	0.88	0.84	1.1
Zinc		М	2455	mg/kg	0.50	160	150	110	180	120	120	190
Chromium (Trivalent)		N	2490	mg/kg	1.0	16	18	15	22	18	14	20
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
pp	1.0_2D_/\L		2,00	9/119	0.00	3.00	3.00	3.00	0.00	3.00	10.00	0.00

Project. 25000-4 Basin view												
Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775145	1775146	1775147	1775148	1775149	1775150	1775151
Order No.:			Clie	nt Samp	le Ref.:	BH5	BH6	BH7	TP03	TP04	TP05	TP06
				Sampl	е Туре:	SOIL						
				Top De	pth (m):	1.00	2.00	1.00	0.50	0.30	0.60	1.30
				Date Sa		28-Feb-2024						
				Asbest	os Lab:	COVENTRY						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH 2D AL #1	М	2690	mg/kg	2.00	4.8	4.9	2.6	7.9	8.1	7.6	4.1
Aliphatic EPH >C12-C16 MC	EH 2D AL #1	М	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	3.00	3.6	5.1	3.5	4.5	6.7	3.5	< 3.0
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	< 10	12	< 10	< 10	< 10	11	< 10
Total Aliphatic EPH >C10-C35 MC	EH 2D AL #1	М	2690	mg/kg	5.00	10	9.9	6.1	12	16	11	6.3
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS 2D AR	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	Ü	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	Ü	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH 2D AR #1	Ü	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH 2D AR #1	U	2690	mg/kg	2.00	13	29	8.4	6.2	11	8.0	11
Aromatic EPH >C21-C35 MC	EH 2D AR #1	U	2690	mg/kg	2.00	< 2.0	9.5	< 2.0	8.3	21	< 2.0	5.6
Aromatic EPH >C35-C40 MC	EH 2D AR #1	N	2690	mg/kg	1.00	3.9	2.4	1.6	2.4	6.0	3.2	2.6
Total Aromatic EPH >C10-C35 MC	EH 2D AR #1	U	2690	mg/kg	5.00	14	39	9.4	14	32	9.8	16
Total VPH >C5-C10	HS 2D Total	Ü	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH 2D Total #1	Ü	2690	mg/kg	10.00	24	49	16	27	48	21	23
Mineral Oil EPH	EH_CU_1D_Total	N	2670	mg/kg	10	10	22	< 10	12	16	22	< 10
Benzene		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene		M	2800	mg/kg	0.10	0.12	0.43	0.13	< 0.10	0.22	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	+	M	2800	mg/kg	0.10	< 0.10	0.52	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		M	2800	mg/kg	0.10	< 0.10	0.52	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		M	2800	mg/kg	0.10	0.81	3.4	0.80	1.1	1.6	< 0.10	0.55
Anthracene	+	M	2800	mg/kg	0.10	0.19	1.1	0.80	0.18	0.35	< 0.10	0.33
Fluoranthene	+	M	2800	mg/kg	0.10	1.2	3.6	1.1	1.6	2.3	0.50	1.6
	+	M	2800		0.10	1.1	3.1	0.95	1.3	1.9	0.45	1.4
Pyrene Renzelelenthrecene	+	M	2800	mg/kg	0.10	0.65	1.7	0.95	0.80	1.9	< 0.10	0.97
Benzo[a]anthracene	+	M	2800	mg/kg	0.10	0.65	1.7	0.57	0.80	< 0.10	< 0.10	0.97
Chrysene		M		mg/kg		0.61	2.2	0.59	1.1	1.3	< 0.10	1.5
Benzo[b]fluoranthene		IVI	2800	mg/kg	0.10	0.99	۷.۷	U.//	1.1	1.3	< 0.10	1.5

Client: IGSL			Chemtes	t Job No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693			Chemtest S	ample ID.:	1775145	1775146	1775147	1775148	1775149	1775150	1775151
Order No.:			Client Sa	mple Ref.:	BH5	BH6	BH7	TP03	TP04	TP05	TP06
			Sai	nple Type:	SOIL						
			Тор	Depth (m):	1.00	2.00	1.00	0.50	0.30	0.60	1.30
			Date	Sampled	28-Feb-2024						
			Asb	estos Lab	COVENTRY						
Determinand	HWOL Code	Accred.	SOP Un	ts LOD							
Benzo[k]fluoranthene		М	2800 mg	kg 0.10	0.36	0.68	0.23	0.37	0.40	< 0.10	0.44
Benzo[a]pyrene		М	2800 mg	kg 0.10	0.83	1.8	0.74	0.81	0.91	< 0.10	1.2
Indeno(1,2,3-c,d)Pyrene		М	2800 mg	kg 0.10	0.65	1.2	0.46	0.58	0.56	< 0.10	0.71
Dibenz(a,h)Anthracene		N	2800 mg	kg 0.10	< 0.10	0.26	< 0.10	< 0.10	< 0.10	< 0.10	0.23
Benzo[g,h,i]perylene		М	2800 mg	kg 0.10	0.59	1.2	0.47	0.57	0.62	< 0.10	0.86
Coronene		N	2800 mg	kg 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 17 PAH's Lower		N	2800 mg	kg 1.0	8.1	24	7.1	9.1	11	< 1.0	10
PCB 28		U	2815 mg	kg 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 52		U	2815 mg	kg 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 101		U	2815 mg	kg 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 118		U	2815 mg	kg 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 153		U	2815 mg	kg 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 138		U	2815 mg	kg 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 180		U	2815 mg	kg 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total PCBs (7 Congeners)		U	2815 mg	kg 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Phenols		M	2920 mg	kg 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Project. 25000-4 Dasiii view												
Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(st Sam		1775152	1775153	1775154	1775155	1775156	1775157	1775158
Order No.:			Clie	nt Samp	le Ref.:	TP07	TP08	TP09	TP09	TP10	TP10	TP11
					е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		1.30	0.40	1.00	2.10	1.30	2.10	1.20
				Date Sa		28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024
				Asbest		COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	20:02 202:	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	-	OOVENTIA	OOVENTICE	OOVENTIN	COVENTIA	OOVENTIN		OUVENTION
ACM Type	I IIII OL OCAC	U	2192	Omis	N/A	-	Fibres/Clumps	-	_	_		-
Now Type		 	2102		14// (No Asbestos	·	No Asbestos	No Asbestos	No Asbestos	-	No Asbestos
Asbestos Identification		U	2192		N/A	Detected	Chrysotile	Detected	Detected	Detected		Detected
Asbestos by Gravimetry		U	2192	%	0.001		0.018					
Total Asbestos		U	2192	%	0.001		0.018				1	
Moisture		N	2030	%	0.020	17	11	6.4	17	14	28	19
Soil Colour	1	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
	1						Stones and	Stones and	Stones and	Stones and		Stones and
Other Material		N	2040		N/A	Stones	Roots	Roots	Roots	Roots	Stones	Roots
Soil Texture		N	2040		N/A	Clay	Clay	Loam	Clay	Clay	Clay	Clay
pH (2.5:1) at 20C		N	2010		4.0	J.L.y	J.L.y	204	J.L.y	0.0,	8.4	- Ciay
Boron (Hot Water Soluble)	+	M	2120	mg/kg	0.40	1.3	0.56	< 0.40	0.53	0.52	0	2.1
Magnesium (Water Soluble)		N	2120	g/l	0.010	1.0	0.00	1 0.40	0.00	0.02	< 0.010	2.1
Sulphate (2:1 Water Soluble) as SO4		M	2120	g/l	0.010						0.020	
Total Sulphur		U	2175	%	0.010				l		0.020	
Sulphur (Elemental)		M	2180	mg/kg	1.0	1.5	2.1	< 1.0	< 1.0	1.4	0.020	1.9
Chloride (Water Soluble)		M	2220	g/l	0.010	1.5	2.1	V 1.0	V 1.0	1.4	< 0.010	1.5
Nitrate (Water Soluble)		N	2220	g/l	0.010						< 0.010	
Cyanide (Total)	+	M	2300	_	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.010	< 0.50
Sulphide (Easily Liberatable)	+	N N	2325	mg/kg	0.50	3.2	4.0	4.0	3.5	4.7	 	3.3
			2220	mg/kg		3.2	4.0	4.0	3.5	4.7	z 0 01	3.3
Ammonium (Water Soluble)		M		g/l	0.01	0.00	0.00	0.007	0.050	0.40	< 0.01	0.40
Sulphate (Total)		U	2430	%	0.010	0.23	0.28	0.067	0.056	0.16	2.222	0.10
Sulphate (Acid Soluble)		U	2430	%	0.010	22	4.4	10	10	0.1	0.038	
Arsenic		M	2455	mg/kg	0.5	26	11	10	16	21	ļ	19
Barium		M	2455	mg/kg	0.5	320	1200	83	88	140		120
Cadmium		М	2455	mg/kg		1.6	1.2	1.3	0.96	5.2		2.3
Chromium		М	2455	mg/kg	0.5	19	18	19	19	23		19
Molybdenum		М	2455	mg/kg	0.5	13	1.8	0.9	2.2	7.2		2.9
Antimony		N	2455	mg/kg	2.0	3.6	3.8	< 2.0	< 2.0	5.3		2.1
Copper		М	2455	mg/kg	0.50	78	93	17	25	44		59
Mercury		М	2455	mg/kg	0.05	0.37	0.12	0.05	0.10	0.24		0.34
Nickel		М	2455	mg/kg	0.50	43	31	30	32	47		45
Lead		М	2455	mg/kg	0.50	330	130	45	58	88		170
Selenium		М	2455	mg/kg	0.25	1.7	0.92	0.72	0.85	5.0		1.2
Zinc		М	2455	mg/kg	0.50	280	180	93	110	140		160
Chromium (Trivalent)		N	2490	mg/kg	1.0	19	18	19	19	23		19
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05

Project: 25000-4 Basin View												
Client: IGSL				mtest Jo		24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(st Sam		1775152	1775153	1775154	1775155	1775156	1775157	1775158
Order No.:			Clie	nt Samp	le Ref.:	TP07	TP08	TP09	TP09	TP10	TP10	TP11
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1.30	0.40	1.00	2.10	1.30	2.10	1.20
				Date Sa	ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024	28-Feb-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25		< 0.25
Aliphatic EPH >C10-C12 MC	EH 2D AL #1	М	2690	mg/kg	2.00	7.7	6.3	3.9	4.7	6.0		7.2
Aliphatic EPH >C12-C16 MC	EH 2D AL #1	М	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	5.9		< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	2.6	ì	< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	М	2690	mg/kg	3.00	4.3	< 3.0	< 3.0	5.8	4.8		4.8
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	10	< 10	< 10	< 10	< 10		< 10
Total Aliphatic EPH >C10-C35 MC	EH 2D AL #1	М	2690	mg/kg	5.00	12	6.3	5.8	10	19		12
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aromatic VPH >C7-C8	HS 2D AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25		< 0.25
Aromatic EPH >C10-C12 MC	EH 2D AR #1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Aromatic EPH >C12-C16 MC	EH 2D AR #1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Aromatic EPH >C16-C21 MC	EH 2D AR #1	U	2690	mg/kg	2.00	16	7.1	6.5	5.5	19		12
Aromatic EPH >C21-C35 MC	EH 2D AR #1	U	2690	mg/kg	2.00	5.4	< 2.0	< 2.0	3.6	3.0		8.4
Aromatic EPH >C35-C40 MC	EH 2D AR #1	N	2690	mg/kg	1.00	1.4	1.3	1.2	1.5	1.3		1.1
Total Aromatic EPH >C10-C35 MC	EH 2D AR #1	U	2690	mg/kg	5.00	22	8.0	6.5	9.0	22		20
Total VPH >C5-C10	HS 2D Total	U	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50
Total EPH >C10-C35 MC	EH 2D Total #1	U	2690	mg/kg	10.00	34	14	12	19	41		32
Mineral Oil EPH	EH_CU_1D_Total	N	2670	mg/kg	10	22	< 10	< 10	10	19		12
Benzene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Toluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Ethylbenzene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
m & p-Xylene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
o-Xylene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Naphthalene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	1	< 0.10
Acenaphthene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	1	< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Phenanthrene		M	2800	mg/kg	0.10	1.2	< 0.10	0.97	< 0.10	< 0.10	1	1.0
Anthracene		M	2800	mg/kg	0.10	0.28	< 0.10	0.20	< 0.10	< 0.10		0.25
Fluoranthene		M	2800	mg/kg	0.10	1.4	< 0.10	1.3	0.23	0.24	 	2.2
Pyrene		M	2800	mg/kg	0.10	1.2	< 0.10	0.98	0.17	0.27	 	1.8
Benzo[a]anthracene		M	2800	mg/kg	0.10	0.71	< 0.10	0.43	< 0.10	< 0.10	<u> </u>	1.2
Chrysene		M	2800	mg/kg	0.10	0.67	< 0.10	0.38	< 0.10	< 0.10	 	1.1
Benzo[b]fluoranthene		M	2800	mg/kg	0.10	0.88	< 0.10	0.45	< 0.10	< 0.10		1.4

Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640	24-06640
Quotation No.: Q20-21693			Chemte	st Sam	ple ID.:	1775152	1775153	1775154	1775155	1775156	1775157	1775158
Order No.:			Clie	nt Samp	le Ref.:	TP07	TP08	TP09	TP09	TP10	TP10	TP11
				Sampl	е Туре:	SOIL						
				Top De	oth (m):	1.30	0.40	1.00	2.10	1.30	2.10	1.20
				Date Sa	ampled:	28-Feb-2024						
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	0.23	< 0.10	0.18	< 0.10	< 0.10		0.41
Benzo[a]pyrene		М	2800	mg/kg	0.10	0.56	< 0.10	< 0.10	< 0.10	< 0.10		1.1
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	0.29	< 0.10	< 0.10	< 0.10	< 0.10		0.65
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	0.48	< 0.10	< 0.10	< 0.10	< 0.10		0.72
Coronene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	7.9	< 1.0	4.9	< 1.0	< 1.0		12
PCB 28		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 52		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 101		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 118		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 153		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 138		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 180		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
Total PCBs (7 Congeners)		U	2815	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10

Client: IGSL			Che	mtest Jo	ob No.:	24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1775159	1775160	1775161
Order No.:			Clie	nt Samp	le Ref.:	TP11	TP12	TP13
					е Туре:	SOIL	SOIL	SOIL
				Top Dep		2.40	1.50	0.40
				Date Sa	ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
ACM Type		U	2192		N/A	-	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
Asbestos by Gravimetry		U	2192	%	0.001			
Total Asbestos		U	2192	%	0.001			
Moisture		N	2030	%	0.020	21	19	16
Soil Colour		N	2040		N/A	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones and Roots	Stones
Soil Texture		N	2040		N/A	Clay	Clay	Clay
pH (2.5:1) at 20C		N	2010		4.0	,	,	ĺ
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	0.66	0.70	0.66
Magnesium (Water Soluble)		N	2120	g/l	0.010			
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010			
Total Sulphur		U	2175	%	0.010			
Sulphur (Elemental)		М	2180	mg/kg	1.0	1.1	< 1.0	< 1.0
Chloride (Water Soluble)		М	2220	g/l	0.010			
Nitrate (Water Soluble)		N	2220	g/l	0.010			
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	2.3	3.3	3.5
Ammonium (Water Soluble)		М	2220	g/l	0.01			
Sulphate (Total)		U	2430	%	0.010	0.048	0.27	0.15
Sulphate (Acid Soluble)		U	2430	%	0.010			
Arsenic		М	2455	mg/kg	0.5	12	21	14
Barium		М	2455	mg/kg	0.5	86	340	93
Cadmium		М	2455	mg/kg	0.10	1.7	1.5	1.7
Chromium		М	2455	mg/kg	0.5	18	24	18
Molybdenum		М	2455	mg/kg	0.5	2.4	3.2	3.4
Antimony		N	2455	mg/kg	2.0	< 2.0	5.9	2.7
Copper		М	2455	mg/kg	0.50	38	62	39
Mercury		М	2455	mg/kg	0.05	0.11	0.39	0.20
Nickel	1	М	2455	mg/kg	0.50	41	41	39
Lead	1	М	2455	mg/kg	0.50	53	430	220
Selenium	1	М	2455	mg/kg	0.25	0.82	1.4	1.3
Zinc	1	М	2455	mg/kg	0.50	100	300	130
Chromium (Trivalent)		N	2490	mg/kg	1.0	18	24	18
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05

Client: IGSL				mtest Jo		24-06640	24-06640	24-06640
Quotation No.: Q20-21693		(st Sam		1775159	1775160	1775161
Order No.:			Clie	nt Samp		TP11	TP12	TP13
					e Type:	SOIL	SOIL	SOIL
				Top Dep	oth (m):	2.40	1.50	0.40
				Date Sa	ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	4.5	6.7	6.9
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	< 1.0	4.7	6.3
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	3.00	6.9	4.7	5.1
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	5.00	11	17	20
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	7.3	9.4	2.8
Aromatic EPH >C21-C35 MC	EH 2D AR #1	U	2690	mg/kg	2.00	< 2.0	9.4	7.3
Aromatic EPH >C35-C40 MC	EH 2D AR #1	N	2690	mg/kg	1.00	1.3	9.8	1.2
Total Aromatic EPH >C10-C35 MC	EH 2D AR #1	U	2690	mg/kg	5.00	8.7	20	11
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH 2D Total #1	U	2690	mg/kg	10.00	20	37	31
Mineral Oil EPH	EH CU 1D Total	N	2670	mg/kg	10	11	17	20
Benzene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Naphthalene		М	2800	mg/kg	0.10	< 0.10	0.23	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		М	2800	mg/kg	0.10	< 0.10	2.5	< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10	2.8	< 0.10
Phenanthrene		М	2800	mg/kg	0.10	< 0.10	23	0.18
Anthracene		М	2800	mg/kg	0.10	< 0.10	2.4	< 0.10
Fluoranthene		M	2800	mg/kg	0.10	< 0.10	14	0.35
Pyrene		M	2800	mg/kg	0.10	< 0.10	11	0.27
Benzo[a]anthracene		M	2800	mg/kg	0.10	< 0.10	5.0	< 0.10
Chrysene		M	2800	mg/kg	0.10	< 0.10	4.7	< 0.10
Benzo[b]fluoranthene		M	2800		0.10	< 0.10	5.2	< 0.10

Client: IGSL			Che	mtest J	ob No.:	24-06640	24-06640	24-06640
Quotation No.: Q20-21693			Chemte	st Sam	ple ID.:	1775159	1775160	1775161
Order No.:			Clie	nt Samp			TP12	TP13
				Sampl	е Туре:	SOIL	SOIL	SOIL
				Top De	oth (m):	2.40	1.50	0.40
				Date Sa	ampled:	28-Feb-2024	28-Feb-2024	28-Feb-2024
				Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	1.8	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	4.2	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	2.0	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	0.62	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	2.4	< 0.10
Coronene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	< 1.0	82	< 1.0
PCB 28		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 52		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 101		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 118		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 153		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 138		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 180		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Total PCBs (7 Congeners)		U	2815	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775125						Limits	
Sample Ref:	BH9						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	2.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	4.8	3	5	6
Loss On Ignition	2610		M	%	6.0			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		7.7		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.064		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0044	0.044	0.5	2	25
Barium	1455		U	0.015	0.15	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0011	0.011	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0019	0.019	0.5	10	30
Nickel	1455		U	0.0006	0.0059	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0009	0.0085	0.06	0.7	5
Selenium	1455		U	0.0017	0.017	0.1	0.5	7
Zinc	1455		U	0.005	0.050	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.22	2.2	10	150	500
Sulphate	1220		U	240	2400	1000	20000	50000
Total Dissolved Solids	1020		N	310	3100	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	6.5	65	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	18						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775126						Limits	
Sample Ref:	BH10						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	0.84	3	5	6
Loss On Ignition	2610		M	%	5.2			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.3		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0050		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0078	0.078	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0042	0.042	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0060	0.060	0.5	10	30
Nickel	1455		U	0.0014	0.014	0.4	10	40
Lead	1455		U	0.0022	0.022	0.5	10	50
Antimony	1455		U	0.0019	0.019	0.06	0.7	5
Selenium	1455		U	0.0013	0.013	0.1	0.5	7
Zinc	1455		U	0.009	0.087	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.11	1.1	10	150	500
Sulphate	1220		U	16	160	1000	20000	50000
Total Dissolved Solids	1020		N	61	610	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	11	110	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	19						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1775128						Limits	
Sample Ref:	BH11						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	0.75	3	5	6
Loss On Ignition	2610		М	%	3.6			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1	-	
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.3	-	>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0080		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.0006	0.0055	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0016	0.016	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0007	0.0074	0.5	10	30
Nickel	1455		U	0.0007	0.0069	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	0.0006	0.0062	0.1	0.5	7
Zinc	1455		U	0.005	0.048	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.089	< 1.0	10	150	500
Sulphate	1220		U	1.9	19	1000	20000	50000
Total Dissolved Solids	1020		N	34	340	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	17						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1775129						Limits	
Sample Ref:	BH12						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	3.2	3	5	6
Loss On Ignition	2610		M	%	4.0			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	21	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.0		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.026		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
_				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0016	0.016	0.5	2	25
Barium	1455		U	0.033	0.33	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0026	0.026	0.5	10	70
Copper	1455		U	0.0017	0.017	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0014	0.014	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	0.0039	0.039	0.5	10	50
Antimony	1455		U	0.0018	0.018	0.06	0.7	5
Selenium	1455		U	0.0009	0.0087	0.1	0.5	7
Zinc	1455		U	0.006	0.059	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.14	1.4	10	150	500
Sulphate	1220		U	150	1500	1000	20000	50000
Total Dissolved Solids	1020		N	230	2300	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	7.3	73	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	15						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775130						Limits	
Sample Ref:	BH12						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	3.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	1.5	3	5	6
Loss On Ignition	2610		M	%	10			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.8		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.061		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0029	0.029	0.5	2	25
Barium	1455		U	0.020	0.20	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0011	0.011	0.5	10	70
Copper	1455		U	0.0013	0.013	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0062	0.062	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	0.0014	0.014	0.5	10	50
Antimony	1455		U	0.0017	0.017	0.06	0.7	5
Selenium	1455		U	0.0013	0.013	0.1	0.5	7
Zinc	1455		U	0.004	0.040	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.14	1.4	10	150	500
Sulphate	1220		U	270	2700	1000	20000	50000
Total Dissolved Solids	1020		N	330	3300	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.9	< 50	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	2.4						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775132						Limits	
Sample Ref:	BH13						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	4.0	3	5	6
Loss On Ignition	2610		М	%	5.6			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	41	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0090		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
		mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg				
Arsenic	1455		U	0.0020	0.020	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0028	0.028	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0017	0.017	0.5	10	30
Nickel	1455		U	0.0009	0.0091	0.4	10	40
Lead	1455		U	0.0017	0.017	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.009	0.085	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.12	1.2	10	150	500
Sulphate	1220		U	5.5	55	1000	20000	50000
Total Dissolved Solids	1020		N	38	380	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	8.2	82	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	16						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1775134						Limits	
Sample Ref:	TP01						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.60					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	2.3	3	5	6
Loss On Ignition	2610		M	%	3.7			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	20	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.0		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0050	-	To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0015	0.015	0.5	2	25
Barium	1455		U	0.006	0.059	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0043	0.044	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0010	0.0096	0.5	10	30
Nickel	1455		U	0.0021	0.021	0.4	10	40
Lead	1455		U	0.0013	0.013	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.011	0.11	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.12	1.2	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		N	41	410	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	11	110	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	13						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775135						Limits	
Sample Ref:	TP02						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.20					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	3.2	3	5	6
Loss On Ignition	2610		M	%	4.8			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	88	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.1		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.014		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0012	0.012	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0031	0.031	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0005	0.0052	0.5	10	30
Nickel	1455		U	0.0008	0.0078	0.4	10	40
Lead	1455		U	0.0010	0.010	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.009	0.092	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.12	1.2	10	150	500
Sulphate	1220		U	1.2	12	1000	20000	50000
Total Dissolved Solids	1020		N	38	380	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	8.6	86	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	15						

Waste Acceptance Criteria

Project: 25000-4 Basin View									
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1775136						Limits		
Sample Ref:	BH1						Stable, Non-		
Sample ID:							reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	28-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units	1				
Total Organic Carbon	2625		M	%	3.5	3	5	6	
Loss On Ignition	2610		M	%	5.7			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	1400	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.3		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.031		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
				mg/l	mg/kg	using BS EN 12457 at		_/S 10 I/kg	
Arsenic	1455		U	0.0037	0.037	0.5	2	25	
Barium	1455		U	0.009	0.088	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	0.0013	0.013	0.5	10	70	
Copper	1455		U	0.0046	0.046	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0011	0.011	0.5	10	30	
Nickel	1455		U	0.0006	0.0062	0.4	10	40	
Lead	1455		U	0.0037	0.037	0.5	10	50	
Antimony	1455		U	0.0029	0.029	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.014	0.14	4	50	200	
Chloride	1220		U	57	570	800	15000	25000	
Fluoride	1220		U	0.18	1.8	10	150	500	
Sulphate	1220		U	7.1	71	1000	20000	50000	
Total Dissolved Solids	1020		N	52	520	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	11	110	500	800	1000	

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	15						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775137						Limits	
Sample Ref:	BH1						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	2.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	2.9	3	5	6
Loss On Ignition	2610		M	%	4.8			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	110	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.0		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.016		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
				mg/l	mg/kg	mg/kg using BS EN 12457 at		
Arsenic	1455		U	0.0017	0.017	0.5	2	25
Barium	1455		U	0.036	0.36	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0014	0.014	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.014	0.14	0.5	10	30
Nickel	1455		U	0.0009	0.0092	0.4	10	40
Lead	1455		U	0.0012	0.012	0.5	10	50
Antimony	1455		U	0.0074	0.074	0.06	0.7	5
Selenium	1455		U	0.0027	0.027	0.1	0.5	7
Zinc	1455		U	0.005	0.049	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.24	2.4	10	150	500
Sulphate	1220		U	100	1000	1000	20000	50000
Total Dissolved Solids	1020		N	200	2000	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	14	140	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	16						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775139						Limits	
Sample Ref:	BH2						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		М	%	3.1	3	5	6
Loss On Ignition	2610		М	%	5.3			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH CU 1D Total	М	mg/kg	190	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		9.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.020		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455		U	0.015	0.15	0.5	2	25
Barium	1455		U	0.007	0.073	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.020	0.20	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.012	0.12	0.5	10	30
Nickel	1455		U	0.0037	0.037	0.4	10	40
Lead	1455		U	0.0056	0.056	0.5	10	50
Antimony	1455		U	0.0016	0.016	0.06	0.7	5
Selenium	1455		U	0.0024	0.024	0.1	0.5	7
Zinc	1455		U	0.011	0.11	4	50	200
Chloride	1220		U	3.0	30	800	15000	25000
Fluoride	1220		U	0.67	6.7	10	150	500
Sulphate	1220		U	24	240	1000	20000	50000
Total Dissolved Solids	1020		N	130	1300	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	30	300	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	17						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775140					Limits		
Sample Ref:	BH3						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	3.1	3	5	6
Loss On Ignition	2610		M	%	5.7			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	90	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		9.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.014		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.015	0.15	0.5	2	25
Barium	1455		U	0.007	0.067	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.017	0.17	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.011	0.11	0.5	10	30
Nickel	1455		U	0.0035	0.035	0.4	10	40
Lead	1455		U	0.0013	0.013	0.5	10	50
Antimony	1455		U	0.0015	0.016	0.06	0.7	5
Selenium	1455		U	0.0028	0.028	0.1	0.5	7
Zinc	1455		U	0.014	0.14	4	50	200
Chloride	1220		U	2.7	27	800	15000	25000
Fluoride	1220		U	0.76	7.6	10	150	500
Sulphate	1220		U	26	260	1000	20000	50000
Total Dissolved Solids	1020		N	130	1300	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	29	290	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	17						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775142						Limits	
Sample Ref:	BH3						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	3.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	1.1	3	5	6
Loss On Ignition	2610		M	%	2.0			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH CU 1D Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.8		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.035		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
_				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/k		
Arsenic	1455		U	0.0003	0.0028	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0011	0.011	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.014	0.13	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.004	0.036	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.20	2.0	10	150	500
Sulphate	1220		U	6.5	65	1000	20000	50000
Total Dissolved Solids	1020		N	59	590	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	20	200	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	10						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775143						Limits	
Sample Ref:	BH4						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		М	%	2.3	3	5	6
Loss On Ignition	2610		M	%	4.8			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH CU 1D Total	М	mg/kg	520	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.6		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.054		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
_				mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455		U	0.0042	0.042	0.5	2	25
Barium	1455		U	0.024	0.24	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0012	0.012	0.5	10	70
Copper	1455		U	0.0061	0.061	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0052	0.052	0.5	10	30
Nickel	1455		U	0.0013	0.013	0.4	10	40
Lead	1455		U	0.0062	0.062	0.5	10	50
Antimony	1455		U	0.0041	0.041	0.06	0.7	5
Selenium	1455		U	0.0008	0.0083	0.1	0.5	7
Zinc	1455		U	0.007	0.072	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.22	2.2	10	150	500
Sulphate	1220		U	14	140	1000	20000	50000
Total Dissolved Solids	1020		N	81	810	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	15	150	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	16						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775145						Limits	
Sample Ref:	BH5						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	3.2	3	5	6
Loss On Ignition	2610		M	%	4.7			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	69	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		9.7		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.024		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S 10 l/kg	
Arsenic	1455		U	0.019	0.19	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0022	0.022	0.5	10	70
Copper	1455		U	0.0048	0.048	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0083	0.083	0.5	10	30
Nickel	1455		U	0.0009	0.0088	0.4	10	40
Lead	1455		U	0.0055	0.055	0.5	10	50
Antimony	1455		U	0.0024	0.024	0.06	0.7	5
Selenium	1455		U	0.0007	0.0074	0.1	0.5	7
Zinc	1455		U	0.005	0.051	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.27	2.7	10	150	500
Sulphate	1220		U	9.4	94	1000	20000	50000
Total Dissolved Solids	1020		N	56	550	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	13	130	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	13						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775146						Limits	
Sample Ref:	BH6						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	2.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	1.3	3	5	6
Loss On Ignition	2610		M	%	4.0			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	82	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.6		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.031		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S 10 l/kg	
Arsenic	1455		U	0.0034	0.034	0.5	2	25
Barium	1455		U	0.014	0.14	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0014	0.014	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0052	0.052	0.5	10	30
Nickel	1455		U	0.0007	0.0070	0.4	10	40
Lead	1455		U	0.0037	0.038	0.5	10	50
Antimony	1455		U	0.0015	0.015	0.06	0.7	5
Selenium	1455		U	0.0014	0.014	0.1	0.5	7
Zinc	1455		U	0.007	0.071	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.11	1.1	10	150	500
Sulphate	1220		U	17	170	1000	20000	50000
Total Dissolved Solids	1020		N	57	570	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.4	94	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	17						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775147						Limits	
Sample Ref:	BH7						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	2.8	3	5	6
Loss On Ignition	2610		M	%	5.9			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH CU 1D Total	M	mg/kg	130	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.051		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
_				mg/l	mg/kg	kg using BS EN 12457 at L/S 10		3 10 l/kg
Arsenic	1455		U	0.0031	0.031	0.5	2	25
Barium	1455		U	0.006	0.058	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0027	0.027	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0029	0.029	0.5	10	30
Nickel	1455		U	0.0010	0.010	0.4	10	40
Lead	1455		U	0.0012	0.013	0.5	10	50
Antimony	1455		U	0.0012	0.012	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.004	0.044	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.10	1.0	10	150	500
Sulphate	1220		U	11	110	1000	20000	50000
Total Dissolved Solids	1020		N	57	570	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	54	540	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	14						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775148						Limits	
Sample Ref:	TP03						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	2.8	3	5	6
Loss On Ignition	2610		M	%	6.4			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	120	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.3		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.020		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	BS EN 12457 at L/S 10 I/kg	
Arsenic	1455		U	0.0025	0.025	0.5	2	25
Barium	1455		U	0.006	0.062	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0052	0.052	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0008	0.0082	0.5	10	30
Nickel	1455		U	0.0007	0.0075	0.4	10	40
Lead	1455		U	0.0015	0.015	0.5	10	50
Antimony	1455		U	0.0010	0.0095	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.21	2.1	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.19	1.9	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		N	43	420	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	15	150	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	16						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775149						Limits	
Sample Ref:	TP04						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.30					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	3.2	3	5	6
Loss On Ignition	2610		M	%	8.0			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	120	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		7.7		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.034		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0019	0.019	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0030	0.030	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0006	0.0064	0.5	10	30
Nickel	1455		U	0.0006	0.0065	0.4	10	40
Lead	1455		U	0.0006	0.0064	0.5	10	50
Antimony	1455		U	0.0005	0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.006	0.064	4	50	200
Chloride	1220		U	1.1	11	800	15000	25000
Fluoride	1220		U	0.096	< 1.0	10	150	500
Sulphate	1220		U	2.6	26	1000	20000	50000
Total Dissolved Solids	1020		N	60	600	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	8.2	82	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	20						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1775150						Limits	
Sample Ref:	TP05						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.60					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	2.2	3	5	6
Loss On Ignition	2610		М	%	3.4			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	77	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.5	-	>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.035		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0020	0.020	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0026	0.026	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0014	0.014	0.5	10	30
Nickel	1455		U	0.0007	0.0073	0.4	10	40
Lead	1455		U	0.0012	0.012	0.5	10	50
Antimony	1455		U	0.0005	0.0052	0.06	0.7	5
Selenium	1455		U	0.0007	0.0074	0.1	0.5	7
Zinc	1455		U	0.010	0.096	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.21	2.1	10	150	500
Sulphate	1220		U	1.1	11	1000	20000	50000
Total Dissolved Solids	1020		N	40	390	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	11						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775151						Limits	
Sample Ref:	TP06						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.30					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	2.0	3	5	6
Loss On Ignition	2610		M	%	4.7			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	170	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.0019	0.019	0.5	2	25
Barium	1455		U	0.005	0.051	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0015	0.015	0.5	10	70
Copper	1455		U	0.0017	0.017	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0004	0.0042	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	0.0016	0.016	0.5	10	50
Antimony	1455		U	0.0012	0.012	0.06	0.7	5
Selenium	1455		U	0.0005	0.0051	0.1	0.5	7
Zinc	1455		U	0.008	0.082	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.11	1.1	10	150	500
Sulphate	1220		U	7.7	77	1000	20000	50000
Total Dissolved Solids	1020		N	46	450	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.2	92	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	15						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775152						Limits	
Sample Ref:	TP07						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.30					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	4.9	3	5	6
Loss On Ignition	2610		M	%	7.7			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	94	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.024		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0021	0.021	0.5	2	25
Barium	1455		U	0.006	0.062	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0007	0.0068	0.5	10	70
Copper	1455		U	0.0018	0.018	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0011	0.011	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	0.0014	0.014	0.5	10	50
Antimony	1455		U	0.0006	0.0055	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.005	0.047	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.11	1.1	10	150	500
Sulphate	1220		U	2.5	25	1000	20000	50000
Total Dissolved Solids	1020		N	41	410	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	
Dissolved Organic Carbon	1610		U	8.6	86	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	14						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775153						Limits	
Sample Ref:	TP08						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.40					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	2.9	3	5	6
Loss On Ignition	2610		M	%	3.9			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	61	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.3		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.019		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/		S 10 I/kg
Arsenic	1455		U	0.0023	0.023	0.5	2	25
Barium	1455		U	0.005	0.051	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0037	0.037	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0006	0.0062	0.5	10	30
Nickel	1455		U	0.0007	0.0067	0.4	10	40
Lead	1455		U	0.0013	0.013	0.5	10	50
Antimony	1455		U	0.0010	0.010	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.007	0.065	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.13	1.3	10	150	500
Sulphate	1220		U	2.2	22	1000	20000	50000
Total Dissolved Solids	1020		N	43	430	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.1	91	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	10						

Waste Acceptance Criteria

Project: 25000-4 Basin View									
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1775154						Limits		
Sample Ref:	TP09						Stable, Non-		
Sample ID:							reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	28-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		M	%	1.8	3	5	6	
Loss On Ignition	2610		M	%	1.1			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.9		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.031		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test	
				mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0013	0.013	0.5	2	25	
Barium	1455		U	0.007	0.074	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	0.0011	0.011	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0011	0.011	0.5	10	30	
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.008	0.076	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.10	1.0	10	150	500	
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020		N	32	310	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	8.2	82	500	800	1000	

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	6.0						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775155						Limits	
Sample Ref:	TP09						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	2.10					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	2.0	3	5	6
Loss On Ignition	2610		M	%	3.8			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	95	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.5		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
		mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg			
Arsenic	1455		U	0.0018	0.018	0.5	2	25
Barium	1455		U	0.005	0.051	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0020	0.020	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0006	0.0062	0.5	10	30
Nickel	1455		U	0.0006	0.0065	0.4	10	40
Lead	1455		U	0.0007	0.0071	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.009	0.087	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.21	2.1	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		N	41	410	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	10	100	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	15						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775156						Limits	
Sample Ref:	TP10						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.30					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	1.4	3	5	6
Loss On Ignition	2610		M	%	3.2			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.026		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455		U	0.0022	0.022	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0021	0.021	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0011	0.011	0.5	10	30
Nickel	1455		U	0.0006	0.0059	0.4	10	40
Lead	1455		U	0.0008	0.0076	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.008	0.083	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.18	1.8	10	150	500
Sulphate	1220		U	3.3	33	1000	20000	50000
Total Dissolved Solids	1020		N	45	450	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	10	100	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	13						

Waste Acceptance Criteria

Project: 25000-4 Basin View									
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1775158						Limits		
Sample Ref:	TP11						Stable, Non-		
Sample ID:							reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	1.20					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	28-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		М	%	3.7	3	5	6	
Loss On Ignition	2610		M	%	8.5			10	
Total BTEX	2760		М	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	110	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.1		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.0060		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
				mg/l	mg/kg using BS EN 12457 at		S EN 12457 at L/S	L/S 10 I/kg	
Arsenic	1455		U	0.0020	0.020	0.5	2	25	
Barium	1455		U	0.005	0.053	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	0.0037	0.037	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0010	0.0095	0.5	10	30	
Nickel	1455		U	0.0007	0.0065	0.4	10	40	
Lead	1455		U	0.0009	0.0093	0.5	10	50	
Antimony	1455		U	0.0005	0.0054	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.005	0.048	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.15	1.5	10	150	500	
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020		N	49	490	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	10	100	500	800	1000	

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	16						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775159						Limits	
Sample Ref:	TP11						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	2.40					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	1.0	3	5	6
Loss On Ignition	2610		M	%	4.1			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0040		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.0004	0.0036	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0013	0.013	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0004	0.0037	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.008	0.078	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.11	1.1	10	150	500
Sulphate	1220		U	4.6	46	1000	20000	50000
Total Dissolved Solids	1020		N	39	390	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	6.0	60	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	18						

Waste Acceptance Criteria

Project: 25000-4 Basin View

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775160						Limits	
Sample Ref:	TP12						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	2.5	3	5	6
Loss On Ignition	2610		M	%	4.5			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	75	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.3		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.017		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	leaching test
				mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455		U	0.0025	0.025	0.5	2	25
Barium	1455		U	0.011	0.11	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0011	0.011	0.5	10	70
Copper	1455		U	0.0022	0.022	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0009	0.0094	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	0.0020	0.020	0.5	10	50
Antimony	1455		U	0.0012	0.012	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.008	0.077	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.14	1.4	10	150	500
Sulphate	1220		U	28	280	1000	20000	50000
Total Dissolved Solids	1020		N	77	770	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.5	95	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	16						

Waste Acceptance Criteria

Project: 25000-4 Basin View								
Chemtest Job No:	24-06640					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1775161						Limits	
Sample Ref:	TP13						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.40					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	28-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	1.5	3	5	6
Loss On Ignition	2610		M	%	4.9			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	77	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.017		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455		U	0.0023	0.023	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0025	0.025	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0021	0.021	0.5	10	30
Nickel	1455		U	0.0007	0.0066	0.4	10	40
Lead	1455		U	0.0008	0.0075	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.008	0.083	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.14	1.4	10	150	500
Sulphate	1220		U	2.8	28	1000	20000	50000
Total Dissolved Solids	1020		N	43	430	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.6	96	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	14						

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
1010	pH Value of Waters	pH at 20°C	pH Meter	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	pH at 20°C	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p- phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8- C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	· ·	
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge	

Report Information

Key				
U	UKAS accredited			
M	MCERTS and UKAS accredited			
Ν	Unaccredited			
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis			
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis			
T	This analysis has been subcontracted to an unaccredited laboratory			
I/S	Insufficient Sample			
U/S	Unsuitable Sample			
N/E	not evaluated			
<	"less than"			
>	"greater than"			
SOP	Standard operating procedure			
LOD	Limit of detection			
	Comments or interpretations are beyond the scope of LIKAS accreditation			

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water

GW - Ground Water

LE - Land Leachate

NA - Not Applicable

PL - Prepared Leachate

PW - Processed Water

Report Information

RE - Recreational Water

SA - Saline Water

SW - Surface Water

TE - Treated Effluent

TS - Treated Sewage

UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up

MC - Mathematical Clean Up

FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix 9

Exploratory Hole Location Plans

