

SOCIAL HOUSING BUNDLE 4 DEVELOPMENT AT THE STANLEY STEET DEPOT, DUBLIN 7

ENGINEERING REPORT

DUBLIN CITY COUNCIL August 2024

Job: 23006

Contents Amendment Record

2B Richview Office Park, Clonskeagh, Dublin 14 Tel: +353-1-260 2655 Fax: +353-1-260 2660 E-mail: info@MORce.ie

Title:Social Housing Bundle 4, Development at the Stanley Street Depot,
Dubin 7 / Engineering Report / Dublin City Council

- Job Number: 23006
- Prepared By: Michelle Gaughan

Signed:	Maaughan
	8
Signed:	DMán

Checked By: Douglas Weir

Approved By: Douglas Weir

Signed:_____

Revision Record

Issue No.	Date	Description	Remark	Prepared	Checked	Approved
0	09/10/2023	Information	P1	PB	ND	ND
1	25/10/2023	Information	P1	PB	ND	ND
2	07/11/2023	Information	P1	KA	PB	PB
3	26/04/2024	Information	P1	KA	ND	ND
4	03/05/2024	Information	P1	KA	ND	ND
5	20/05/2024	Information	P1	KA	ND	ND
0	19/08/2024	Planning	P3	MG	KA	DW
1	29/08/2024	Planning	P3	MG	DW	DW
2	13/09/2024	Planning	P3	MG	KA	DW

CONTENTS

Page No.

1	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Site Description	1
	1.3	Proposed Development	2
2	SUF	RFACE WATER DRAINAGE DESIGN	4
	2.1	Introduction	4
	2.2	Existing Services	5
	2.3	Proposed Services	5
	2.4	Permissible Runoff	6
	2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6	Sustainable Drainage Systems (SuDS) Compliance with the principles of the CIRIA C753 SuDS Manual Intensive Green/Blue Roofs Extensive Green Roofs Blue Roofs Permeable Paving Tree Pit	10 . 10 . 11 . 13 . 14 . 15 . 15
	2.6	Interception Storage	16
	2.7 2.7.1	Attenuation Design Groundwater Monitoring	16 . 18
	2.8 2.8.1 2.8.2 2.8.3 2.8.4	GDSDS Criterion Compliance Criterion 1 River Water Quality Protection Criterion 2 River Regime Protection Criterion 3 Site Flooding Criterion 4 River Flood Protection	19 . 19 . 19 . 20 . 20
	2.9	Enhanced Biodiversity	20
	2.10 2.10 2.10 2.10 2.10 2.10	SuDS CIRIA Pillars of Design 1 Water Quantity	21 . 21 . 21 . 21 . 21 . 21 . 21
	2.11	Maintenance and Management Plan	21
	2.12	Potential Future Expansion	22
3	FOL	JL WATER DRAINAGE DESIGN	.18
	3.1	General	18
	3.2	Existing Services	18
	3.3	Proposed Services	19
	3.4	Foul Water Demand Calculations	19

	3.4.1 3.4.2	Residential Foul Water Demand Creche Water Demand	19 20
	3.5	Potential Future Expansion	20
4	WA	TER SUPPLY	21
	4.1	General	21
	4.2	Existing & Proposed Services	21
	4.3 4.3.1 4.3.2 4.3.3	Water Demand Calculations Residential Water Demand Community Centre Water Demand Creche Water Demand	22 22 22 22 22
A	PPEN	DIX A – IRISH WATER CONFIRMATION OF FEASIBILITY	24
A	PPEN	DIX B – ATTENUATION VOLUME CALCULATIONS	25
A	PPEN	DIX C – SURFACE WATER PIPE NETWORK CALCULATIONS	26
A	PPEN	DIX D – FOUL WATER PIPE NETWORK CALCULATIONS	27
A	PPEN	DIX E – MAINTENANCE AND MANAGEMENT PLAN	28

1 INTRODUCTION

1.1 Introduction

This report is prepared on behalf of Dublin City Council to accompany a Part 8 Proposal for the construction of 167 apartments and duplex units at a site c. 1.15 ha at the former Dublin City Fire Brigade Maintenance Depot and Dublin City Council Mechanical Division, Stanley Street, Grangegorman Lower, Dublin 7.

The purpose of this document is to describe the engineering proposals associated with the new development. These proposals are indicated on the drawings prepared by Malone O'Regan which accompany the planning submission. Where reference is made to drawings and drawing numbers within this report these should be taken as meaning those drawings produced by Malone O'Regan unless specifically stated otherwise.

1.2 Site Description

The location of the proposed development is illustrated in Figure 1-1. The site is situated in the north central area of Smithfield, Dublin city centre. There is existing two storey houses with back gardens and apartments bordering the development on the northwest and northeast respectively of the site. The western boundary is bordered by a mix of two storey housing/commercial units, a school and industrial yard off Manor Street. There are apartment developments beside period industrial units to the south of the site. There are historic tracks down the old Stanley Street which are to be preserved. There are apartments on the eastern boundary of the site on the opposite side of Grangegorman Lower. The proximity of the site to natural watercourses is outlined in Figure 1-2.

Figure 1-1 – Site location

Figure 1-2 – Surrounding Watercourse (Extract from the EPA Maps)

1.3 Proposed Development

This engineering report is prepared for the construction of 167 apartments and duplex units at a site c. 1.15 ha at the former Dublin City Fire Brigade Maintenance Depot and Dublin City Council Mechanical Division, Stanley Street, Grangegorman Lower, Dublin 7.

Development at the site will consist of the following:

- The demolition and site clearance of the existing buildings, sheds, warehouses and garages.
- Retention and modification of the south and east elevation of an existing structure (facing onto Grangegorman Lower) to form part of apartment Block G at the southeast corner of the site.
- Construction of 167 no. apartment and duplex units across Blocks A-K (including frontage onto Grangegorman Lower).
 - Blocks A C consist of 71 no. apartment units (43 no. 1 bed and 28 no. 2 bed units) and ranges from 5 to 6 storeys.
 - Blocks D-G consist of 84 no. apartment units (43 no. 1 bed units, 29 no. 2 bed units and 12 no. 3 bed units) and ranges from 4 to 5 storeys.
 - Blocks H-K consist of 12 no. duplex units (6 no. 1 bed and 6 no. 3 bed units) and are 3 storeys.
- Provision of 270 long-stay and 101 short-stay bicycle parking spaces, 19 no. car parking spaces and 1 no. motorcycle parking space.
- Construction of a 277.54 sqm creche.

- Provision of 552 sqm of community, cultural and arts space located at ground floor level across Blocks B, E, F and G.
- 0.113 ha of public open space and 1350 sqm of communal open space
- Vehicular access is proposed from Grangegorman Lower and vehicular egress is proposed onto Stanley Street
- Boundary treatments, public lighting, site drainage works, internal road surfacing and footpaths, ESB meter rooms, ESB substations, stores, bin and cycle storage, plant rooms, landscaping; and
- All ancillary site services and development works above and below ground.

Figure 1-3 – Proposed Development

2 SURFACE WATER DRAINAGE DESIGN

2.1 Introduction

This chapter follows the guidelines set out in Greater Dublin Strategic Drainage Study (GDSDS) and the CIRIA 2015 SuDS Manual.

The aim of any SuDS strategy is to ensure that a new development does not negatively affect surrounding watercourse systems, existing surface water networks and groundwater systems. This SuDS strategy will achieve these aims by using a variety of SuDS measures within the site. These measures include water interception, treatment, infiltration and attenuation.

The SuDS strategy will be developed with the following steps:

- 1. The existing greenfield run-off of the development site will be calculated and used as the minimum benchmark for the SuDS design. This run-off calculation is based on the drained area of the new development. The post development run-off will not exceed the greenfield run-off.
- 2. A set of SuDS measures will be chosen based on their applicability and usage for the site.
- 3. A "FLOW" model will be created to analyse the rainfall on the site and the effectiveness of the proposed SuDS measures.
- 4. If effective, these SuDS measures will be incorporated into the proposed design.

Table 2-1 outlines the parameters adopted in the design of the surface water drainage infrastructure.

Parameter Description	Assigned Value
Surface Water Drainage Pipework Design	5 years
Return Period	(Ref IS EN 752 Table 2 for 'City centres /
	industrial / commercial areas')
Attenuation Design Return Period	100 years
Allowance for climate change	20%
	(Ref. OPW Flood Risk Management Climate
	Change Sectoral Adaptation Plan, Mid-Range
	Future Scenario)
M5-60	16.3mm (Met Eireann data)
M5-2D	58.6mm (Met Eireann data)
Ratio, r	0.28
Time of Entry	4 min
Pipe roughness, Ks	0.6mm (Ref. GDSDS Volume 2, Table 6.4)
Minimum velocity	1.0 m/s (Ref. GDSDS Volume 2, Table 6.4)

Table 2 1	Surface	Water Design	Doromotoro
Table Z-T	- Sunace	water Design	Palameters

2.2 Existing Services

An existing network of drainage runs around the perimeter of the site on one side. These underground sewers carry surface water runoff towards existing catchment areas in the north Dublin area. Due to the relative levels of the existing drainage within the road and the proposed site levels, it is possible to achieve a gravity connection to the surface water drainage pipework installed. There is a 1020X640mm brick combined sewer and a 600mm concrete sewer running parallel to the eastern boundary on Grangegorman Lower.

2.3 Proposed Services

The proposed surface water drainage system is designed to comply with the 'Greater Dublin Strategic Drainage Study (GDSDS) Regional Drainage Policies Technical Document – Volume 2, New Developments, 2005' and the 'Greater Dublin Regional Code of Practice for Drainage Works, V6.0 2005'. CIRIA Design Manuals C753, C697 and C609 have also been used to design the surface water drainage system within the site.

The proposed surface water drainage layout for the development is indicated on Malone O'Regan drawings SHB4-SSD-DR-MOR-CS-P3-130, 150 and 151. Surface water runoff from new internal road surfaces, footpaths, other areas of hardstanding and the roofs of buildings will be collected within a gravity drainage network and directed towards an attenuation storage system. The attenuation storage is sized to cater for a 1 in 100-year storm event.

The outfall from each detention basin and attenuation tank will be restricted to the applicable 'greenfield' runoff rate using a Hydrobrake flow control device.

A number of sustainable drainage systems (SuDS) are proposed in order to minimise the volume and rate of runoff from the site. Further details on these SuDS measures are provided in Section 2.5.

All surface water drainage will be designed and installed in accordance with the Greater Dublin Regional Code of Practice for Drainage Works.

The runoff coefficients used in the calculations are as outlined in the Table 2-2.

Type of Areas	CV
Landscaping (Grass / Soft)	0.20
Intensive/Extensive Green Roof	0.60
Blue Roof	0.60
Permeable Paving	0.50
Impermeable Surface (Incl. tree pits)	0.90
Standard Roof (Impermeable)	0.95

Calculations for the Surface Water Pipe Network are provided in Appendix C.

2.4 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, $QBAR_{rural}$, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation,

QBAR_{rural} = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Where:

QBAR _{rural}	Mean annual flood flow from a rural catchment in m ³ /s
Area	Area of the catchment in km ²
SAAR	Standard Average Annual Rainfall in mm.
Soil	Soil index

For catchments smaller than 50 hectares, $QBAR_{rural}$ is first calculated assuming an area of 50ha and then $QBAR_{rural}$ for the site area is calculated on a pro rata basis.

Standard Average Annual Rainfall for the site in Stanley Street was taken from the Flood Studies Report as 916mm.

An appropriate Soil Index value was determined following a review of published data and sitespecific ground investigation works.

The 1975 Flood Studies Report included a Soil Index map, a digitised version of which available at www.uksuds.com. This map indicated that the site lies within an area of Soil Type 4 (SPR Index 0.47). Soil Type 4 corresponds with clay or loamy soils with high runoff potential.

In January 2024, IGSL completed a comprehensive programme of site investigations for the site. These investigations showed that ground conditions varied across the site. Generally, the site was paved with a concrete ground slab varying in thickness from 140-350mm overlying a layer of dark grey brown sandy gravelly clay with brick, concrete rubble, seashells, pottery fragments and mortar. Ash fill, cabling, glass shards and cobbles were also present in some of the trial pits with little evidence of engineered hardcore present below the slab. This made ground varies in depth from 0.85m to at least 2m below ground level. The accumulation of made ground appears to reduce to the south and southeast of the site with firm to stiff indigenous soils present. The natural soils below the made ground layer consisted of soft brownish grey sandy gravelly clay with cobbles from 0.95m to 1.9m below ground level. This soil layer exhibited a strong hydrocarbon odour.

No natural soils were encountered in in some trial pits consisting predominantly of made ground. Underlying the above layers was a glacial till comprising of a firm to stiff grey brown to dark grey brown slightly sandy gravelly cobbly clay extending to depths of up to 5.5m below ground level. The bedrock consists of a Lucan formation limestone and shales.

A further Waste Characterisation Assessment was completed by O'Callaghan Moran & Associates in April 2024 and is included as part of this Planning package. Hazardous concentrations were encountered in 14no. of the samples. Materials removed from these can be classed as Soil and Stone containing hazardous substances (LoW Code 17 05 03). A colour-coded heatmap of the site is generated by the site engineer which can be used during

the excavation process to properly identify and segregated each water type to be removed to appropriately licensed waste facilities.

2 no. infiltration tests were conducted across the site. The results of these tests yielded infiltration rates of f=2.77 x 10^{-6} m/s and 4.74 x 10^{-6} m/s. The report prepared by IGSL concludes that the site may not be suitable for soakaway design as the soils offer only low natural infiltration.

Given the site investigation report noted the soil as sandy clay with moderate runoff potential, it is considered appropriate to adopt a Soil Index value of Type 3 (SPR Index 0.37). Soil Type 3 corresponds to very find sand, silts, clay, permeable soils with moderate runoff potential.

When this equation is applied to the proposed development, the following value for $\mathsf{QBAR}_{\mathsf{rural}}$ is obtained.

For 50ha area QBAR_{rural} = $0.00108 [0.5]^{0.89} \times [916]^{1.17} \times [0.37]^{2.17}$ = $0.197 \text{ m}^3/\text{s}$ = 197.0 l/s (for 50ha) QBAR_{rural} = Area 1 is 0.815 l/s QBAR_{rural} = Area 2 is 0.871 l/s QBAR_{rural} = Area 3 is 1.224 l/s

For the purposes of surface water attenuation design, the site is dealt with as five catchments as shown in Figure 2-1, each sub-catchment represents each of the building blocks, with individual connections from each sub-catchment into a single surface water sewer on the road. The catchment layout therefore allows for only necessary proliferation of pipelines and manholes within the road.

Catchment area 1 (highlighted in orange) serves 50% of the apartment blocks A-C and has an area of 2070.707m². Surface water from this catchment area is attenuated for in the detention basin and using the blue roof and intensive green/blue roofs.

Catchment area 2 (highlighted in yellow) serves 50% of the apartment blocks A-C and the open space and has an area of 2212.529m². Surface water from this catchment area is attenuated for using an attenuation tank, permeable paving and green space.

Catchment area 3 (highlighted in green) serves apartment blocks D-G and has an area of 3111.449m². Surface water from this catchment area is attenuated for in the attenuation tank and using the blue roof and intensive green/blue roofs.

Catchment area 4 (highlighted in blue) serves the duplexes (blocks H-K) and has an area of 1509.839m². Surface water from this catchment area is attenuated for using the extensive green roofs and permeable paving.

Catchment area 5 (highlighted in turquoise) serves the road within the site and has an area of 2285.445m². Surface water from this catchment area is attenuated for through permeable paving and gullies at locations along the road feeding back into the main drainage line.

Figure 2-1 - Surface Water Drainage Catchment Areas

A breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coefficients is provided in the below tables.

Total Area sq.m	m Type of Surface		Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha	
	Poof.	Standard - 28%	0.0	0.95	0.0	0.0	0.0		*Blocks A-C are located across area 1 and 2 at
1349.26	Apartments *	Green/ Blue Roof - 72%	971.47	0.60	582.9	641.2	769.4	769.4	a 50/50 spilt. These calulcations is for all b roof in Blocks A-C
	Permeable Paving inc. areas from hardstanding		0.0	0.50	0.0	0.0	0.0	705.1	
ha	Landson and Associate survey from							ha	
	hardstanding		0.0	0.20	0.0	0.0	0.0	0.1	
0.13	na astanung								
	Hardstanding		0.0	0.90	0.0	0.0	0.0		

Table 2-3 - Breakdown of Impermeable Areas for Area 1 and 2 Green/ Blue Roof

Table 2-4 - Breakdown	of Impermeable	Areas for Area 1

Total Area sq.m	Type of Surface		Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha	
	Roof -	Standard - 28%	194.11	0.95	184.40	202.84	243.41		*As per subcatcments 50% of the standard roof from Blocks A
2070 707	Apartments*	Green/ Blue Roof - 72%	0.00	0.60	0.00	0.00	0.00	002 70	C is considered in these calculations, see area 2 for the other 50% of the standard roof
2070.707	Permeable Paving inc. areas from hardstanding		631.83	0.50	315.92	347.51	417.01	993.70	
ha	Landarand Array ing array from							ha	
0.21	hardstanding		593.35	0.20	118.67	130.54	156.65	0.1	
	narustanung								
	Hardstanding		148.69	0.90	133.82	147.20	176.64		

Total Area sq.m	Туре	e of Surface	Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha	
	Roof -	Standard - 28%	195.51	0.95	185.73	204.30	245.16		*As per subcatcments 50% of the standard roof from
2212 520	Apartments*	Green/ Blue Roof - 72%	0.00	0.60	0.00	0.00	0.00	800 80	Blocks A-C is considered in these calculations, see area 1 for the other 50% of the standard roof
2212.329	Permeable Pa hardstanding	ving inc. areas from	643.82	0.50	321.91	354.10	424.92	633.63	
ha	Landscaped A	reas inc. areas from						ha	
0.22	hardstanding	reas inc. areas from	870.48	0.20	174.10	191.51	229.81	0.1	
	Hardstanding		0.00	0.90	0.00	0.00	0.00		

Table 2-5- Breakdown of Impermeable Areas for Area 2

Table 2-6 - Breakdown of Impermeable Areas for Area 3

Total Area sq.m	Type of Surface		Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha
	Roof	Standard - 28%	559.19	0.95	531.23	584.35	701.23	
3111 449	Apartments	Intensive Green/Blue Roof - 72%	0.00	0.60	0.00	0.00	0.00	1364 53
5111.445	Permeable Paving inc. areas from hardstanding		423.19	0.50	211.60	232.75	279.31	1504.55
ha	Landscaped Ar	easing areas from						ha
	hardstanding		494.15	0.20	98.83	108.71	130.46	0.14
0.31	narastanang	narustanung						
	Hardstanding		197.00	0.90	177.30	195.03	253.54	

Table 2-7 - Breakdown of Impermeable Areas for Area 3 Green/ Blue Roof

Total Area sq.m	Туре	e of Surface	Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha
	Roof - Duplex Units - Extensive Green Roof		0.0	0.60	0.0	0.0	0.0	
	Deef	Standard - 28%	0.0	0.95	0.0	0.0	0.0	1
1997.11	Apartments	Green/Blue Roof - 72%	1437.9	0.60	862.8	949.0	1138.8	1138.8
	Permeable Paving inc. areas from hardstanding		0.0	0.50	0.0	0.0	0.0	
ha	Landssanod Ar	ing props from						ha
	Landscaped Areas Inc. areas from		0.0	0.20	0.0	0.0	0.0	0.1
0.20	narastanung	nardstanding						
	Hardstanding		0.0	0.90	0.0	0.0	0.0	

Table 2-8 - Breakdown of Impermeable Areas for Area 4 Extensive Green Roof

Total Area sq.m	Туре	e of Surface	Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha
	Roof - Duplex Units - Extensive Green Roof		467.813	0.60	280.7	308.8	370.5	
	Poof	Standard - 28%	0.0	0.95	0.0	0.0	0.0	370.5
467.813	Apartments	Green/Blue Roof - 72%	0.0	0.60	0.0	0.0	0.0	
	Permeable Paving inc. areas from hardstanding		0.0	0.50	0.0	0.0	0.0	
ha		reas inc. areas from						ha
	Landscaped Areas Inc. areas from		0.0	0.20	0.0	0.0	0.0	0.0
0.05	narustanung	narustanung						
	Hardstanding		0.0	0.90	0.0	0.0	0.0	

Table 2-9 - Breakdo	wn of Impermeable	Areas for Area 4
---------------------	-------------------	------------------

Total Area sq.m	Тур	e of Surface	Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha
	Roof - Duplex Units - Extensive Green Roof		0.0	0.60	0.0	0.0	0.0	
	Roof - Apartments	Standard - 28%	0.0	0.95	0.0	0.0	0.0	
1509.839		Green/Blue Roof - 72%	0.0	0.60	0.0	0.0	0.0	520.2
	Permeable Paving inc. areas from hardstanding		522.3	0.50	261.2	287.3	316.0	
ha	Landscaped A	reasing areas from						ha
	hardstanding	hardstanding		0.20	85.4	94.0	103.4	0.1
0.15	narustanung							
	Hardstanding		92.6	0.90	83.3	91.7	100.8	

2.5 Sustainable Drainage Systems (SuDS)

The proposed development will be designed in accordance with the principles of Sustainable Drainage Systems (SuDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS) and will significantly reduce run-off rates and improve storm water quality discharging to the public storm water system. The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimize the impact of urbanization by replicating the run-off characteristics of the greenfield site. The criteria provide a consistent approach to addressing the increase in both rate and volume of run-off, as well as ensuring the environment is protected from any pollution from roads and buildings. These drainage design criteria are as follows:

- Criterion 1 River Water Quality Protection
- Criterion 2 River Regime Protection
- Criterion 3 Flood Risk Assessment
- Criterion 4 River Flood Protection

The requirements of SuDS are typically addressed by provision of the following:

- Interception storage
- Treatment storage (commonly addressed in interception storage)
- Attenuation storage
- Long term storage (not applicable if growth factors are not applied to Qbar when designing attenuation storage)

2.5.1 Compliance with the principles of the CIRIA C753 SuDS Manual

The C753 SuDS Manual explains that the primary function of SuDS measures is to protect watercourses from any impact due to the new development. However, SuDS can also improve the quality of life in a new development and urban spaces by making them more vibrant, visually attractive, sustainable and more resilient to change. This document explains the wider social context of SuDS and how SuDS can deliver high quality drainage while supporting urban areas to cope better with sever rainfall both in present and future.

There are four main categories of benefits that can be achieved by SuDS:

- 1. Water Quantity (mitigate flood risk & protect natural water cycle)
- 2. Water Quality (manage the quality of the runoff to prevent pollution)
- 3. Amenity (create and sustain better places for people)
- 4. Biodiversity (create and sustain better places for nature)

The table below includes a list of all current SuDS measures which would typically be considered when designing a new residential development such as that which is now proposed. This table also outlines the rationale behind the selection of SuDS measures and why other measures would not be appropriate. The runoff generated from the catchment will be attenuated in storage structures within and below ground and in the blue roof attenuation systems. The proposed attenuation systems are explained in section 2.5. A wide range of SuDS measures are proposed across the site to maximise interception and treatment.

	Toposcu Ou	
SUDS Measure	Measure Adopted	Rationale for Selecting / Not Selecting Measure
Bioretention Swales	No	Bioretention swales are not proposed in
Shallow landscaped depressions that		areas beside roads and green spaces within
serve to reduce runoff rates / volumes as		the site due to lack of space.
well as providing interception storage.		
treatment of runoff and encouraging		
hindiversity		
Tree nits	Ves	Tree nits have been specified in suitable
Attenuate surface water runoff by utilising	103	areas beside the development roads and car
voids within the root zone		parking
Croop Boofo	Voo	It is proposed to provide green reafe for flat
Green Roors	res	rests shows another buildings
		roors above apartment buildings.
and volume of runoff as well as		
encouraging biodiversity		
Blue Roots	Yes	It is proposed to provide blue roots for flat
Provide attenuation storage, reducing		roofs above apartment.
requirement for storage elsewhere on site		
Green Living Walls	No	Green walls are not considered appropriate
Planted walls which improve air quality		given the proposed residential building use.
and encourage biodiversity		
Rain Gardens	No	Rain gardens are not proposed within the
Localised depressions in the ground that		development.
collect runoff from hard surfaces and		
allow infiltration and absorption		
Rainwater harvesting	No	In the case of the proposed residential
Runoff captured from roofs is reused for		development, it is not considered viable to
non-potable purposes, thereby reducing		gather the water for grey water use.
overall runoff volume.		
Permeable paving	Yes	Permeable paving is proposed within the
Allows runoff to percolate into the subsoil,		development in footpaths and car parking
reducing overall runoff volume		spaces.
Porous asphalt	No	Porous asphalt is not considered suitable for
Allows runoff to percolate into the subsoil,		use in roads within the development as it
reducing overall runoff volume		does not comply with the Local Authority
6		roads standards.
Integrated Constructed Wetlands	No	ICWs are not considered appropriate due to
(ICWs)		prioritising infiltration measures over holding
System of shallow ponds, planted to treat		water systems above ground.
water, removing nutrients and harmful		,
impurities		
Dry Ponds	Ves	Detention Basins are considered appropriate
Depressed area of site for water	100	in the communal open spaces available
infiltration planted to treat water		in the communal open spaces available.
removing harmful impurities and provide		
attenuation		

Table 2-8	Proposed	SuDS	Features

Further details of the principal SuDS features proposed for this development are provided in the following sections.

2.5.2 Intensive Green/ Blue Roofs

As part of the proposed development, it is intended to provide intensive green/ blue roofs to the appropriate areas of Blocks A-C and Blocks D-G. Green roofs provide ecological, aesthetic and amenity benefits and intercept and retain rainfall, at source, reducing the volume of runoff

and attenuating peak flows. Details from the suppliers of green systems indicate that they will typically provide interception storage of 38 litres per square metre of roof covering.

Figure 2-2 – Proposed Green/Blue Roof on Plan

Green roofs absorb most of the rainfall that they receive during normal rainfall events and treat surface water through removal of atmospherically deposited urban pollutants. They also reduce building heating requirements (by evaporating cooling). Intensive green roofs typically have a growing medium of 200mm allowing for a wider array of planting possibilities than extensive (sedum) green roof coverings.

The green roofs will be underlaid by a storage medium so that they also perform as blue roofs, capable of attenuating rainwater. The proposed green/ blue roofs will provide initial storage of rainwater, while also reducing the rate at which rainwater from heavier rainfall events discharges to the attenuation systems.

In the 1 in 100-year storm event, when the water can no longer be held within the vegetation layer or attenuation cells it will discharge into the surface water sewer located at ground level at a controlled rate via flow restrictors. Calculations for the intensive green roofs are provided in Appendix B.

For 50ha area QBAR_{rural} = $0.00108 \ [0.5]^{0.89} \times [916]^{1.17} \times [0.37]^{2.17}$ = $0.197 \ m^3/s$ = $197.0 \ l/s$ (for 50ha)

QBAR_{rural} for the roof area = Blocks D-G is 0.786 I/s

QBAR_{rural} for the roof area = Blocks H-K (duplexes) is 0.184 I/s

Since the green/blue roofs provide their own attenuation with flow restrictor outlet on the roof, these areas will not drain towards the main attenuation tank on site. Runoff from the green/ blue roofs will connect to the surface water drainage pipework downstream from the main attenuation tank and associated Hydrobrake.

It is proposed to provide Intensive green/ blue roofs over 72% of the total roof area, which exceeds the minimum coverage requirement of 50% as outlined in the Dublin City Council Green & Blue Roof Guidelines 2021. Of the 72% Intensive green/blue roofs, 70% of these roofs are green/blue and 30% are blue with PV panels. Refer to Figure 2.2 for the location of the Intensive Green/Blue roof on the proposed site plan.

Roof structures will be designed to cater for the additional loads associated with the blue roof storage layer and the overlying green roof build-up. Details of the proposed green/ blue roof build-up are provided on Malone O'Regan drawing no. SHB4-SSD-DR-MOR-CS-P3-151, an extract from which is provided in Figure 2.3 below.

Figure 2-3 – Typical Intensive Green/ Blue Roof Section

2.5.3 Extensive Green Roofs

Extensive green roofs are proposed above 100% of the duplex units. Extensive green roofs allow low growing, low maintenance plants consisting of self-sustaining mosses, sedums, succulents, herbs or grasses over a drainage layer and waterproofing membrane. Extensive roofs are usually only accessed for maintenance. Extensive green roofs typically have a 20-150mm growing medium. Refer to Figure 2-2 for extensive green roof provision.

Flow restrictor outlets will be provided to control the rate of runoff from the roofs. The overflow from the green roof will be limited to 0.184l/s by a Hydrobrake flow control device which will control the rate of runoff from the roofs. Calculations for the Extensive Green Roof are provided in Appendix B.

Figure 2-4 – Typical Extensive Green Roof Section

2.5.4 Blue Roofs

As well as proposing an Intensive Green/ Blue Roof, it is proposed to provide Blue Roof covering 20% of the total roof area of Apartments Blocks A-C and Blocks D-G in areas of the roof where solar panelling is provided. Refer to Figure 2-2 for blue roof provision. Similar to green roofs, the blue roof outlet restricts the discharge of stormwater to a calculated and defined flow rate to significantly slow down the volume of water leaving the site. As the storm passes, water continues to discharge from the roof at a controlled rate over a set period (typically up to 48 hrs).

As detailed in the 'Green & Blue Roof Guide 2021' by Dublin City Council, "Where roofs include PV panels, the design should consider the appropriateness of the PV panels being positioned over the vegetated areas of the roof. Roof areas that are not considered for green roof should still be considered for blue roof". Blue roofs can be vegetated, however in most cases where PV panels are to be located on roofs, vegetated layers are not appropriate instead allowance for ballast layer is recommended.

Figure 2-5 – Blue Roof Section

2.5.5 Permeable Paving

It is proposed to use permeable paving to surface the private curtilage areas, parking spaces and footpaths in the development. It is anticipated that most of the rainwater will be able to percolate through the permeable paving and infiltrate into the underlying soils. However, it is proposed to provide a number of overflow outlets within the permeable paving build-up which will ensure the permeable area is not flooded during severe rainfall events. The outlet from the permeable paving areas will be raised 100-150mm above formation level to provide interception storage within the stone sub-base; this gives 30mm interception storage @ 30% voids in the gravel. These permeable surfaces, together with their associated substructures, are an efficient means of managing surface water runoff close to source – intercepting runoff, reducing the volume and frequency of runoff, and providing treatment medium. Refer to the Malone O'Regan SuDS detail drawing no. SHB4-SSD-DR-MOR-CS-P3-151 for typical permeable paving details.

Permeable paving will be provided with a perforated underdrain pipe. The pipe shall be raised above the base of the stone sub-base so that minor accumulations of runoff water can percolate through the stone sub-base. During significant rainfall events, excess water will disperse through the perforated underdrain preventing flooding at surface level. The underdrain will connect to inspection manholes which will facilitate maintenance of the drainage pipework.

Figure 2-6 – Typical Section through Permeable Paving

2.5.6 Tree Pit

It is proposed to provide a number of tree pits adjacent to car parking and footpaths where feasible within the development. Runoff from the roads and footpaths will be directed towards these tree pits. Refer to drawing no. SHB4-SSD-DR-MOR-CS-P3-150 for location of tree pits on plan. Refer to landscape architects drawing for tree pit detail. Tree pits features will provide a level of storage to attenuate the runoff flows. It is anticipated that runoff from minor rainfall events will be able to percolate directly into the soil. An overflow from the tree pits will be provided. During larger storm events, the water in the bioretention areas will be able to overflow and drain towards the attenuation system.

The bioretention areas will be planted in order to promote biodiversity. Runoff will also be treated through the adsorption of particles by vegetation or by soil, and by biological activity. Tree pits can reduce the runoff rates and volumes of surface water although the area contributing is small. They are effective in delivering interception and treatment storage.

2.6 Interception Storage

To prevent pollutants or sediments discharging into watercourses the GDSDS requires "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on 5-10mm of rainfall depth from 80% of the runoff from impermeable areas as defined in GDSDS. The interception volume attributable to each SuDS feature consists of the volume of water that can infiltrate to the ground, the quantity that evaporates into the atmosphere and the volume lost through transpiration in plants and vegetation. Additionally, there will be some loses of water due to absorption and wetting of stone and soil media.

The required interception storage and provided interception storage is provided in Appendix B.

2.7 Attenuation Design

Attenuation storage is provided on the site using a detention basin located at a green open space to the northwest of the site to cater for rainfall runoff from Blocks A-C. An attenuation tank is used to provide rainfall runoff for Blocks D-G.

The detention basin will provide a level of storage to attenuate the runoff flows and also permit settlement of coarse silts. As described in Section 2.3 above, the permeability of the underlying soils varies across the site. However, it is anticipated that runoff from minor rainfall events will be able to percolate directly into the soil. During larger storm events, the 1 in 30-year or 1 in 100-year storms for example, the runoff will be directed towards the detention basin where the water level may rise to 800mm above the base but will maintain a 300mm freeboard to the lowest FFL of any residence and to the lowest road level.

The detention basin will be planted in order to promote settlement of silt particles. Runoff will also be treated through the absorption of particles by vegetation or by soil, and by biological activity. Detention basins can reduce the volumes of surface water through evapotranspiration and filtration. They are very effective in delivering interception, treatment storage and attenuation.

The attenuation storage calculated for the detention basin and attenuation tank is sized to cater for a 1:100-year storm event. The attenuation volumes have been calculated accommodating a 20% increase in future rainfall intensities as a result of climate change allowing for 10% urban creep. The attenuation storage has been assessed using the average annual peak flow rate QBAR. Based on those calculations, the volume runoff water that will be generated during the 1 in 100-year storm event for the site and the value at which the flow control device will restrict the flow is shown in the table below.

	Calculated Storage Capacity (m ³)	1:100-year flood event Calculated (m ³)	QBARrural (I/s)
Area 1 Detention Basin	104.590	37.340	0.815
Area 2 Attenuation Tank	48.200	31.316	0.871
Area 3 Attenuation Tank	74.700	48.997	1.224

Table 2-9 – Attenuation Volumes

Figure 2-7 – Attenuation Locations

2.7.1 Groundwater Monitoring

A site investigation conducted by IGSL Ltd conducted trial and boreholes. The boreholes located within the detention basin zone were BH05 and BH06 and the borehole located closest to the attenuation tank were BH13 and BH14 as highlighted in Figure 2-.

Exploratory hole	Water Struck m bgl (m OD)	Remarks/ Stratum of Water ingress (m OD)
BH04	5.50 (7.86)	Water was noted at 5.0m bgl (8.36m OD)
BH05	4.0 (9.43)	Water was noted at 2.0m bgl (11.43m OD)
BH05	-	Water was noted at 5.0m bgl (8.56m OD)
BH13	- Water was noted at 3.0m bgl (8.70m OD)	
BH14	-	Water was noted at 3.5m bgl (8.32m OD)

Table 2-10 – Water Measurements in on-site exploratory holes (Extract from Site Investigation Report)

The ground level at the proposed detention basin is 13.100m OD and extends 1.50m bgl (11.600m OD). The ground level at the attenuation tank is approximately 12.100m – 12.30m OD and extends approximately 2m bgl. Based on the site investigation report, the groundwater levels are not within 1m of the underside of the detention basin and attenuation tank.

Figure 2-8 – Borehole locations

23006

2.8 GDSDS Criterion Compliance

2.8.1 Criterion 1 River Water Quality Protection

Run-off from natural greenfield areas contributes very little pollution and sediment to rivers and for most rainfall events direct run-off from greenfield sites to rivers does not take place as rainfall percolates into the ground. By contrast, urban run-off, when drained by pipe systems, results in run-off from virtually every rainfall event with high levels of pollution, particularly in the first phase of run-off, with little rainfall percolating to the ground. To prevent this happening, Criterion 1 requires that interception storage and/or treatment storage is provided, thereby replicating the run-off characteristics of the pre-development greenfield site.

2.8.2 Criterion 2 River Regime Protection

Attenuation storage is provided to limit the discharge rate from the site into the public network. As per the GDSGS, the required attenuation volume has been calculated for the 1-year, 30-year and 100-year return periods, identifying the critical storm for each – refer to the calculations included in Appendix B.

The 1975 Flood Studies Report included a Soil Index map, a digitised version of which available at www.uksuds.com. This map indicated that the site lies within an area of Soil Type 4 (SPR Index 0.47). Soil Type 4 corresponds with clay or loamy soils with high runoff potential.

In January 2024, IGSL completed a comprehensive programme of site investigations for the site. These investigations showed that ground conditions varied across the site. Generally, the site was paved with a concrete ground slab varying in thickness from 140-350mm overlying a layer of dark grey brown sandy gravelly clay with brick, concrete rubble, seashells, pottery fragments and mortar. Ash fill, cabling, glass shards and cobbles were also present in some of the trial pits with little evidence of engineered hardcore present below the slab. This made ground varies in depth from 0.85m to at least 2m below ground level. The accumulation of made ground appears to reduce to the south and southeast of the site with firm to stiff indigenous soils present. The natural soils below the made ground layer consisted of soft brownish grey sandy gravelly clay with cobbles from 0.95m to 1.9m below ground level. This soil layer exhibited a strong hydrocarbon odour.

2 no. infiltration tests were conducted across the site. The results of these tests yielded infiltration rates of f=2.77 x 10-6 m/s and 4.74 x 10-6 m/s. The report prepared by IGSL concludes that the site may not be suitable for soakaway design as the soils offer only low natural infiltration.

Given the site investigation report noted the soil as sandy clay with moderate runoff potential, it is considered appropriate to adopt a Soil Index value of Type 3 (SPR Index 0.37). Soil Type 3 corresponds to very find sand, silts, clay, permeable soils with moderate runoff potential.

Based on these calculations, the required attenuation storage for Area 1 (detention basin) is 37.340m³ with a hydrobrake which restricts the flow to 0.815ls/. The required attenuation storage for Area 2 (attenuation tank) is 31.316m³ with a hydrobrake which restricts the flow to 0.871l/s and for Area 3 (attenuation tank) is 48.997m³ with a hydrobrake which restricts the flow to 1.224l/s.

2.8.3 Criterion 3 Site Flooding

The GDSDS requires that no flooding should occur on site for storms up to and including the 1 in 30-year event. The pipe network and the attenuation storage volumes should, therefore, be checked for such storms to ensure that no site flooding occurs although partial surcharging of the system is allowed if it does not threaten to flood.

For the 1 in 100-year event, the pipe network can fully surcharge and cause the site flooding, but the top water level due to any such flooding must be at least 500mm below any vulnerable internal floor levels, and the flood waters should be contained within the site. In addition, the top water level in any attenuation device during the 100-year storm must be at least 500mm below any vulnerable internal floor levels.

Surface water drains have been sized to ensure the following:

- The system does not surcharge for the 2-year event.
- The system surcharges but does not flood for the 30-year event,
- The system surcharges but does not flood for the 100-year event.
- Detailed modelling of the surface water sewer network has been carried out using the Causeway Flow software to confirm the above criteria is adequately met. The outputs of the Causeway flow report are included in Appendix C for Surface Water calculations and Appendix D for Foul Water calculations.

2.8.4 Criterion 4 River Flood Protection

The long-term storage volume is a comparison of pre- and post- development runoff volumes. The objective is to limit the runoff discharged after development to the same as that which occurred prior to the development.

Of the three methods described in the GDSDS for establishing River Flood Protection by comparison of the pre- and post- development runoff volumes, (Criteria 4.1, 4.2 and 4.3 respectively), Criteria 4.3 is selected for use as the most practical criteria at this stage in the design.

The Criteria 4.3 approach is for all runoff to be limited to either QBAR or to 2l/s/ha, whichever is greater. As noted in Section 2.4, in this instance, the QBAR is greater than 2l/s/ha and has been adopted as the limiting discharge rate.

The proposed drainage system includes a flow control device to ensure that the discharge rate is limited to the greenfield equivalent and ample attenuation is provided for the 1 in 100-year flood event, accounting for 20% increase due to climate change.

2.9 Enhanced Biodiversity

Bioretention areas will be included as part of the proposed development. Biodiversity has been carefully considered when determining both the location and the detailed design of these elements. The proposed bioretention area offers the opportunity to create a planted vegetation zone for plants and animals which will encourage biodiversity on the site.

2.10 SuDS CIRIA Pillars of Design

2.10.1 Water Quantity

The "Water Quantity" design objective is to ensure that the surface water runoff from a developed site does not have a detrimental impact on people, property, or the environment, it is important to control:

- How fast the runoff is discharged from the site (i.e., the peak runoff rate) and
- How much runoff is discharged from the site (i.e., the runoff volume)

2.10.2 Water Quality

The "Water Quality" design objective seeks to ensure the surface water runoff from the site does not compromise the groundwater or surrounding water courses relating to the site.

2.10.3 Amenity

The "Amenity" design objective aims to deliver attractive, pleasant, useful and above all liveable urban environments. SuDS measures should be designed to replicate the existing natural environment and blend in with the urban development.

MOR have worked closely with the landscaping architect throughout the SuDS strategy design process to ensure that the measures which have been suggested and incorporated have a high sense of public use. Throughout the site, there are green/blue roofs and tree pits.

2.10.4 Biodiversity

The encouragement of biodiverse environments within urban environments is incredibly important. The SuDS measures must not only replicate the pre-development surface water runoff systems and treatment for rainfall, but they should also aim to replicate the existing habitats from the pre-development stage.

By incorporating large, landscaped areas, green/blue roofs throughout the site and the bioretention areas, biodiversity on site is promoted.

2.10.5 SuDS Conclusion

This section of the report has comprehensively discussed the various SuDS measures which can be applied to the site and then selected the applicable systems, based on the site layout. A wide range of measures have been employed.

Finally, the chosen SuDS measures have been analysed for various rainfall scenarios to ensure that all the SuDS design criteria are met an extensive range of SuDS measures are proposed with extensive coverage of the developed area of the site. These measures will be effective in treating rainfall on the site to meet GDSDS and CIRIA.

2.11 Maintenance and Management Plan

Refer to appendix E for details of maintenance requirements for individual SuDS drainage measures on the site.

2.12 Potential Future Expansion

No future expansion has been considered for the proposed drainage networks for the development.

3 FOUL WATER DRAINAGE DESIGN

3.1 General

The foul water drainage infrastructure has been designed in accordance with Irish Water Technical Standard for Wastewater Gravity Sewers (Document Number: IW-TEC-800-01) and the Irish Water Code of Practice for Wastewater Infrastructure (Document Number: IW-CDS-5030-03).

On 13th December 2023, a Pre-Connection Enquiry Form was submitted to Irish Water in respect of this development. Irish Water provided a Confirmation of Feasibility letter which confirms that, subject to a valid connection agreement being put in place, the proposed connection to the public sewer network can be facilitated. The letter further notes that Irish Water have reviewed the wastewater characteristics and hydraulic discharge load and determined that no upgrades are required to the Irish Water network or municipal wastewater treatment plant.

A Copy of the Irish Water Confirmation of Feasibility Letter is provided in Appendix A.

Table 3-1 outlines the parameters adopted in the design of the foul and process water drainage infrastructure.

Parameter Description	Assigned Value
Hydraulic Loading (Foul associated with domestic)	150 litres / person / day
Pipe Friction	1.5 mm
Minimum Velocity	0.7 m/s
Maximum Velocity	3.0 m/s
Peaking Factor (for domestic foul flows only)	6.0

Table 3-1 - Foul Water Design Parameters

Hydraulic loading for the foul drainage i.e. domestic foul flows from toilets, sinks etc. have been calculated in accordance with the Irish Water Code of Practice for Wastewater Infrastructure which gives a flow rate of 150 litres per person per day for domestic dwellings.

Calculations for the foul and process water pipe networks are provided in Appendix D.

3.2 Existing Services

An existing network of drainage runs around the perimeter of the site on one side. These underground sewers carry foul water towards existing treatment areas in the north Dublin area. Due to the relative levels of the existing drainage within the road and the proposed site levels, it is possible to achieve a gravity connection to the foul water drainage pipework installed. There is a 1020X640mm brick combined sewer running parallel to the eastern boundary on Grangegorman Lower.

3.3 Proposed Services

The proposed foul water drainage system is designed to comply with the 'Greater Dublin Strategic Drainage Study (GDSDS) Regional Drainage Policies Technical Document – Volume 2, New Developments, 2005' and the 'Greater Dublin Regional Code of Practice for Drainage Works, V6.0 2005'.

The proposed foul water drainage layout for the development is indicated on Malone O'Regan drawings SHB4-SSD-DR-MOR-CS-P3-130. Foul water from new housing units will be collected within a gravity drainage network and directed towards the existing public sewer system.

Calculations for the foul and process water pipe networks are provided in Appendix D.

3.4 Foul Water Demand Calculations

3.4.1 Residential Foul Water Demand

In accordance with the Irish Water Code of Practice for Wastewater Infrastructure works which carry domestic wastewater shall be designed to carry a wastewater volume of between 6 times the dry weather flow.

Dry weather flow (DWF) should be taken as 446 litres per dwelling.

DWF = 167 units x 446 l/dwelling = 74,482 l/day = 0.862 l/sec

Peak discharge = 6 x DWF = 5.172 l/sec

3.4.2 Community Centre Water Demand

There is provision of 552m² of community, cultural and arts space within the development.

The average and peak water demand rates were calculated in accordance with the Irish Water Code of Practice for Water Infrastructure guidelines which assumes a loading rater of 40 l/person/day for a Local Community Sports Club.

Total persons = 276 people (Assumed 1person per 2m2 of floor area)

Average water demand = 40litres/person/day

Total daily discharge = 276 people x 40litres/person/day = 11,040 litres/day

Average Hour Demand = 11,040 litres/day / (24hr x 60min x 60sec)

= 0.128 l/s

In accordance with Table 2.7 Commercial Peaking Factors, the peaking factor applied to commercial wastewater flow for an area of 0 - 5.5ha is $4.5 \times DWF$.

Peak discharge = 4.5 x DWF = 0.575 I/s

3.4.2 Creche Water Demand

Consideration was given to the planned development of a 277.54m² creche. The table below is a schedule of accommodation to the proposed creche.

Age of children	No. of adults	No. of children	Floor area per child	Area	No. of adults	No. of children		
0-1 year	1	3	3.5 sq metres	36	4	10		
1-2 years	1	5	2.8 sq. metres	37	3	13		
2-3 years	1	6	2.35 sq. metres	30	3	13		
3-6 years	1	8	2.3 sq. metres	30	2	13		
	Total							

Table 3-3-2 -	Creche	Desian	Parameters
	0,00,10	Doolgii	i urumotoro

The average and peak water demand rates were calculated in accordance with the Irish Water Code of Practice for Water Infrastructure guidelines which assumes a loading rate of 90 litres per person per day for non-residential school with canteen cooking on site.

Total persons = 49 children + 12 staff = 61 people

Average water demand = 90litres/person/day

Total daily discharge = 61 people x 90litres/person/day = 5490 litres/day

Average Hour Demand = 5400 litres/day / (24hr x 60min x 60sec)

= 0.064 l/s

In accordance with Table 2.7 Commercial Peaking Factors, the peaking factor applied to commercial wastewater flow for an area of 0 - 5.5ha is $4.5 \times DWF$.

Peak discharge = 4.5 x DWF = 0.286 l/s

Average and peak discharge rates for the proposed development is summarised in the Table below.

Development Description	Average	Peak
	Demand (I/s)	Demand (I/s)
Proposed development of residential units	0.862	5.172
Community Centre/ Retail Commercial	0.128	0.575
Creche	0.064	0.286
Total	1.054	6.033

Table 3-2 – Average and Peak Foul Water Demands

3.5 Potential Future Expansion

No future expansion has been considered for the proposed drainage networks for the development.

4 WATER SUPPLY

4.1 General

The Proposed Development will use mains water. The proposed water supply infrastructure has been designed in accordance with the Irish Water Code of Practice for Water Infrastructure (Document Number: IW-CDS-5020-03).

On 13th December 2023, a Pre-Connection Enquiry Form was submitted to Irish Water in respect of this development. Irish Water provided a Confirmation of Feasibility (CoF) letter which confirms that, subject to a valid connection agreement being put in place, the proposed connection to the public water supply network can be facilitated.

A Copy of the Irish Water Confirmation of Feasibility Letter is provided in Appendix A.

Figure 4-1 - Extract from Irish Water maps

4.2 Existing & Proposed Services

There are separate 75mm and 150mm watermains running parallel to the eastern boundary on Grangegorman Lower. There is a 100mm watermain coming in off Stanley Street decreasing to a 50mm main when entering the site and terminating in the southwest corner.

The proposed watermain layout is indicated on drawing SHB4-SSD-DR-MOR-CS-P3-140 which accompanies this planning application.

4.3 Water Demand Calculations

4.3.1 Residential Water Demand

The average and peak water demand rates were calculated in accordance with the Irish Water Code of Practice for Water Infrastructure guidelines which assumes a loading rate of 150 litres per person per day and an occupancy rate of 2.7 persons per dwelling.

The average day/ peak week demand is taken as 1.25 times the average daily domestic demand. The peak demand is taken to be 5 times the average day/ peak week demand.

Total Daily Water Demand = 167 units x 2.7 persons x 150 litres per day per person = 67,635 litres/day

Average Hour Demand = 67,635 litres/day / (24hr x 60min x 60sec) = 0.783 litres/sec

Average Day / Peak Week Demand = 0.783 litres/sec x 1.25 = **0.979 litres/sec**

Peak Demand = 5 x 0.979 litres/sec = 4.893 litres/sec

4.3.2 Community Centre Water Demand

There is provision of 552m² of community, cultural and arts space located within the development.

Total persons = 276 people (Assumed 1person per 2m2 of floor area)

Average water demand = 40litres/person/day

Total daily discharge = 276 people x 40litres/person/day = 11,040 litres/day = 0.128 l/s

Average Day Peak Week Demand = 1.25 x 0.128 = 0.160 litres/sec

Peak Demand = 5 x 0.160 = 0.800 litres/sec

4.3.3 Creche Water Demand

Consideration was given to the planned development of a 277.54m² creche. The table below is a schedule of accommodation to the proposed creche.

Age of children	No. of adults	No. of children	Floor area per child	Area	No. of adults	No. of children
0-1 year	1	3	3.5 sq metres	36	4	10
1-2 years	1	5	2.8 sq. metres	37	3	13
2-3 years	1	6	2.35 sq. metres	30	3	13
3-6 years	1	8	2.3 sq. metres	30	2	13
Total					12	49

Table 4-1 - Creche Design Parameters

The average and peak water demand rates were calculated in accordance with the Irish Water Code of Practice for Water Infrastructure guidelines which assumes a loading rate of 90 litres per person per day for non-residential school with canteen cooking on site.

Total persons = 49 children + 12 staff = 61 people

Average water demand = 90litres/person/day

Total daily discharge = 61 people x 90litres/person/day = 5490 litres/day = 0.064 litres/sec

Average Day Peak Week Demand = 0.064 x 1.25 = 0.080 litres/sec

Peak Demand = 5 x 0.080l/s = 0.400 litres/sec

Average and peak discharge rates for all existing and proposed developments are summarised in the Table 4-2.

Development Description	Average Demand (I/s)	Peak Demand (I/s)
Proposed development of residential units	0.979	4.893
Community Centre/ Retail Commercial	0.160	0.800
Creche	0.080	0.400
Total	1.219	6.093

Table 4-2 - Average and Peak Foul Discharge Rates for All Developments

APPENDIX A – IRISH WATER CONFIRMATION OF FEASIBILITY

CONFIRMATION OF FEASIBILITY

Ray O'Connor

Malone O'Regan 2B Richview Office Park Clonskeagh Dublin 14 D14 XT57 **Uisce Éireann** Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

19 January 2024

Our Ref: CDS23009292 Pre-Connection Enquiry New Apartments at Stanley Street, Stanley Street, Dublin 7, Dublin

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Éireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Multi/Mixed Use Development of 176 unit(s) at New Apartments at Stanley Street, Stanley Street, Dublin 7, Dublin, (the **Development)**.

Based upon the details provided we can advise the following regarding connecting to the networks;

•	Water Connection	-	Feasible without infrastructure upgrade by Irish Water
_	Westewater Connection		Ecosible without infractructure upgrade by

 Wastewater Connection - Feasible without infrastructure upgrade by Irish Water

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application <u>and be granted and sign</u> a connection agreement with Uisce Éireann.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a design activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

Development, a completed connection application should be submitted. The connection application is available at <u>www.water.ie/connections/get-connected/</u>

Where can you find more information?

• Section A - What is important to know?

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

Dermot Phelan Connections Delivery Manager

Section A - What is important to know?

What is important to know?	Why is this important?		
Do you need a contract to connect?	 Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s). 		
	 Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Uisce Éireann. 		
When should I submit a Connection Application?	 A connection application should only be submitted after planning permission has been granted. 		
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>		
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*. 		
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works		
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.		
	What to do? - Contact the relevant Local Fire Authority		
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.		
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges. 		
Where do I find details of Uisce Éireann's network(s)?	Requests for maps showing Uisce Éireann's network(s) can be submitted to: <u>datarequests@water.ie</u>		
What are the design requirements for the connection(s)?	 The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Uisce Éireann</i> <i>Connections and Developer Services Standard Details</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u> 		
---	---		
Trade Effluent Licensing	 Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended). 		
	 More information and an application form for a Trade Effluent License can be found at the following link: <u>https://www.water.ie/business/trade-effluent/about/</u> 		
	**trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)		

APPENDIX B – ATTENUATION VOLUME CALCULATIONS

Job Title	B4 07 Stanley Street - Area 1 and 2 Blue Roof	Job no.	23006
By:	Kezia Adanza	Checked by:	DW
Date	12/09/2024	Rev number	1

Part 1 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, QBARural, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation:

QBARrural = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Rainfall Data]			
M5-60 (1 hour - 5 years) mm	16.3				
M5-2D (2 days - 5 years) mm	58.6				
Ratio "r" (M5-60/ M5-2D)	0.28				
SAAR mm	916	Soil Type 3 -	Based on Site Investigation - Sandy clay, moderate runoff potential, 2no soakaway tests =		
Soil/ SPR mm	0.37	37 2.77E -06m/s and 4.74E -06m/s			
		_			
For 50 Ha Area ~ QBARrural =	0.197	m³/s			
QBARrural =	3.935	l/s/ha	Discharge should be limited to QBAR or 2 l/s/ha whichever is		
For 0.13 Ha Area ~ QBARrural =	0.531	l/s	greater.		

Part 2 Impermeable Area

Breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coeifficients is provided in the table below

Total Area sq.m	Туре	e of Surface	Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha	
	Deef	Standard - 28%	0.0	0.95	0.0	0.0	0.0		*Blocks A-C are located across ar
1349 26	Apartments *	Green/ Blue Roof - 72%	971.47	0.60	582.9	641.2	769.4	769.4	a 50/50 spilt. These calulcations i roof in Blocks A-C
1010120	Permeable Paving inc. areas from hardstanding		0.0	0.50	0.0	0.0	0.0	70511	
ha	Landscaped Areas inc. areas from hardstanding							ha	
			0.0	0.20	0.0	0.0	0.0	0.1	
0.13				0.00					
	Hardstanding		0.0	0.90	0.0	0.0	0.0		

ea 1 and 2 at is for all blue

These calculations are based on "Engineering Hydrology" by E.M.Wilson (4th Edition) Ratio R (%) - Refer to Table 2.9 of "Engineering Hydrology M10/M100 - Refer to Table 2.7 of "Engineering Hydrology

Attenuation Volume Required Part 3

1 in 10 Years	in 10 Years								
Rainfall									
Duration (D)	Ratio r (%)	M5 (mm)	M10 (mm)	Area	мт	Inflow "I"	Outflow "O"	Capacity Required	
							(QBARrural/1000)*		
	Table 2.9	(M5-2D*Ratio)/100	Table 2.7		M5*M10	MT* Impermeable Area	60	"I"-"O" ="S"	
1 min	3.00	1.76	1.15	1	2.022	1.556	0.031856598	1.524	
2min	5.00	2.93	1.15	1	3.370	2.593	0.063713196	2.529	
5 min	9.00	5.27	1.16	1	6.118	4.707	0.15928299	4.548	
10 min	12.90	7.56	1.17	1	8.844	6.805	0.318565981	6.486	
15 min	15.50	9.08	1.18	1	10.718	8.246	0.477848971	7.769	
30 min	20.70	12.13	1.18	1	14.314	11.013	0.955697943	10.057	
60 min	27.00	15.82	1.18	1	18.670	14.365	1.911395885	12.453	
2 hour	35.00	20.51	1.18	1	24.202	18.621	3.82279177	14.798	
4 hour	44.00	25.78	1.17	1	30.167	23.211	7.64558354	15.565	
6 hour	51.00	29.89	1.17	1	34.967	26.903	11.46837531	15.435	
12 hour	65.00	38.09	1.16	1	44.184	33.996	22.93675062	11.059	
24 hour	83.00	48.64	1.15	1	55.934	43.036	45.87350124	-2.838	
48 hour	106.00	62.12	1.14	1	70.812	54.483	91.74700248	-37.264	
Size of Attenu	ation for 1 in	10 year flood event	: m ³					15.565	

Size of Attenuation for 1 in 10 year flood event m³

1 in 30 Years								
Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M30 (mm)	Area	мт	Inflow "I"	Outflow "O"	Capacity Required
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M30	MT* Impermeable Area	(QBARrural/1000)* 60	"I"-"0" ="S"
1 min	3.00	1.76	1.42	1	2.496	1.921	0.031856598	1.889
2min	5.00	2.93	1.43	1	4.190	3.224	0.063713196	3.160
5 min	9.00	5.27	1.48	1	7.806	6.006	0.15928299	5.846
10 min	12.90	7.56	1.50	1	11.339	8.724	0.318565981	8.406
15 min	15.50	9.08	1.54	1	13.988	10.762	0.477848971	10.284
30 min	20.70	12.13	1.54	1	18.681	14.373	0.955697943	13.417
60 min	27.00	15.82	1.54	1	24.366	18.747	1.911395885	16.836
2 hour	35.00	20.51	1.52	1	31.175	23.986	3.82279177	20.163
4 hour	44.00	25.78	1.50	1	38.676	29.757	7.64558354	22.112
6 hour	51.00	29.89	1.48	1	44.231	34.032	11.46837531	22.563
12 hour	65.00	38.09	1.45	1	55.231	42.494	22.93675062	19.558
24 hour	83.00	48.64	1.41	1	68.580	52.765	45.87350124	6.892
48 hour	106.00	62.12	1.39	1	86.341	66.431	91.74700248	-25.316

Size of Attenuation for 1 in 30 year flood event m³

22.563

Rainfall								
Duration (D)	Ratio r (%)	M5 (mm)	M100 (mm)	Area	мт	Inflow "I"	Outflow "O"	Capacity Required
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M100	MT* Impermeable Area	(QBARrural/1000)* 60	"l"-"0" ="S"
1 min	3.00	1.76	1.74	1	3.059	2.354	0.031856598	2.322
2min	5.00	2.93	1.75	1	5.128	3.945	0.063713196	3.881
5 min	9.00	5.27	1.86	1	9.810	7.548	0.15928299	7.388
10 min	12.90	7.56	1.90	1	14.363	11.051	0.318565981	10.732
15 min	15.50	9.08	1.95	1	17.712	13.628	0.477848971	13.150
30 min	20.70	12.13	1.97	1	23.896	18.386	0.955697943	17.430
60 min	27.00	15.82	1.98	1	31.328	24.103	1.911395885	22.192
2 hour	35.00	20.51	1.93	1	39.584	30.456	3.82279177	26.633
4 hour	44.00	25.78	1.89	1	48.732	37.494	7.64558354	29.849
6 hour	51.00	29.89	1.85	1	55.289	42.540	11.46837531	31.071
12 hour	65.00	38.09	1.77	1	67.419	51.873	22.93675062	28.936
24 hour	83.00	48.64	1.72	1	83.657	64.366	45.87350124	18.493
48 hour	106.00	62.12	1.67	1	103.734	79.813	91.74700248	-11.934
Size of Attenu	ation for 1 in	100 year flood ever	nt m³					31.071

Part 4 Interception Storage

To prevent pollitant or sediments discharging into water courses the GDSDS required "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on the 5-10mm of rainfall depth from 80% of the runoff from impermeable areas. The interception volume attributable to each of the SuDS features consists of the volyme of water that can infiltrate to the ground, the quanity that evaporates into the atmosphere and the volyme lost through transpiration in plants and vegitation. Additionally, there will be some loses of water due to absorption and westing of stone and soil media.

1396.5 m

0.03 l/m²

41.89 m³

Required Interception Storage Overall Impermeable area is	769.4 m² includin	g 10% for urban creep
Therefore, the total interception storage required is d climate change	overall impermeable area x 80% x 0.005	5 x 1.2 for 3.69 m ³
Interception Storage Provided	*Only fill in SuDS on y	our site
	Aroa	

Green Roof A 'Bauder Sedume' or equivalent design to retain 30 I/m²
of rainwater will be used on roof level

Green Roof A 'Bauder Sedume' or equivalent design to retain 30 I/m²
Interception Store 30 I/m²
Storage Volume

Total interception volume provided for the overall site which exceeds the required volume calculated of

41.89 m³ 3.69 m³

Job Title	B4 07 Stanley Street - Area 1 (Detention Basin)	Job no.	23006
By:	Kezia Adanza	Checked by:	DW
Date	12/09/2024	Rev number	1

Part 1 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, QBARural, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation:

QBARrural = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Rainfall Data		1				
M5-60 (1 hour - 5 years) mm	16.3					
M5-2D (2 days - 5 years) mm	58.6					
Ratio "r" (M5-60/ M5-2D)	0.28					
SAAR mm	916	Soil Type 3 - Based on Site Investigation - Sandy clay, moderate runoff potential, 2no soakaway				
Soil/ SPR mm	0.37	7 tests = 2.77E -06m/s and 4.74E -06m/s				
			_			
For 50 Ha Area ~ QBARrural =	0.197	m³/s				
QBARrural =	3.935	l/s/ha	Discharge should be limited to QBAR or 2 I/s/ha whichever is			
For 0.21 Ha Area ~ QBARrural =	0.815	I/s	greater.			

Part 2 Impermeable Area

Breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coefficients is provided in the table below

Total Area sq.m	Type of Surface		Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha
	Boof -	Standard - 28%	194.11	0.95	184.40	202.84	243.41	
2070 707	Apartments*	Green/ Blue Roof - 72%	0.00	0.60	0.00	0.00	0.00	993 70
2070.707 Permi hards	Permeable Pav hardstanding	Permeable Paving inc. areas from hardstanding		0.50	315.92	347.51	417.01	333.70
ha		one inc. proper from						ha
	Landscaped Areas Inc. areas from		593.35	0.20	118.67	130.54	156.65	0.1
0.21	narustanung							
	Hardstanding		148.69	0.90	133.82	147.20	176.64	

As per subcatcments 50% of the standard roof from Blocks Ais considered in these calculations, see area 2 for the other 0% of the standard roof

These calculations are based on "Engineering Hydrology" by E.M.Wilson (4th Edition) Ratio R (%) - Refer to Table 2.9 of "Engineering Hydrology M10/M100 - Refer to Table 2.7 of "Engineering Hydrology

Part 3	Attenuation Volume Required	

1 in 10 Years								
Rainfall								
Duration (D)	Ratio r (%)	M5 (mm)	M10 (mm)	Area	MT	Inflow "I"	Outflow "O"	Capacity Required
						MT* Impermeable	(QBARrural/1000	
	Table 2.9	(M5-2D*Ratio)/100	Table 2.7		M5*M10	Area)*60	"I"-"O" ="S"
1 min	3.00	1.76	1.15	1	2.022	2.009	0.048890266	1.960
2min	5.00	2.93	1.15	1	3.370	3.348	0.097780533	3.251
5 min	9.00	5.27	1.16	1	6.118	6.079	0.244451331	5.835
10 min	12.90	7.56	1.17	1	8.844	8.789	0.488902663	8.300
15 min	15.50	9.08	1.18	1	10.718	10.650	0.733353994	9.917
30 min	20.70	12.13	1.18	1	14.314	14.224	1.466707988	12.757
60 min	27.00	15.82	1.18	1	18.670	18.552	2.933415975	15.619
2 hour	35.00	20.51	1.18	1	24.202	24.049	5.866831951	18.183
4 hour	44.00	25.78	1.17	1	30.167	29.977	11.7336639	18.244
6 hour	51.00	29.89	1.17	1	34.967	34.746	17.60049585	17.146
12 hour	65.00	38.09	1.16	1	44.184	43.906	35.2009917	8.705
24 hour	83.00	48.64	1.15	1	55.934	55.582	70.40198341	-14.820
48 hour	106.00	62.12	1.14	1	70.812	70.366	140.8039668	-70.438
Size of Attenu	uation for 1 in	10 year flood ever	nt m ³					18.244

Size of Attenuation for 1 in 10 year flood event m³

1 in 30 Years								
Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M30 (mm)	Area	мт	Inflow "I"	Outflow "O"	Capacity Required
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M30	MT* Impermeable Area	(QBARrural/1000)*60	"I"-"O" ="S"
1 min	3.00	1.76	1.42	1	2.496	2.481	0.048890266	2.432
2min	5.00	2.93	1.43	1	4.190	4.164	0.097780533	4.066
5 min	9.00	5.27	1.48	1	7.806	7.756	0.244451331	7.512
10 min	12.90	7.56	1.50	1	11.339	11.268	0.488902663	10.779
15 min	15.50	9.08	1.54	1	13.988	13.900	0.733353994	13.166
30 min	20.70	12.13	1.54	1	18.681	18.563	1.466707988	17.096
60 min	27.00	15.82	1.54	1	24.366	24.212	2.933415975	21.279
2 hour	35.00	20.51	1.52	1	31.175	30.979	5.866831951	25.112
4 hour	44.00	25.78	1.50	1	38.676	38.432	11.7336639	26.699
6 hour	51.00	29.89	1.48	1	44.231	43.953	17.60049585	26.352
12 hour	65.00	38.09	1.45	1	55.231	54.883	35.2009917	19.682
24 hour	83.00	48.64	1.41	1	68.580	68.148	70.40198341	-2.254
48 hour	106.00	62.12	1.39	1	86.341	85.798	140.8039668	-55.006

Size of Attenuation for 1 in 30 year flood event m³

26.699

Rainfall								
Duration (D)	Ratio r (%)	M5 (mm)	M100 (mm)	Area	MT	Inflow "I"	Outflow "O"	Capacity Required
						MT* Impermeable	(QBARrural/1000	
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M100	Area)*60	"I"-"0" ="S"
1 min	3.00	1.76	1.74	1	3.059	3.040	0.048890266	2.991
2min	5.00	2.93	1.75	1	5.128	5.095	0.097780533	4.997
5 min	9.00	5.27	1.86	1	9.810	9.748	0.244451331	9.503
10 min	12.90	7.56	1.90	1	14.363	14.272	0.488902663	13.784
15 min	15.50	9.08	1.95	1	17.712	17.600	0.733353994	16.867
30 min	20.70	12.13	1.97	1	23.896	23.746	1.466707988	22.279
60 min	27.00	15.82	1.98	1	31.328	31.130	2.933415975	28.197
2 hour	35.00	20.51	1.93	1	39.584	39.335	5.866831951	33.468
4 hour	44.00	25.78	1.89	1	48.732	48.425	11.7336639	36.691
6 hour	51.00	29.89	1.85	1	55.289	54.941	17.60049585	37.340
12 hour	65.00	38.09	1.77	1	67.419	66.995	35.2009917	31.794
24 hour	83.00	48.64	1.72	1	83.657	83.131	70.40198341	12.729
48 hour	106.00	62.12	1.67	1	103.734	103.081	140.8039668	-37.723
Size of Atter	uation for 1 ir	100 vear flood eve	ent m ³					37.340

Part 4 Interception Storage

To prevent pollitant or sediments discharging into water courses the GDSDS required "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on the 5-10mm of rainfall depth from 80% of the runoff from impermeable areas. The interception volume attributable to each of the SuDS features consists of the volyme of water that can infiltrate to the ground, the quanity that evaporates into the atmosphere and the volyme lost through transpiration in plants and vegitation. Additionally, there will be some loses of water due to absorption and westting of stone and soil media.

Required Interception Storage		
Overall Impermeable area is	993.7 m²	including 10% for urban creep

Therefore, the total interception storage required is 'overall impermeable area x 80% x 0.005 x 1.2 for 4.77 m³ climate change'

Interception Storage Provided

*Only fill in SuDS on your site

	Area	301.1	m²	
mooble Boying	Stone Layer 100mm deep	0.1	m	
meable Paving	Void Ratio	30%		
	Storage Volume	9.03	m³	

Total interception volume provided for the overall site which exceeds the required volume calculated of

9.03 m³ 4.77 m³

Job Title	B4 07 Stanley Street - Area 1 (Detention Basin)	Job no.	23006
By:	Kezia Adanza	Checked by:	DW
Date	12/09/2024	Rev number	1

Part 1 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, QBARural, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation:

QBARrural = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Rainfall Data			
M5-60 (1 hour - 5 years) mm	16.3		
M5-2D (2 days - 5 years) mm	58.6		
Ratio "r" (M5-60/ M5-2D)	0.28		
SAAR mm	916	Soil Type 3 - E	ased on Site Investigation - Sandy clay, moderate runoff potential, 2no soakaway
Soil/ SPR mm	0.37	tests = 2.77E	06m/s and 4.74E -06m/s
For 50 Ha Area ~ QBARrural =	0.197	m³/s	
			the second se

QBARrural = For 0.22 Ha Area ~ QBARrural = 3.935 l/s/ha Discharge should be limited to QBAR or 2 l/s/ha whichever is 0.871 l/s greater.

Part 2 Impermeable Area

Breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coeifficients is provided in the table below

Total Area sq.m	Туре	of Surface	Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha
	Boof -	Standard - 28%	195.51	0.95	185.73	204.30	245.16	
2212 520	Apartments*	Green/ Blue Roof - 72%	0.00	0.60	0.00	0.00	0.00	800 80
2212.323	Permeable Paving inc. areas from hardstanding		643.82	0.50	321.91	354.10	424.92	633.63
ha	Landscaped Ar	easing areas from						ha
	hardstanding		870.48	0.20	174.10	191.51	229.81	0.1
0.22	Hardstanding		0.00	0.90	0.00	0.00	0.00	

*As per subcatcments 50% of the standard roof from Blocks A-C is considered in these calculations, see area 1 for the other 50% of the standard roof These calculations are based on "Engineering Hydrology" by E.M.Wilson (4th Edition) Ratio R (%) - Refer to Table 2.9 of "Engineering Hydrology M10/M100 - Refer to Table 2.7 of "Engineering Hydrology

Attenuation Volume Required Part 3

1 in 10 Years								
Rainfall								
Duration (D)	Ratio r (%)	M5 (mm)	M10 (mm)	Area	MT	Inflow "I"	Outflow "O"	Capacity Required
						MT* Impermeable	(QBARrural/1000	
	Table 2.9	(M5-2D*Ratio)/100	Table 2.7		M5*M10	Area)*60	"I"-"O" ="S"
1 min	3.00	1.76	1.15	1	2.022	1.819	0.052238744	1.767
2min	5.00	2.93	1.15	1	3.370	3.032	0.104477487	2.928
5 min	9.00	5.27	1.16	1	6.118	5.505	0.261193718	5.244
10 min	12.90	7.56	1.17	1	8.844	7.959	0.522387435	7.437
15 min	15.50	9.08	1.18	1	10.718	9.645	0.783581153	8.861
30 min	20.70	12.13	1.18	1	14.314	12.881	1.567162306	11.314
60 min	27.00	15.82	1.18	1	18.670	16.801	3.134324612	13.667
2 hour	35.00	20.51	1.18	1	24.202	21.779	6.268649224	15.510
4 hour	44.00	25.78	1.17	1	30.167	27.147	12.53729845	14.610
6 hour	51.00	29.89	1.17	1	34.967	31.466	18.80594767	12.660
12 hour	65.00	38.09	1.16	1	44.184	39.761	37.61189535	2.149
24 hour	83.00	48.64	1.15	1	55.934	50.334	75.22379069	-24.890
48 hour	106.00	62.12	1.14	1	70.812	63.723	150.4475814	-86.724
Size of Atten	uation for 1 in	n 10 year flood eve	nt m ³					15.510

1 in 30 Years								
Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M30 (mm)	Area	МТ	Inflow "I"	Outflow "O"	Capacity Required
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M30	MT* Impermeable Area	(QBARrural/1000)*60	"I"-"O" ="S"
1 min	3.00	1.76	1.42	1	2.496	2.246	0.052238744	2.194
2min	5.00	2.93	1.43	1	4.190	3.770	0.104477487	3.666
5 min	9.00	5.27	1.48	1	7.806	7.024	0.261193718	6.763
10 min	12.90	7.56	1.50	1	11.339	10.204	0.522387435	9.682
15 min	15.50	9.08	1.54	1	13.988	12.587	0.783581153	11.804
30 min	20.70	12.13	1.54	1	18.681	16.810	1.567162306	15.243
60 min	27.00	15.82	1.54	1	24.366	21.927	3.134324612	18.792
2 hour	35.00	20.51	1.52	1	31.175	28.054	6.268649224	21.786
4 hour	44.00	25.78	1.50	1	38.676	34.804	12.53729845	22.267
6 hour	51.00	29.89	1.48	1	44.231	39.803	18.80594767	20.997
12 hour	65.00	38.09	1.45	1	55.231	49.701	37.61189535	12.089
24 hour	83.00	48.64	1.41	1	68.580	61.714	75.22379069	-13.510
48 hour	106.00	62.12	1.39	1	86.341	77.698	150.4475814	-72.750
Size of Atter	uation for 1 i	n 30 year flood eve	ent m ³					22.267

Size of Attenuation for 1 in 30 year flood event m³

1 in 100 Years								
Rainfall								
Duration (D)	Ratio r (%)	M5 (mm)	M100 (mm)	Area	MT	Inflow "I"	Outflow "O"	Capacity Required
						MT* Impermeable	(QBARrural/1000	
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M100	Area)*60	"I"-"O" ="S"
1 min	3.00	1.76	1.74	1	3.059	2.753	0.052238744	2.700
2min	5.00	2.93	1.75	1	5.128	4.614	0.104477487	4.510
5 min	9.00	5.27	1.86	1	9.810	8.828	0.261193718	8.566
10 min	12.90	7.56	1.90	1	14.363	12.925	0.522387435	12.403
15 min	15.50	9.08	1.95	1	17.712	15.939	0.783581153	15.155
30 min	20.70	12.13	1.97	1	23.896	21.504	1.567162306	19.937
60 min	27.00	15.82	1.98	1	31.328	28.191	3.134324612	25.057
2 hour	35.00	20.51	1.93	1	39.584	35.621	6.268649224	29.353
4 hour	44.00	25.78	1.89	1	48.732	43.853	12.53729845	31.316
6 hour	51.00	29.89	1.85	1	55.289	49.754	18.80594767	30.948
12 hour	65.00	38.09	1.77	1	67.419	60.670	37.61189535	23.058
24 hour	83.00	48.64	1.72	1	83.657	75.282	75.22379069	0.059
48 hour	106.00	62.12	1.67	1	103.734	93.349	150.4475814	-57.099
Size of Atten	uation for 1 i	n 100 vear flood ev	vent m ³					31.316

Part 4 Interception Storage

To prevent pollitant or sediments discharging into water courses the GDSDS required "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on the 5-10mm of rainfall depth from 80% of the runoff from impermeable areas. The interception volume attributable to each of the SuDS features consists of the volyme of water that can infiltrate to the ground, the quanity that evaporates into the atmosphere and the volyme lost through transpiration in plants and vegitation. Additionally, there will be some loses of water due to absorption and westting of stone and soil media.

4.32 m³

Required Interception Storage Overall Impermeable area is

including 10% for urban creep

Therefore, the total interception storage required is 'overall impermeable area x 80% x 0.005 x 1.2 for climate change'

899.9 m²

Interception Storage Provided

*Only fill in SuDS on your site

	Area	494.7	m²
ormophic Poving	Stone Layer 100mm deep	0.1	m
Permeable Paving	Void Ratio	30%	
	Storage Volume	14.84	m³

Total interception volume provided for the overall site which exceeds the required volume calculated of

14.84 m³ 4.32 m³

Job Title	B4 07 Stanley Street - Area 3 Blue roof	Job no.	23006
By:	Kezia Adanza	Checked by:	DW
Date	12/09/2024	Rev number	1

Part 1 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, QBARural, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation:

QBARrural = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Rainfall Data	
M5-60 (1 hour - 5 years) mm	16.3
M5-2D (2 days - 5 years) mm	58.6
Ratio "r" (M5-60/ M5-2D)	0.28
SAAR mm	916 Soil Type 3 - Based on Site Investigation - Sandy clay, moderate runoff potential, 2no soak
Soil/ SPR mm	0.37 tests = 2.77E -06m/s and 4.74E -06m/s

For 50 Ha Area ~ QBARrural =	0.197 m³/s	
QBARrural =	3.935 l/s/ha	Discharge should be limited to QBAR or 2 l/s/ha whichever is
For 0.20 Ha Area ~ QBARrural =	0.786 l/s	greater.

Part 2 Impermeable Area

Breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coeifficients is provided in the table below

Total Area sq.m	Type of Surface		Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha
	Roof - Duplex Units - Extensive Green Roof		0.0	0.60	0.0	0.0	0.0	
	Roof	Standard - 28%	0.0	0.95	0.0	0.0	0.0	
1997.11	Apartments	Green/Blue Roof - 72%	1437.9	0.60	862.8	949.0	1138.8	1138.8
	Permeable Paving inc. areas from hardstanding		0.0	0.50	0.0	0.0	0.0	
ha	Landssanad Aroas ins. aroas from					0.0	0.0	ha
0.20	hardstanding		0.0	0.20	0.0			0.1
	narastanang	narustanuing						
	Hardstanding		0.0	0.90	0.0	0.0	0.0	

Part 3 **Attenuation Volume Required**

1 in 10 Years	1 in 10 Years								
Rainfall									
Duration (D)	Ratio r (%)	M5 (mm)	M10 (mm)	Area	MT	Inflow "I"	Outflow "O"	Capacity Required	
						MT* Impermeable	(QBARrural/1000)		
	Table 2.9	(M5-2D*Ratio)/100	Table 2.7		M5*M10	Area	*60	"I"-"O" ="S"	
1 min	3.00	1.76	1.15	1	2.022	2.302	0.04715261	2.255	
2min	5.00	2.93	1.15	1	3.370	3.837	0.09430522	3.743	
5 min	9.00	5.27	1.16	1	6.118	6.967	0.23576305	6.731	
10 min	12.90	7.56	1.17	1	8.844	10.072	0.4715261	9.601	
15 min	15.50	9.08	1.18	1	10.718	12.206	0.70728915	11.499	
30 min	20.70	12.13	1.18	1	14.314	16.301	1.414578301	14.886	
60 min	27.00	15.82	1.18	1	18.670	21.262	2.829156601	18.433	
2 hour	35.00	20.51	1.18	1	24.202	27.562	5.658313203	21.903	
4 hour	44.00	25.78	1.17	1	30.167	34.355	11.31662641	23.039	
6 hour	51.00	29.89	1.17	1	34.967	39.821	16.97493961	22.846	
12 hour	65.00	38.09	1.16	1	44.184	50.319	33.94987922	16.369	
24 hour	83.00	48.64	1.15	1	55.934	63.699	67.89975843	-4.201	
48 hour	106.00	62.12	1.14	1	70.812	80.643	135.7995169	-55.156	
Size of Atten	uation for 1 in	10 year flood ever	nt m ³					23.039	

Size of Attenuation for 1 in 10 year flood event m

1 in 30 Years								
Rainfall								
Duration (D)	Ratio r (%)	M5 (mm)	M30 (mm)	Area	мт	Inflow "I"	Outflow "O"	Capacity Required
						MT* Impermeable	(QBARrural/1000)	
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M30	Area	*60	"I"-"O" ="S"
1 min	3.00	1.76	1.42	1	2.496	2.843	0.04715261	2.796
2min	5.00	2.93	1.43	1	4.190	4.772	0.09430522	4.677
5 min	9.00	5.27	1.48	1	7.806	8.889	0.23576305	8.653
10 min	12.90	7.56	1.50	1	11.339	12.913	0.4715261	12.442
15 min	15.50	9.08	1.54	1	13.988	15.930	0.70728915	15.222
30 min	20.70	12.13	1.54	1	18.681	21.274	1.414578301	19.859
60 min	27.00	15.82	1.54	1	24.366	27.749	2.829156601	24.919
2 hour	35.00	20.51	1.52	1	31.175	35.503	5.658313203	29.845
4 hour	44.00	25.78	1.50	1	38.676	44.045	11.31662641	32.729
6 hour	51.00	29.89	1.48	1	44.231	50.372	16.97493961	33.397
12 hour	65.00	38.09	1.45	1	55.231	62.898	33.94987922	28.948
24 hour	83.00	48.64	1.41	1	68.580	78.101	67.89975843	10.201
48 hour	106.00	62.12	1.39	1	86.341	98.328	135.7995169	-37.471
Size of Attenuation for 1 in 30 year flood event m ³								33.397

1 in 100 Years Rainfall Duration (D) Ratio r (%) M5 (mm) M100 (mm) ΜТ Inflow "I" Outflow "O" Area Capacity Required MT* Impermeable (QBARrural/1000) (M5-2D*Ratio)/100 Table 2.9 M5*M100 "I"-"O" ="S" Table 2.7 Area *60 0.04715261 1 min 3.00 3.059 3.484 1.8 1.74 1 2min 1.75 1 5.839 5.00 2.9 5.128 0.09430522 5 min 9.00 5.3 1.86 1 9.810 11.172 0.23576305 7.6 1.90 0.4715261 10 min 12.90 1 14.363 16.357 15 min 15.50 9.1 1.95 1 17.712 20.171 0.70728915 1.97 1 30 min 20.70 12.1 23.896 27.214 1.414578301 60 min 27.00 15.8 1.98 1 31.328 35.677 2.829156601 2 hour 35.00 20.5 1.93 1 39.584 45.080 5.658313203 4 hour 1 48.732 55.497 11.31662641 44.00 25.8 1.89 6 hour 51.00 29.9 1.85 1 55.289 62.965 16.97493961 12 hour 65.00 38.1 1.77 1 67.419 76.779 33.94987922 24 hour 1.72 1 67.89975843 83.00 48.6 83.657 95.272 48 hour 106.00 62.1 1.67 1 103.734 118.135 135.7995169

Size of Attenuation for 1 in 100 year flood event m³

45.990

3.436

5.745

10.936

15.885

19.464

25.800

32.848

39.422

44.181

45.990

42.829

27.372

-17.664

Part 4 Interception Storage

To prevent pollitant or sediments discharging into water courses the GDSDS required "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on the 5-10mm of rainfall depth from 80% of the runoff from impermeable areas. The interception volume attributable to each of the SuDS features consists of the volyme of water that can infiltrate to the ground, the quanity that evaporates into the atmosphere and the volyme lost through transpiration in plants and vegitation. Additionally, there will be some loses of water due to absorption and westting of stone and soil media.

Required Interception Storage Overall Impermeable area is	1138.8 m²	including 10% for urban creep			
Therefore, the total interception storage required is 'overall impermeable area x $80\% \times 0.005 \times 1.2$ for climate change'					
Interception Storage Provided	*Only fill in S	SuDS on your site			

Green Roof A 'Bauder Sedume' or equivalent design to retain 30 I/m ² of rainwater will be used on roof level	Area	1991.0	m²
	Interception Store 30 I/m ²	0.03	l/m²
	Storage Volume	59.73	m³

Total interception volume provided for the overall site which exceeds the required volume calculated of

59.73 m³ 5.47 m³

Job Title	B4 07 Stanley Street - Area 3 (Attenuation Tank)	Job no.	23006
By:	Kezia Adanza	Checked by:	DW
Date	12/09/2024	Rev number	1

Part 1 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, QBARural, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation:

QBARrural = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Rainfall Data		
M5-60 (1 hour - 5 years) mm	16.3	3
M5-2D (2 days - 5 years) mm	58.6	6
Ratio "r" (M5-60/ M5-2D)	0.28	8
SAAR mm	916	6 Soil Type 3 - Based on Site Investigation - Sandy clay, moderate runoff potential, 2no soaka
Soil/ SPR mm	0.37	7 tests = 2.77E -06m/s and 4.74E -06m/s
		-
For 50 Ha Area ~ QBARrural =	0.197	7 m³/s

For 50 Ha Area ~ QBARrural =	0.197	m³/s	
QBARrural =	3.935	l/s/ha	Discharge should be limited to QBAR or 2 l/s/ha whichever
For 0.31 Ha Area ~ QBARrural =	1.224	I/s	is greater.

Part 2 Impermeable Area

Breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coeifficients is

provided in the table below

Total Area sq.m	Туј	pe of Surface	Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha	
	Deef	Standard - 28%	559.19	0.95	531.23	584.35	701.23		
3111.449 Permeable hardstand	Apartments	Intensive Green/Blue Roof - 72%	0.00	0.60	0.00	0.00	0.00	- 1364.53	
	Permeable Pa hardstanding	ving inc. areas from	423.19	0.50	211.60	232.75	279.31		
ha	Londonnod Aroos ing proos from							ha	
	hardstanding	hardstanding		0.20	98.83	108.71	130.46	0.14	
0.31	narustanung								
	Hardstanding		197.00	0.90	177.30	195.03	253.54		

These calculations are based on "Engineering Hydrology" by E.M.Wilson (4th Edition) Ratio R (%) - Refer to Table 2.9 of "Engineering Hydrology M10/M100 - Refer to Table 2.7 of "Engineering Hydrology

Attenuation Volume Required Part 3

1 in 10 Years								
Rainfall	Detie = (0()	NAT (mm)	1	A		1	0	Consolity Descripted
Duration (D)	Ratio r (%)	IVI5 (mm)	M10 (mm)	Area	MI	Inflow "I"	Outflow "O"	Capacity Required
						MT* Impermeable	(QBARrural/100	
	Table 2.9	(M5-2D*Ratio)/100	Table 2.7		M5*M10	Area	0)*60	"I"-"0" ="S"
1 min	3.00	1.76	1.15	1	2.022	2.759	0.073462624	2.685
2min	5.00	2.93	1.15	1	3.370	4.598	0.146925248	4.451
5 min	9.00	5.27	1.16	1	6.118	8.348	0.367313121	7.981
10 min	12.90	7.56	1.17	1	8.844	12.069	0.734626241	11.334
15 min	15.50	9.08	1.18	1	10.718	14.625	1.101939362	13.523
30 min	20.70	12.13	1.18	1	14.314	19.531	2.203878724	17.327
60 min	27.00	15.82	1.18	1	18.670	25.476	4.407757449	21.068
2 hour	35.00	20.51	1.18	1	24.202	33.024	8.815514897	24.208
4 hour	44.00	25.78	1.17	1	30.167	41.164	17.63102979	23.533
6 hour	51.00	29.89	1.17	1	34.967	47.713	26.44654469	21.266
12 hour	65.00	38.09	1.16	1	44.184	60.291	52.89308938	7.398
24 hour	83.00	48.64	1.15	1	55.934	76.323	105.7861788	-29.463
48 hour	106.00	62.12	1.14	1	70.812	96.625	211.5723575	-114.947
Size of Atten	uation for 1 in	10 year flood event	m ³					24.208

Size of Attenuation for 1 in 10 year flood event m³

1 in 30 Years		1						
Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M30 (mm)	Area	МТ	Inflow "I"	Outflow "O"	Capacity Required
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M30	MT* Impermeable Area	(QBARrural/100 0)*60	"I"-"O" ="S"
1 min	3.00	1.76	1.42	1	2.496	3.406	0.073462624	3.333
2min	5.00	2.93	1.43	1	4.190	5.717	0.146925248	5.570
5 min	9.00	5.27	1.48	1	7.806	10.651	0.367313121	10.284
10 min	12.90	7.56	1.50	1	11.339	15.472	0.734626241	14.738
15 min	15.50	9.08	1.54	1	13.988	19.087	1.101939362	17.985
30 min	20.70	12.13	1.54	1	18.681	25.490	2.203878724	23.286
60 min	27.00	15.82	1.54	1	24.366	33.248	4.407757449	28.840
2 hour	35.00	20.51	1.52	. 1	31.175	42.539	8.815514897	33.724
4 hour	44.00	25.78	1.50	1	38.676	52.774	17.63102979	35.143
6 hour	51.00	29.89	1.48	1	44.231	60.355	26.44654469	33.908
12 hour	65.00	38.09	1.45	1	55.231	75.363	52.89308938	22.470
24 hour	83.00	48.64	1.41	1	68.580	93.579	105.7861788	-12.208
48 hour	106.00	62.12	1.39	1	86.341	117.815	211.5723575	-93.758
<u>.</u>		<u> </u>						05.440
Size of Atten	liation for 1 in	30 vear flood event	m					35.143

1 in 100 Years								
Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M100 (mm)	Area	МТ	Inflow "I"	Outflow "O"	Capacity Required
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M100	MT* Impermeable Area	(QBARrural/100 0)*60	"I"-"O" ="S"
1 min	3.00	1.76	1.74	1	3.059	4.174	0.073462624	4.101
2min	5.00	2.93	1.75	1	5.128	6.997	0.146925248	6.850
5 min	9.00	5.27	1.86	1	9.810	13.386	0.367313121	13.018
10 min	12.90	7.56	1.90	1	14.363	19.598	0.734626241	18.864
15 min	15.50	9.08	1.95	1	17.712	24.168	1.101939362	23.066
30 min	20.70	12.13	1.97	1	23.896	32.607	2.203878724	30.404
60 min	27.00	15.82	1.98	1	31.328	42.747	4.407757449	38.340
2 hour	35.00	20.51	1.93	1	39.584	54.014	8.815514897	45.198
4 hour	44.00	25.78	1.89	1	48.732	66.496	17.63102979	48.865
6 hour	51.00	29.89	1.85	1	55.289	75.443	26.44654469	48.997
12 hour	65.00	38.09	1.77	1	67.419	91.995	52.89308938	39.102
24 hour	83.00	48.64	1.72	1	83.657	114.153	105.7861788	8.366
48 hour	106.00	62.12	1.67	1	103.734	141.547	211.5723575	-70.025
		•				•	•	•
Size of Attenu	uation for 1 in	100 year flood even	t m³					48.997

Part 4 Interception Storage

To prevent pollitant or sediments discharging into water courses the GDSDS required "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on the 5-10mm of rainfall depth from 80% of the runoff from impermeable areas. The interception volume attributable to each of the SuDS features consists of the volyme of water that can infiltrate to the ground, the quanity that evaporates into the atmosphere and the volyme lost through transpiration in plants and vegitation. Additionally, there will be some loses of water due to absorption and westting of stone and soil media.

Required Interception Storage

Overall Impermeable area is 1364.5 m² including 10% for urban creep

Therefore, the total interception storage required is 'overall impermeable area x 80% x 0.005 x 1.2 for climate 6.55 m³ change'

Interception Storage Provided

*Only fill in SuDS on your site

	Area	545.9	m²	
Pormochlo Poving	Stone Layer 100mm deep	0.1	m	
	Void Ratio	30%		*Storage depth will depend on your
	Storage Volume	16.38	m³	site

Total interception volume provided for the overall site which exceeds the required volume calculated of

16.38 m³ 6.55 m³

Job Title	B4 07 Stanley Street - Area 4 Extensive Blue Roof	Job no.	23006
By:	Kezia Adanza	Checked by:	DW
Date	12/09/2024	Rev number	1

Part 1 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, QBARural, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation:

QBARrural = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Rainfall Data		
M5-60 (1 hour - 5 years) mm	16.3	
M5-2D (2 days - 5 years) mm	58.6	
Ratio "r" (M5-60/ M5-2D)	0.28	
SAAR mm	916	Soil Type 3 - Based on Site Investigation - Sandy clay, moderate runoff potential, 2no soakaway
Soil/ SPR mm	0.37	= 2.77E -06m/s and 4.74E -06m/s

For 50 Ha Area ~ QBARrural =	0.197 m³/s	
QBARrural =	3.935 l/s/ha	Discharge should be limited to QBAR or 2 l/s/ha whichever
For 0.05 Ha Area ~ QBARrural =	0.184 l/s	is greater.

Part 2 Impermeable Area

Breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coefficients is provided in the table below

Total Area sq.m	Тур	e of Surface	Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha
	Roof - Duplex Units - Extensive Green Roof		467.813	0.60	280.7	308.8	370.5	
	Deef	Standard - 28%	0.0	0.95	0.0	0.0	0.0	370.5
467.813	Apartments	Green/Blue Roof - 72%	0.0	0.60	0.0	0.0	0.0	
	Permeable Paving inc. areas from hardstanding		0.0	0.50	0.0	0.0	0.0	
ha	Landscaped A	reas inc. areas from						ha
	hardstanding	hardstanding		0.20	0.0	0.0	0.0	0.0
0.05	narastanung							
	Hardstanding		0.0	0.90	0.0	0.0	0.0	

Part 3 Attenuation Volume Required

1 in 10 Years								
Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M10 (mm)	Area	МТ	Inflow "I"	Outflow "O"	Capacity Required
						MT* Impermeable	(QBARrural/1000	
	Table 2.9	(M5-2D*Ratio)/100	Table 2.7		M5*M10	Area)*60	"I"-"O" ="S"
1 min	3.00	1.76	1.15	1	2.022	0.749	0.011045262	0.738
2min	5.00	2.93	1.15	1	3.370	1.248	0.022090525	1.226
5 min	9.00	5.27	1.16	1	6.118	2.267	0.055226312	2.211
10 min	12.90	7.56	1.17	1	8.844	3.277	0.110452624	3.167
15 min	15.50	9.08	1.18	1	10.718	3.971	0.165678936	3.805
30 min	20.70	12.13	1.18	1	14.314	5.303	0.331357871	4.972
60 min	27.00	15.82	1.18	1	18.670	6.917	0.662715743	6.255
2 hour	35.00	20.51	1.18	1	24.202	8.967	1.325431486	7.642
4 hour	44.00	25.78	1.17	1	30.167	11.177	2.650862971	8.526
6 hour	51.00	29.89	1.17	1	34.967	12.955	3.976294457	8.979
12 hour	65.00	38.09	1.16	1	44.184	16.371	7.952588914	8.418
24 hour	83.00	48.64	1.15	1	55.934	20.724	15.90517783	4.819
48 hour	106.00	62.12	1.14	1	70.812	26.236	31.81035566	-5.574
Size of Atten	uation for 1 in	n 10 year flood eve	nt m ³					8.979

Size of Attenuation for 1 in 10 year flood event m³

1 in 30 Years								
Rainfall								
Duration (D)	Ratio r (%)	M5 (mm)	M30 (mm)	Area	MT	Inflow "I"	Outflow "O"	Capacity Required
						MT* Impermeable	(QBARrural/1000	
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M30	Area)*60	"I"-"O" ="S"
1 min	3.00	1.76	1.42	1	2.496	0.925	0.011045262	0.914
2min	5.00	2.93	1.43	1	4.190	1.552	0.022090525	1.530
5 min	9.00	5.27	1.48	1	7.806	2.892	0.055226312	2.837
10 min	12.90	7.56	1.50	1	11.339	4.201	0.110452624	4.091
15 min	15.50	9.08	1.54	1	13.988	5.183	0.165678936	5.017
30 min	20.70	12.13	1.54	1	18.681	6.921	0.331357871	6.590
60 min	27.00	15.82	1.54	1	24.366	9.028	0.662715743	8.365
2 hour	35.00	20.51	1.52	1	31.175	11.551	1.325431486	10.225
4 hour	44.00	25.78	1.50	1	38.676	14.330	2.650862971	11.679
6 hour	51.00	29.89	1.48	1	44.231	16.388	3.976294457	12.412
12 hour	65.00	38.09	1.45	1	55.231	20.463	7.952588914	12.511
24 hour	83.00	48.64	1.41	1	68.580	25.409	15.90517783	9.504
48 hour	106.00	62.12	1.39	1	86.341	31.990	31.81035566	0.180
Size of Atten	uation for 1 in	n 30 year flood eve	nt m ³					12.511

1 in 100 Years									
Rainfall									
Duration (D)	Ratio r (%)	M5 (mm)	M100 (mm)	Area	мт	Inflow "I"	Outflow "O"	Capacity Required	
						MT* Impermeable	(QBARrural/1000		
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M100	Area)*60	"I"-"O" ="S"	
1 min	3.00	1.8	1.74	1	3.059	1.133	0.011045262	1.122	
2min	5.00	2.9	1.75	1	5.128	1.900	0.022090525	1.878	
5 min	9.00	5.3	1.86	1	9.810	3.635	0.055226312	3.579	
10 min	12.90	7.6	1.90	1	14.363	5.322	0.110452624	5.211	
15 min	15.50	9.1	1.95	1	17.712	6.562	0.165678936	6.397	
30 min	20.70	12.1	1.97	1	23.896	8.854	0.331357871	8.522	
60 min	27.00	15.8	1.98	1	31.328	11.607	0.662715743	10.944	
2 hour	35.00	20.5	1.93	1	39.584	14.666	1.325431486	13.341	
4 hour	44.00	25.8	1.89	1	48.732	18.056	2.650862971	15.405	
6 hour	51.00	29.9	1.85	1	55.289	20.485	3.976294457	16.509	
12 hour	65.00	38.1	1.77	1	67.419	24.979	7.952588914	17.027	
24 hour	83.00	48.6	1.72	1	83.657	30.996	15.90517783	15.091	
48 hour	106.00	62.1	1.67	1	103.734	38.434	31.81035566	6.624	
Size of Attenuation for 1 in 100 year flood event m ³									

Part 4 Interception Storage

To prevent pollitant or sediments discharging into water courses the GDSDS required "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on the 5-10mm of rainfall depth from 80% of the runoff from impermeable areas. The interception volume attributable to each of the SuDS features consists of the volyme of water that can infiltrate to the ground, the quanity that evaporates into the atmosphere and the volume lost through transpiration in plants and vegitation. Additionally, there will be some loses of water due to absorption and westting of stone and soil media.

Required Interception Storage

 Overall Impermeable area is
 370.5 m²
 including 10% for urban creep

 Therefore, the total interception storage required is 'overall impermeable area x 80% x 0.005 x 1.2 for climate change'
 1.78 m³

Interception Storage Provided

*Only fill in SuDS on your site

Green Roof A 'Bauder Sedume' or equivalent design to retain 20	Area	467.8	m²	
I/m ² of rainwater will be used on roof level	Interception Store 30 I/m ²	0.03	l/m²	
	Storage Volume	14.03	m³	

Total interception volume provided for the overall site which exceeds the required volume calculated of

14.03 m³ 1.78 m³

Job Title	B4 07 Stanley Street - Area 4	Job no.	23006
By:	Kezia Adanza	Checked by:	DW
Date	12/09/2024	Rev number	1

Part 1 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, QBARural, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation:

QBARrural = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Rainfall Data		
M5-60 (1 hour - 5 years) mm	16.3	
M5-2D (2 days - 5 years) mm	58.6	
Ratio "r" (M5-60/ M5-2D)	0.28	
SAAR mm	916	Soil Type 3 - Based on Site Investigation - Sandy clay, moderate runoff potential, 2no soakaway
Soil/ SPR mm	0.37	= 2.77E -06m/s and 4.74E -06m/s

For 50 Ha Area ~ QBARrural =	0.197 m³/s	
QBARrural =	3.935 l/s/ha	Discharge should be limited to QBAR or 2 l/s/ha whichever
For 0.15 Ha Area ~ QBARrural =	0.594 l/s	is greater.

Part 2 Impermeable Area

Breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coeifficients is provided in the table below

Total Area sq.m	Тур	e of Surface	Area sq.m	Run-off Coefficient	Equivalent Impermeable Area sq.m	Urban Creep Allowance (10%)	Climate Change (20%)	Overall Impermeable Area ha
	Roof - Duplex Units - Extensive Green Roof		0.0	0.60	0.0	0.0	0.0	
	Deef	Standard - 28%	0.0	0.95	0.0	0.0	0.0	
1509.839 Ap	Apartments	Green/Blue Roof - 72%	0.0	0.60	0.0	0.0	0.0	520.2
Permeable Paving hardstanding		ving inc. areas from	522.3	0.50	261.2	287.3	316.0	
ha	Landscaped A	reas inc. areas from						ha
	Landscaped Areas Inc. areas from		427.1	0.20	85.4	94.0	103.4	0.1
0.15	narastanung	narustanumg						
	Hardstanding		92.6	0.90	83.3	91.7	100.8	

Part 3 Attenuation Volume Required

1 in 10 Years										
Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M10 (mm)	Area	МТ	Inflow "I"	Outflow "O"	Capacity Required		
						MT* Impermeable	(QBARrural/1000			
	Table 2.9	(M5-2D*Ratio)/100	Table 2.7		M5*M10	Area)*60	"I"-"0" ="S"		
1 min	3.00	1.76	1.15	1	2.022	1.052	0.035647936	1.016		
2min	5.00	2.93	1.15	1	3.370	1.753	0.071295872	1.681		
5 min	9.00	5.27	1.16	1	6.118	3.182	0.17823968	3.004		
10 min	12.90	7.56	1.17	1	8.844	4.601	0.356479361	4.244		
15 min	15.50	9.08	1.18	1	10.718	5.575	0.534719041	5.041		
30 min	20.70	12.13	1.18	1	14.314	7.446	1.069438082	6.376		
60 min	27.00	15.82	1.18	1	18.670	9.712	2.138876163	7.573		
2 hour	35.00	20.51	1.18	1	24.202	12.589	4.277752326	8.312		
4 hour	44.00	25.78	1.17	1	30.167	15.693	8.555504652	7.137		
6 hour	51.00	29.89	1.17	1	34.967	18.189	12.83325698	5.356		
12 hour	65.00	38.09	1.16	1	44.184	22.984	25.66651396	-2.682		
24 hour	83.00	48.64	1.15	1	55.934	29.096	51.33302791	-22.237		
48 hour	106.00	62.12	1.14	1	70.812	36.835	102.6660558	-65.831		
Size of Atten	uation for 1 in	n 10 year flood eve	nt m ³					8.312		

Size of Attenuation for 1 in 10 year flood event m³

L in 30 Years										
Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M30 (mm)	Δrea	мт	Inflow "I"	Outflow "O"	Capacity Required		
Duración (D)		(111)	11150 (1111)	Ai cu		MT* Impermeable	(OBARrural/1000	cupatity nequired		
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M30	Area)*60	"I"-"O" ="S"		
1 min	3.00	1.76	1.42	1	2.496	1.299	0.035647936	1.263		
2min	5.00	2.93	1.43	1	4.190	2.180	0.071295872	2.108		
5 min	9.00	5.27	1.48	1	7.806	4.060	0.17823968	3.882		
10 min	12.90	7.56	1.50	1	11.339	5.898	0.356479361	5.542		
15 min	15.50	9.08	1.54	1	13.988	7.276	0.534719041	6.742		
30 min	20.70	12.13	1.54	1	18.681	9.717	1.069438082	8.648		
60 min	27.00	15.82	1.54	1	24.366	12.675	2.138876163	10.536		
2 hour	35.00	20.51	1.52	1	31.175	16.217	4.277752326	11.939		
4 hour	44.00	25.78	1.50	1	38.676	20.119	8.555504652	11.563		
6 hour	51.00	29.89	1.48	1	44.231	23.008	12.83325698	10.175		
12 hour	65.00	38.09	1.45	1	55.231	28.730	25.66651396	3.064		
24 hour	83.00	48.64	1.41	1	68.580	35.674	51.33302791	-15.659		
48 hour	106.00	62.12	1.39	1	86.341	44.913	102.6660558	-57.753		
Size of Attenuation for 1 in 30 year flood event m ³										

Size of Attenuation for 1 in 30 year flood event m³

11.939

1 in 100 Years									
Rainfall									
Duration (D)	Ratio r (%)	M5 (mm)	M100 (mm)	Area	мт	Inflow "I"	Outflow "O"	Capacity Required	
						MT* Impermeable	(QBARrural/1000		
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M100	Area)*60	"I"-"0" ="S"	
1 min	3.00	1.8	1.74	1	3.059	1.591	0.035647936	1.556	
2min	5.00	2.9	1.75	1	5.128	2.667	0.071295872	2.596	
5 min	9.00	5.3	1.86	1	9.810	5.103	0.17823968	4.925	
10 min	12.90	7.6	1.90	1	14.363	7.471	0.356479361	7.115	
15 min	15.50	9.1	1.95	1	17.712	9.213	0.534719041	8.679	
30 min	20.70	12.1	1.97	1	23.896	12.431	1.069438082	11.361	
60 min	27.00	15.8	1.98	1	31.328	16.296	2.138876163	14.157	
2 hour	35.00	20.5	1.93	1	39.584	20.591	4.277752326	16.313	
4 hour	44.00	25.8	1.89	1	48.732	25.350	8.555504652	16.794	
6 hour	51.00	29.9	1.85	1	55.289	28.761	12.83325698	15.927	
12 hour	65.00	38.1	1.77	1	67.419	35.071	25.66651396	9.404	
24 hour	83.00	48.6	1.72	1	83.657	43.517	51.33302791	-7.816	
48 hour	106.00	62.1	1.67	1	103.734	53.961	102.6660558	-48.705	
Size of Attenuation for 1 in 100 year flood event m ³									

Part 4 Interception Storage

To prevent pollitant or sediments discharging into water courses the GDSDS required "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on the 5-10mm of rainfall depth from 80% of the runoff from impermeable areas. The interception volume attributable to each of the SuDS features consists of the volyme of water that can infiltrate to the ground, the quanity that evaporates into the atmosphere and the volyme lost through transpiration in plants and vegitation. Additionally, there will be some loses of water due to absorption and westting of stone and soil media.

Required Interception Storage

Overall Impermeable area is

520.2 m²

including 10% for urban creep

Therefore, the total interception storage required is 'overall impermeable area x 80% x 0.005 x 1.2 for 2.50 m³ climate change'

Interception Storage Provided

*Only fill in SuDS on your site

Permeable Paving Stone Layer 100mm deep 0.1 m		Area	470.8	m²	
Void Ratio 30%	Permechle Paving	Stone Layer 100mm deep	0.1	m	
		Void Ratio	30%		
Storage Volume 14.12 m ³ *Storage depth will depend on yo		Storage Volume	14.12	m³	*Storage depth will depend on your site

Total interception volume provided for the overall site which exceeds the required volume calculated of

14.12 m³ 2.50 m³

APPENDIX C – SURFACE WATER PIPE NETWORK CALCULATIONS

Causeway	Remco Ltd t/a	a Malone		File: FLO Network Conor N 13/09/2	W 24-08-19. k: Storm Netv lacken 024	pfd Pa work	ge 1		
			Design S	<u>Settings</u>					
Rainfall Methodolog	y FSR		Ma	aximum Ti	ime of Conce	entration (mins)) 30.00		
Return Period (years	5) 2				Maximum R	ainfall (mm/hr)) 50.0		
Additional Flow (%	5) 0				Minimur	n Velocity (m/s) 1.00		
FSR Regio	Scotland and Ireland		d		e Level Inverts				
M5-60 (mm) 16.300	16.300			nimum Back	drop Height (m) 0.500		
Ratio-	R 0.280	0.280			Preferred Cover Depth (m)				
CV 0.750				Ir	nclude Intern	nediate Ground	l √		
Time of Entry (mins	5) 4.00			Enfor	ce best pract	ice design rules	5 √		
			No	<u>des</u>					
	Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Depth (m)			
	SW01	0.010	4.00	12.100	1200	1.225			
	SW02	0.010	4.00	12.700	1200	1.965			
	SW03	0.010	4.00	12.300	1200	1.665			
	SW04	0.010	4.00	12.300	1200	1.701			
	SW05	0.010	4.00	12.300	1200	1.719			
	SW06	0.010	4.00	12.300	1200	1.822			
	SW07	0.010	4.00	12.300	1200	1.854			

12.300

12.100

12.100

12.100

12.100

11.740

12.650

12.350

12.300

12.300

12.100

13.100

13.100

13.100

12.400

12.500

12.210

11.470

11.025

9.500

9.500

13.100

13.100

12.800

13.100

13.100

13.000

13.100

13.100

13.100

4.00 13.100

4.00

4.00

4.00

4.00

4.00

4.00

4.00

4.00

4.00

4.00

4.00

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1.869

1.720

1.745

1.797

1.865

1.560

1.225

1.225

1.260

1.289

1.987

1.300

1.345

1.393

1.600

2.447

1.225

2.459

1.791

1.396

1.272

1.284

1.025

1.118

0.899

1.260

1.300

1.036

1.186

1.248

1.300

SW08

SW09

SW11

SW12

SW13

SW14

SW15

SW16

SW18

SW20

SW21

SW22

SW23

SW24

SW25

SW26

SW27

SW28

SW29

SW30

SW31

SW32

SW33

SW34

BASIN IN1

BASIN IN2

EXSW MH

SW17-HB

BASIN OUT

SW19-HB

0.033

0.033

0.033

0.010

0.010

0.010

0.010

0.010

0.010

0.010

SW10-HB

1

Causeway	Remco Ltd t/a M	alone	File Ne Co 13,	e: FLOW 2 twork: Sto nor Mack /09/2024	4-08-19 orm Net en	.pfd work	Pag	e 2	
			<u>Links</u>						
Name l	JS DS	Length	US IL	DS IL	Fall	Slope	Dia	Rain	
Ne	ode Node	(m)	(m)	(m)	(m)	(1:X)	(mm)	(mm/hr)	
1.000 SW0	1 SW02	23.722	10.875	10.735	0.140	169.4	225	50.0	
1.001 SW02	2 SW03	16.866	10.735	10.635	0.100	168.7	225	50.0	
1.002 SW03	3 SW04	6.024	10.635	10.599	0.036	167.3	225	50.0	
1.003 SW04	4 SW05	2.958	10.599	10.581	0.018	164.3	225	50.0	
1.004 SW0	5 SW06	17.476	10.581	10.478	0.103	169.7	225	49.0	
1.005 SW0	6 SW07	5.285	10.478	10.446	0.032	165.2	225	48.7	
1.006 SW0	7 SW08	2.501	10.446	10.431	0.015	166.7	225	48.6	
1.007 SW08	8 SW09	8.519	10.431	10.380	0.051	167.0	225	48.1	
1.008 SW09	9 SW10-HB	6.041	10.380	10.355	0.025	241.6	300	47.8	
1.009 SW10	O-HB SW11	12.530	10.355	10.303	0.052	241.0	300	47.1	
1.010 SW1	1 SW12	16.527	10.303	10.235	0.068	243.0	300	46.2	
1.011 SW12	2 SW13	13.309	10.235	10.180	0.055	242.0	300	45.5	
1.012 SW13	3 SW18	16.220	10.180	10.113	0.067	242.1	300	44.8	
2.000 SW14	4 SW15	14.023	11.425	11.125	0.300	46.7	225	50.0	
2.001 SW1	5 SW16	14.309	11.125	11.040	0.085	168.3	225	50.0	
2.002 SW1	6 SW17-HB	4.781	11.040	11.011	0.029	164.9	225	50.0	
2.003 SW1	7-HB SW18	5.018	11.011	10.875	0.136	36.9	225	50.0	
1.013 SW1	8 SW22	39.036	10.113	9.953	0.160	244.0	300	43.0	
3.000 BASI	NOUT SW19-HB	7.477	11.800	11.755	0.045	166.1	225	50.0	
3.001 SW1	9-HB SW20	8.032	11.755	11.707	0.048	167.3	225	50.0	
3.002 SW20	0 SW21	35.121	11.707	11.500	0.207	169.7	225	50.0	
3.003 SW2	1 SW22	25.016	11.500	11.175	0.325	77.0	225	49.0	
1.014 SW22	2 SW24	49.282	9.953	9.751	0.202	244.0	300	41.0	
4.000 SW23	3 SW24	9.270	11.275	10.985	0.290	32.0	225	50.0	

Name	Vel	Flow	US	DS
	(m/s)	(I/s)	Depth	Depth
			(m)	(m)
1.000	1.001	1.4	1.000	1.740
1.001	1.004	2.7	1.740	1.440
1.002	1.008	4.1	1.440	1.476
1.003	1.017	5.4	1.476	1.494
1.004	1.001	6.6	1.494	1.597
1.005	1.014	7.9	1.597	1.629
1.006	1.010	9.2	1.629	1.644
1.007	1.009	9.1	1.644	1.495
1.008	1.007	9.1	1.420	1.445
1.009	1.008	8.9	1.445	1.497
1.010	1.004	8.8	1.497	1.565
1.011	1.006	8.6	1.565	1.260
1.012	1.006	8.5	1.260	1.687
2.000	1.918	4.5	1.000	1.000
2.001	1.005	8.9	1.000	1.035
2.002	1.015	13.4	1.035	1.064
2.003	2.160	13.4	1.064	1.000
1.013	1.002	19.7	1.687	2.147
3.000	1.011	0.0	1.075	1.120
3.001	1.008	0.0	1.120	1.168
3.002	1.001	0.0	1.168	1.375
3.003	1.492	0.0	1.375	1.000
1.014	1.002	18.8	2.147	2.159
4.000	2.322	0.0	1.000	1.000

	Remco Ltd t/a Ma	lone	F	ile: FLOW	24-08-1	9.pfd		Page 3
			N	letwork: S	Storm Ne	twork		
Causeway			C	onor Mac	cken			
			1	3/09/202	4			
			<u>Links</u>					
Name US	DS Le	ength U	IS IL	DS IL	Fall	Slope	Dia	Rain
Nod	e Node	(m) ((m)	(m)	(m)	(1:X)	(mm)) (mm/hr)
1.015 SW2	4 SW25 17	7.457 9	.751	9.679	0.072	242.5	300	40.3
1.016 SW2	5 SW26 12	2.153 9	.679	9.629	0.050	243.1	300	39.9
1.017 SW2	6 SW27 38	3.822 9	.629	8.228	1.401	27.7	300	39.5
1.018 SW2	7 EXSW MH	2.452 8	3.228	8.216	0.012	204.3	300	39.4
5.000 SW2	8 SW29 20	0.010 12	.075	11.982	0.093	215.0	225	50.0
5.001 SW2	9 SW31 11	1.994 11	982	11.840	0.142	84.5	225	50.0
6.000 SW3	0 SW31 15	5.857 11	901	11.840	0.061	260.0	225	50.0
5.002 SW3	1 BASIN IN1 10).425 11	840	11.800	0.040	260.6	225	50.0
7.000 SW3	2 SW33 10	0.055 11	964	11.914	0.050	200.0	225	50.0
7.001 SW3	3 SW34 12	2.368 11	914	11.852	0.062	199.5	225	50.0
7.002 SW3	4 BASIN IN2 10	0.358 11	.852	11.800	0.052	200.0	225	50.0
	Name	e vei	FIOW					
		(m/s)	(I/S)	Deptn (m)	Deptn (m)			
	1.015	1.005	18.5	2.159	1.491			
	1.016	1.004	18.3	1.491	1.096			
	1 017	2 998	18 1	1 096	0.972			

1.018

5.001

6.000

5.002

7.000

1.096

1.423

0.806

0.805

0.921

5.000 0.888

7.001 0.922

7.002 0.921

18.0

2.7

1.4

5.4

1.4

2.7

4.1

Pipeline Schedule

0.972

1.4 0.800 0.893

0.893

0.674

1.035

0.811

0.961

1.023

0.984

1.035

1.035

1.075

0.961

1.023

1.075

Link	Length (m)	Slope (1:X)	Dia (mm)	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	23.722	169.4	225	12.100	10.875	1.000	12.700	10.735	1.740
1.001	16.866	168.7	225	12.700	10.735	1.740	12.300	10.635	1.440
1.002	6.024	167.3	225	12.300	10.635	1.440	12.300	10.599	1.476
1.003	2.958	164.3	225	12.300	10.599	1.476	12.300	10.581	1.494
1.004	17.476	169.7	225	12.300	10.581	1.494	12.300	10.478	1.597
1.005	5.285	165.2	225	12.300	10.478	1.597	12.300	10.446	1.629
1.006	2.501	166.7	225	12.300	10.446	1.629	12.300	10.431	1.644
1.007	8.519	167.0	225	12.300	10.431	1.644	12.100	10.380	1.495
1.008	6.041	241.6	300	12.100	10.380	1.420	12.100	10.355	1.445

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	SW01	1200	Manhole	Adoptable	SW02	1200	Manhole	Adoptable
1.001	SW02	1200	Manhole	Adoptable	SW03	1200	Manhole	Adoptable
1.002	SW03	1200	Manhole	Adoptable	SW04	1200	Manhole	Adoptable
1.003	SW04	1200	Manhole	Adoptable	SW05	1200	Manhole	Adoptable
1.004	SW05	1200	Manhole	Adoptable	SW06	1200	Manhole	Adoptable
1.005	SW06	1200	Manhole	Adoptable	SW07	1200	Manhole	Adoptable
1.006	SW07	1200	Manhole	Adoptable	SW08	1200	Manhole	Adoptable
1.007	SW08	1200	Manhole	Adoptable	SW09	1200	Manhole	Adoptable
1.008	SW09	1200	Manhole	Adoptable	SW10-HB	1200	Manhole	Adoptable

Link	Length	Slope	Dia	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	(m)	(m)	(m)	(m)	(m)	(m)
1.009	12.530	241.0	300	12.100) 10.355	1.445	12.100	10.303	1.497
1.010	16.527	243.0	300	12.100	0 10.303	1.497	12.100	10.235	1.565
1.011	13.309	242.0	300	12.100) 10.235	1.565	11.740	10.180	1.260
1.012	16.220	242.1	300	11.740) 10.180	1.260	12.100	10.113	1.687
2.000	14.023	46.7	225	12.650) 11.425	1.000	12.350	11.125	1.000
2.001	14.309	168.3	225	12.350) 11.125	1.000	12.300	11.040	1.035
2.002	4.781	164.9	225	12.300) 11.040	1.035	12.300	11.011	1.064
2.003	5.018	36.9	225	12.300) 11.011	1.064	12.100	10.875	1.000
1.013	39.036	244.0	300	12.100) 10.113	1.687	12.400	9.953	2.147
3.000	7,477	166.1	225	13.100) 11.800	1.075	13.100	11.755	1.120
3.001	8.032	167.3	225	13.100) 11.755	1.120	13.100	11.707	1.168
3.002	35.121	169.7	225	13.100) 11.707	1.168	13.100	11.500	1.375
3.003	25.016	77.0	225	13.100) 11.500	1.375	12,400	11.175	1.000
1 014	49 282	244.0	300	12 400	9 9 9 5 3	2 147	12 210	9 751	2 159
4 000	9 270	32.0	225	12 500) 11 275	1 000	12 210	10 985	1 000
1 015	17 457	242.5	300	12.000	9 751	2 159	11 470	9 679	1 491
1 016	17 153	242.5	300	11 470	9 9 6 7 9	1 491	11 025	9.679	1.491
1 017	28 877	273.1	300	11 02	5 9.679	1.491	9 500	2 772	0 972
1 012	2 152	2013	300	9 500	5 5.025 N 8.228	0 972	9 500	8 216	0.972
5 000	2.452	204.5	225	12 100	12 075	0.572	12 100	11 092	0.904
5 001	11 00/	213.0	225	12 100	11 0 9 2	0.800	12 100	11.902	1 025
6 000	15 857	260.0	225	12 800	11 001	0.674	12 100	11 9/0	1.035
5 002	10 / 25	200.0	225	12.000	11.001	1 025	12 100	11 200	1.035
7 0002	10.425	200.0	225	13.100	11 96/	0.811	13 100	11 01/	0.961
7.000	12 368	100.0	225	13 100	11 01/	0.011	13 100	11 852	1 023
7.001	12.500	155.5	225	15.100	, 11.314	0.501	15.100	11.052	1.025
Link	US	Dia	No	de	МН	DS	Dia	Node	МН
	Node	(mm)	Ту	ре	Туре	Node	(mm)	Туре	Туре
1.009	SW10-HB	1200	Man	hole /	Adoptable	SW11	1200	Manhole	Adoptable
1.010	SW11	1200	Man	hole /	Adoptable	SW12	1200	Manhole	Adoptable
1.011	SW12	1200	Man	hole /	Adoptable	SW13	1200	Manhole	Adoptable
1.012	SW13	1200	Man	hole /	Adoptable	SW18	1200	Manhole	Adoptable
2.000	SW14	1200	Man	hole /	Adoptable	SW15	1200	Manhole	Adoptable
2.001	SW15	1200	Man	hole /	Adoptable	SW16	1200	Manhole	Adoptable
2.002	SW16	1200	Man	hole /	Adoptable	SW17-HB	1200	Manhole	Adoptable
2.003	SW17-HB	1200	Man	hole A	Adoptable	SW18	1200	Manhole	Adoptable
1.013	SW18	1200	Man	hole /	Adoptable	SW22	1200	Manhole	Adoptable
3.000	BASIN OUT	1200	Man	hole /	Adoptable	SW19-HB	1200	Manhole	Adoptable
3.001	SW19-HB	1200	Man	hole A	Adoptable	SW20	1200	Manhole	Adoptable
3.002	SW20	1200	Man	hole A	Adoptable	SW21	1200	Manhole	Adoptable
3.003	SW21	1200	Man	hole /	Adoptable	SW22	1200	Manhole	Adoptable
1.014	SW22	1200	Man	hole /	Adoptable	SW24	1200	Manhole	Adoptable
4.000	SW23	1200	Man	hole /	Adoptable	SW24	1200	Manhole	Adoptable
1 015	514/24	1200	Man	hole /	Adoptable	SW25	1200	Manhole	Adoptable
T.010	37724				Adontable	\$\\/26	1200	Manholo	Adontable
1.015	SW24 SW25	1200	Man	hole /	Auoptable	30020	1200	Iviannoie	Auoptubic
1.015 1.016 1.017	SW24 SW25 SW26	1200 1200	Man Man	hole / hole /	Adoptable	SW20 SW27	1200	Manhole	Adoptable
1.015 1.016 1.017 1.018	SW25 SW26 SW27	1200 1200 1200	Man Man Man	hole / hole / hole /	Adoptable Adoptable	SW20 SW27 EXSW MH	1200 1200 1200	Manhole Manhole	Adoptable Adoptable
1.015 1.016 1.017 1.018 5.000	SW24 SW25 SW26 SW27 SW28	1200 1200 1200 1200	Man Man Man Man	hole / hole / hole / hole /	Adoptable Adoptable Adoptable	SW20 SW27 EXSW MH SW29	1200 1200 1200 1200	Manhole Manhole Manhole	Adoptable Adoptable Adoptable Adoptable
1.015 1.016 1.017 1.018 5.000 5.001	SW24 SW25 SW26 SW27 SW28 SW29	1200 1200 1200 1200 1200	Man Man Man Man Man	hole / hole / hole / hole / hole /	Adoptable Adoptable Adoptable Adoptable	SW20 SW27 EXSW MH SW29 SW31	1200 1200 1200 1200 1200	Manhole Manhole Manhole Manhole	Adoptable Adoptable Adoptable Adoptable Adoptable
1.015 1.016 1.017 1.018 5.000 5.001 6.000	SW24 SW25 SW26 SW27 SW28 SW29 SW30	1200 1200 1200 1200 1200 1200	Man Man Man Man Man Man	hole / hole / hole / hole / hole /	Adoptable Adoptable Adoptable Adoptable Adoptable	SW20 SW27 EXSW MH SW29 SW31 SW31	1200 1200 1200 1200 1200 1200	Manhole Manhole Manhole Manhole Manhole	Adoptable Adoptable Adoptable Adoptable Adoptable
1.015 1.016 1.017 1.018 5.000 5.001 6.000 5.002	SW24 SW25 SW26 SW27 SW28 SW29 SW30 SW31	1200 1200 1200 1200 1200 1200 1200	Man Man Man Man Man Man	hole / hole / hole / hole / hole / hole /	Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	SW20 SW27 EXSW MH SW29 SW31 SW31 BASIN IN1	1200 1200 1200 1200 1200 1200 1200	Manhole Manhole Manhole Manhole Manhole Manhole	Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable
1.015 1.016 1.017 1.018 5.000 5.001 6.000 5.002 7.000	SW24 SW25 SW26 SW27 SW28 SW29 SW30 SW31 SW32	1200 1200 1200 1200 1200 1200 1200 1200	Man Man Man Man Man Man Man	hole / hole / hole / hole / hole / hole / hole /	Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	SW20 SW27 EXSW MH SW29 SW31 SW31 BASIN IN1 SW33	1200 1200 1200 1200 1200 1200 1200 1200	Manhole Manhole Manhole Manhole Manhole Manhole	Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable
1.015 1.016 1.017 1.018 5.000 5.001 6.000 5.002 7.000 7.001	SW24 SW25 SW26 SW27 SW28 SW29 SW30 SW31 SW32 SW32 SW33	1200 1200 1200 1200 1200 1200 1200 1200	Man Man Man Man Man Man Man Man	hole / hole / hole / hole / hole / hole / hole / hole /	Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	SW20 SW27 EXSW MH SW29 SW31 SW31 BASIN IN1 SW33 SW34	1200 1200 1200 1200 1200 1200 1200 1200	Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable

Flow+ v12.0 Copyright © 1988-2024 Causeway Technologies Ltd

Cau	sew	vay					Network: Conor Ma 13/09/20	Storm Netv acken 24	vork			
					<u>Pip</u>	eline So	<u>chedule</u>					
	Link 7.002	Length (m) 10.358	Slope (1:X) 200.0	Dia (mm) 225	US CL (m) 13.100	US I (m) 11.8	L USE) (1 52	Depth DS m) (m 1.023 13.1	CL D n) (100 11	S IL m) .800	DS Depth (m) 1.075	
	Link 7.002	US Node SW34	Dia (mm) 1200	Node Type Manhe	e l e T ple Ado	MH Type optable	DS Node BASIN I	Dia (mm) N2 1200	Node Type Manho	e e ole Ad	MH Type doptable	
					Ma	nhole S	<u>chedule</u>					
Node	E	asting (m)	Nort (r	thing n)	CL (m)	Depth (m)	Dia (mm)	Connec	tions	Link	IL (m)	Dia (mm)
SW01	714	1493.369	73480	0.526	12.100	1.225	1200					
									0	1.000	10.875	225
SW02	714	4490.413	73482	24.063	12.700	1.965	1200	Đ;	1 >0	1.000	10.735	225
									0	1.001	10.735	225
SW03	714	4507.147	73482	26.167	12.300	1.665	1200	1-(1)	1	1.001	10.635	225
								Ţ	0	1 002	10 635	225
SW04	714	4507.898	73482	20.190	12.300	1.701	1200		1	1.002	10.599	225
									0	1.003	10.599	225
SW05	714	4504.963	73481	19.821	12.300	1.719	1200	P	-1	1.003	10.581	225
								0	0	1.004	10.581	225
SW06	714	4507.143	73480)2.482	12.300	1.822	1200		1	1.004	10.478	225
									0	1.005	10.478	225
SW07	714	1506.484	73480)7.726	12.300	1.854	1200	0 < 0	1	1.005	10.446	225
								1	0	1.006	10.446	225
SW08	714	1504.003	73480)7.414	12.300	1.869	1200		-1	1.006	10.431	225
								U	0	1.007	10.431	225
SW09	714	498.156	73480)1.219	12.100	1.720	1200	ϕ	1	1.007	10.380	225
								0	0	1.008	10.380	300
SW10-H	B 714	4498.914	73479	95.226	12.100	1.745	1200		1	1.008	10.355	300
								, v	0	1.009	10.355	300

	Remco Ltd t/a Malone	File: FLOW 24-08-19.pfd	Page 6
Courses		Network: Storm Network	
Lauseway		Conor Macken	
		13/09/2024	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	;	Link	IL (m)	Dia (mm)
SW11	714488.926	734787.661	12.100	1.797	1200	0 < ()	1	1.009	10.303	300
							0	1.010	10.303	300
SW12	714472.528	734785.599	12.100	1.865	1200		1	1.010	10.235	300
							0	1.011	10.235	300
SW13	714461.177	734792.547	11.740	1.560	1200		1	1.011	10.180	300
C\\/1 /	714422 042	724011 244	12 650	1 225	1200		0	1.012	10.180	300
30014	714423.945	754611.244	12.050	1.225	1200	⊖→₀				
	714427 045	724010 472	12 250	1 225	1200		0	2.000	11.425	225
20012	/14437.945	734810.472	12.350	1.225	1200	1	T	2.000	11.125	225
							0	2.001	11.125	225
SW16	714452.132	734812.334	12.300	1.260	1200	1-0	1	2.001	11.040	225
						0	0	2.002	11.040	225
SW17-HB	714454.120	734807.986	12.300	1.289	1200	1	1	2.002	11.011	225
							0	2.003	11.011	225
SW18	714459.096	734808.633	12.100	1.987	1200	0 ↑	1	2.003	10.875	225
						1-0	2	1.012	10.113	300
BASIN OUT	714409.562	734858.799	13.100	1.300	1200	\rightarrow	0	1.013	10.115	
							0	3.000	11.800	225
SW19-HB	714416.979	734859.742	13.100	1.345	1200	1-	1	3.000	11.755	225
							0	3.001	11.755	225
SW20	714415.977	734867.711	13.100	1.393	1200	↔	1	3.001	11.707	225
						1	0	3.002	11.707	225
SW21	714450.817	734872.147	13.100	1.600	1200	1-0	1	3.002	11.500	225
C) 1/22	74 4 4 5 4 0 5 7	724047 242	12 400	2 4 4 7	1200	Ő	0	3.003	11.500	225
SW22	/14454.057	/3484/.342	12.400	2.447	1200		1 2	3.003 1.013	9.953	225 300
						2	0	1.014	9.953	300

	Remco Ltd t/a Malone	File: FLOW 24-08-19.pfd	Page 7
Courses		Network: Storm Network	
Causeway		Conor Macken	
		13/09/2024	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	s	Link	IL (m)	Dia (mm)
SW23	714501.784	734862.729	12.500	1.225	1200					
						\bigcirc				
							0	4 000	11 275	225
SW24	714502.949	734853.533	12.210	2.459	1200	1,	1	4.000	10.985	225
						2 ->0	2	1.014	9.751	300
							0	1.015	9.751	300
SW25	714520.268	734855.726	11.470	1.791	1200		1	1.015	9.679	300
						1				
<u></u>	74 4526 400	724045 202	44.025	4 200	4200	0	0	1.016	9.679	300
SW26	/14526.499	/34845.292	11.025	1.396	1200		1	1.016	9.629	300
						0	0	1.017	9.629	300
SW27	714530.937	734806.725	9.500	1.272	1200	1	1	1.017	8.228	300
						()→ 0				
							0	1.018	8.228	300
EXSW MH	714533.373	734807.005	9.500	1.284	1200		1	1.018	8.216	300
						1				
SW28	714440.018	734869.762	13.100	1.025	1200					
						₀ ←				
							0	5.000	12.075	225
SW29	714420.166	734867.250	13.100	1.118	1200		1	5.000	11.982	225
						\bigcirc ⁻¹				
						o	0	5.001	11.982	225
SW30	714423.641	734839.617	12.800	0.899	1200	° (
						Ŭ	0	6.000	11.901	225
SW31	714421.663	734855.350	13.100	1.260	1200	2	1	6.000	11.840	225
						0 < (2	5.001	11.840	225
						1	0	5.002	11.840	225
BASIN IN1	714411.319	734854.050	13.100	1.300	1200		1	5.002	11.800	225
SW32	714421.419	734836.155	13.000	1.036	1200	0 5				
						Ŭ,				
							0	7.000	11.964	225
SW33	714413.607	734842.486	13.100	1.186	1200		1	7.000	11.914	225
						⁰ ← Q1				
							0	7.001	11.914	225

-							File: FLOW	/ 24-08	-19.più		Fage	0	
\diamond	Course					1	Network: S	Storm	Network	(
X	Cause	;way					Conor Ma	cken					
							13/09/202	24					
					Mar	nhole S	<u>chedule</u>						
	Node	Easting	Nor	thing	CL (m)	Depth	n Dia	Cor	nnection	is	Link	IL (m)	Dia (mm)
	514/24	(m)) 1 7240	m) 45.065	(m)	(m)	(mm)		0	1	7 001	(m)	(mm)
	30054	/14401.5.	LI 7540	45.005	15.100	1.240	5 1200		Ĵ	1	7.001	11.052	. 225
								(<u> </u>				
										0	7 002	11 852	225
	BASIN IN2	714404.68	34 7348	54.925	13.100	1.300) 1200			1	7.002	11.800	225
									\frown				
									\mathcal{P}				
								1					
					Simu	ulation	Settings						
		Dainfall M	athadalaa		<u></u>		<u></u>		Analysis		ad Na	urmal.	
		Naillidii IVI Rai	nfall Event	y rok ts Sinn	ular			¢۲	in Stead	v Sta	cu INO Ite v	niidl	
		Nan	FSR Regio	n Scot	tland and	Ireland	Dra	ain Dov	wn Time	(min	ne x ns) 24(0	
		Ν	15-60 (mm	n) 16.3	300	il claira	Addit	tional S	Storage ((m³/h	ia) 20.	.0	
			Ratio-	, R 0.28	30			Sta	arting Le	vel (r	n)		
		5	Summer C	V 0.75	50		Ch	eck Di	scharge	Rate	(s) x		
			Winter C	V 0.84	10		Che	eck Dis	charge V	/olun	ne x		
					~ .	-							
	11	5 60	180	360	Sto	orm Du	rations	60	1320	7	200	10080	
	1! 3(5 60 0 120	180 240	360 480	Sto 600 720	orm Du 96 144	r ations 0 216 10 288	60 80	4320 5760	72 80	200 640	10080	
	1! 3(5 60 0 120 Re	180 240	360 480 od Clin	Sto 600 720 mate Char	orm Dui 96 144 nge A	rations 0 216 40 288 dditional	60 80 Area	4320 5760 Additio	72 80 onal F	200 640 Flow	10080	
	1! 30	5 60 0 120 Re	180 240 eturn Perio (years)	360 480 od Clin	Sto 600 720 mate Char (CC %)	orm Dui 96 144 nge A	rations 0 216 0 288 dditional (A %)	60 80 Area	4320 5760 Additio (C	72 80 9nal F 2 %)	200 640 Flow	10080	
	1! 3(5 60 0 120 Re	180 240 turn Perio (years)	360 480 od Clin 2 30	Stc 600 720 mate Char (CC %)	orm Dun 96 144 nge A 20 20	rations 0 216 0 288 dditional (A %)	60 80 Area 0	4320 5760 Additio (C	72 80 0nal F (%)	200 640 Flow 0	10080	
	1! 3(5 60 0 120 Re	180 240 eturn Perio (years)	360 480 od Clin 2 30 00	Stc 600 720 mate Char (CC %)	orm Dun 96 144 nge A 20 20 20	rations 0 216 0 288 dditional (A %)	60 80 Area 0 0 0	4320 5760 Additio (O	72 80 9nal F 2 %)	200 640 Flow 0 0 0	10080	
	1! 3(5 60 0 120 Re	180 240 eturn Perio (years)	360 480 od Clin 2 30 00	Stc 600 720 mate Char (CC %)	orm Du 96 144 nge A 20 20 20	rations 0 216 40 288 dditional (A %)	60 80 Area 0 0 0	4320 5760 Additio (C	72 80 90nal F 2 %)	200 640 Flow 0 0 0	10080	
	1! 3(5 60 0 120 Re	180 240 eturn Perio (years)	360 480 od Clin 2 30 00 <u>Node S</u>	Stc 600 720 mate Char (CC %)	orm Dui 96 144 nge A 20 20 20 20 Dnline F	rations 0 216 0 288 dditional (A %)	50 80 Area 0 0 0 0 ke [®] Co	4320 5760 Additio (C	72 80 9nal F (%)	200 640 Flow 0 0 0	10080	
	1! 3(5 60 0 120 Re	180 240 eturn Perio (years) 10 ap Valve	360 480 od Clin 2 30 00 <u>Node S</u> x	Stc 600 720 mate Char (CC %)	orm Dui 96 144 nge A 20 20 20 20 Dnline H	rations 0 216 10 288 dditional (A %) Hydro-Bral	50 80 Area 0 0 0 ke [®] Con	4320 5760 Additio (O	72 80 90nal F 9(%)	200 640 Flow 0 0 0 0 se upstr	10080 ream stor	rage
	1! 30 Replace	5 60 0 120 Re Fl	180 240 eturn Perio (years) 10 ap Valve eam Link	360 480 od Clin 2 30 00 <u>Node S</u> × √	Stc 600 720 mate Char (CC %)	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20	rations 0 216 10 288 dditional (A %) 1ydro-Bral Sump Avai	50 80 Area 0 0 0 ke [®] Cor ctive lable	4320 5760 Additio (C <u>ntrol</u> (HE) Mi	72 80 9nal F 2 %)	200 640 Flow 0 0 0 se upstr	10080 ream stor	rage
	1! 30 Replace	5 60 0 120 Re Fl es Downstre Invert L	180 240 eturn Perio (years) 10 ap Valve eam Link .evel (m)	360 480 od Clin 2 30 00 Node S ¹ × √ 11.755	Stc 600 720 mate Char (CC %)	orm Dui 96 144 nge A 20 20 20 20 Dolline H	rations 0 216 10 288 dditional (A %) Hydro-Brall Obje Sump Avai roduct Nur t Diamoto	60 80 Area 0 0 0 ke [®] Cor active lable mber	4320 5760 Additio (C <u>ntrol</u> (HE) Mi ✓ CTL-SHI	72 8(9 nal F 2 %)	200 540 Flow 0 0 0 se upstr 41-8000	10080 ream stor 0-1000-80	rage 000
	1! 30 Replace	5 60 0 120 Re Es Downstro Invert I Design D Design F	180 240 eturn Perio (years) (years) 10 ap Valve eam Link .evel (m) epth (m)	360 480 od Clin 2 30 00 <u>Node S</u> x √ 11.755 1.000 0 8	Stc 600 720 mate Char (CC %) W19-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 10 288 dditional (A %) lydro-Bral Obje Sump Avai roduct Nur t Diameter (50 80 Area 0 0 0 ke [®] Cor active lable mber r (m)	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200	72 8(9 nal F 2 %)	200 640 Flow 0 0 0 se upstr 41-8000	10080 ream stor 0-1000-80	rage 000
	1! 30 Replace	5 60 0 120 Re Es Downstro Invert I Design D Design F	180 240 eturn Perio (years) 10 ap Valve eam Link .evel (m) epth (m) :low (l/s)	360 480 00 Clin 2 30 00 Node S ¹ × √ 11.755 1.000 0.8	Stc 600 720 mate Char (CC %) <u>W19-HB C</u> Min Min	orm Dui 96 144 nge A 20 20 20 20 Dnline F Pr n Outle Node I	rations 0 216 10 288 dditional (A %) Hydro-Bral Obje Sump Avai roduct Nur t Diamete Diameter (60 80 Area 0 0 0 ke [®] Co lable mber r (m) mm)	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200	72 86 9 nal F ₹ %)	200 640 Flow 0 0 0 se upstr 41-8000	10080 ream stor 0-1000-80	rage 000
	1! 30 Replace	5 60 0 120 Re Es Downstro Invert L Design D Design F	180 240 eturn Perio (years) 10 ap Valve eam Link evel (m) epth (m) flow (l/s)	360 480 00 Clin 2 30 00 Node S ¹ × √ 11.755 1.000 0.8 <u>Node S¹</u>	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C	orm Dui 96 144 nge A 20 20 20 20 Dolline H Node I Dolline H	rations 0 216 10 288 dditional (A %) Hydro-Bral Sump Avai roduct Nur t Diamete Diameter (Hydro-Bral	60 80 Area 0 0 0 ke [®] Co lable mber r (m) mm) ke [®] Co	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol	72 86 9 nal F ₹ %)	200 540 • Iow 0 0 0 se upstr 41-8000	10080 ream stor 0-1000-80	rage 000
	1! 30 Replace	5 60 0 120 Re Fl es Downstro Invert L Design D Design F	180 240 eturn Perio (years) 10 ap Valve eam Link evel (m) epth (m) flow (I/s)	360 480 od Clin 2 30 00 <u>Node S'</u> × √ 11.755 1.000 0.8 <u>Node S'</u> ×	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 10 288 dditional (A%) 1ydro-Bral Sump Avai roduct Nur t Diameter Diameter (1ydro-Bral Obje	60 80 Area 0 0 0 ke [®] Cor lable mber r (m) mm) ke [®] Cor	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi	72 80 0 nal F ₹ %) E-004	200 640 Flow 0 0 0 se upstr 41-8000	10080 ream stor 0-1000-80 ream stor	rage DOO
	1! 30 Replace	5 60 0 120 Re Fl es Downstro Design D Design F Fl es Downstro	180 240 eturn Perio (years) 10 ap Valve eam Link evel (m) epth (m) flow (I/s) ap Valve eam Link	360 480 od Clin 2 30 00 <u>Node S</u> × √ 11.755 1.000 0.8 <u>Node S</u> × √	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C	orm Dui 96 144 nge A 20 20 20 20 Dolline H Node I Node I	rations 0 216 10 288 dditional (A %) iydro-Bral Obje Sump Avai roduct Nur t Diameter Diameter (iydro-Bral Obje Sump Avai Obje	Area 0 0 0 ke [®] Co ber r (m) mm) ke [®] Co ctive lable	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √	72 8(0nal F ≥ %) inimi E-004	200 540 Flow 0 0 0 se upstr 41-8000	10080 ream stor 0-1000-80	rage 000
	1! 30 Replace	5 60 0 120 Re Fl es Downstra Invert I Design D Design F Fl es Downstra Invert I	180 240 eturn Perio (years) 10 ap Valve eam Link evel (m) flow (l/s) ap Valve eam Link evel (m)	360 480 od Clin 2 30 00 <u>Node S</u> x √ 11.755 1.000 0.8 <u>Node S</u> x √ 10.355	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 10 288 dditional (A %) 4ydro-Bral Obje Sump Avai oduct Nur t Diameter (4ydro-Bral Diameter (4ydro-Bral Obje Sump Avai oduct Nur	Area 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI	72 86 9 nal F 2 %) inimi E-004	200 640 Flow 0 0 0 se upstr 41-8000 se upstr 49-1200	10080 ream stor)-1000-80 ream stor	rage 000 rage 200
	1! 30 Replace	5 60 0 120 Re Fl es Downstro Invert L Design D Design F Fl es Downstro Invert L Design D	180 240 eturn Perio (years) (years) 10 ap Valve eam Link evel (m) flow (I/s) ap Valve eam Link evel (m) epth (m)	360 480 od Clin 2 30 00 <u>Node S'</u> × √ 11.755 1.000 0.8 <u>Node S'</u> × √ 10.355 1.200	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 10 288 dditional (A %) 4ydro-Bral Obje Sump Avai roduct Nur t Diameter (4ydro-Bral Diameter (Obje Sump Avai roduct Nur t Diameter (Diameter (1000000000000000000000000000000000000	60 80 Area 0 0 0 ke [®] Col ctive lable mber r (m) mm) ke [®] Col ctive lable mber r (m) mm)	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI 0.075	72 80 0 nal F ₹ %) inimi E-004	200 640 Flow 0 0 0 se upstr 41-8000 se upstr 49-1200	10080 ream stor 0-1000-80 ream stor 0-1200-12	rage 200
	1! 30 Replace	5 60 0 120 Re Fl es Downstru Design D Design F Fl es Downstru Design D Design D Design F	180 240 eturn Perio (years) (ap Valve eam Link evel (m) flow (I/s) ap Valve eam Link evel (m) epth (m) flow (I/s)	360 480 od Clin 2 30 00 <u>Node S</u> × √ 11.755 1.000 0.8 <u>Node S</u> × √ 10.355 1.200 1.2	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 10 288 dditional (A %) 4ydro-Bral Obje Sump Avai roduct Nur t Diameter (4ydro-Bral Diameter (Obje Sump Avai roduct Nur t Diameter (1000000000000000000000000000000000000	60 80 Area 0 0 0 ke [®] Con ctive lable mber r (m) mm) ke [®] Con imm) ke [®] Con imm)	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI 0.075 1200	72 80 9 nal F 3 %) inimi E-004	200 640 Clow 0 0 0 se upstr 41-8000 se upstr 49-1200	10080 ream stor 0-1000-80 ream stor 0-1200-12	rage 2000 2000
	1! 30 Replace	5 60 0 120 Re Fl es Downstro Invert I Design D Design F Fl es Downstro Invert I Design D Design F	180 240 eturn Perio (years) (ap Valve eam Link evel (m) flow (I/s) ap Valve eam Link evel (m) epth (m) flow (I/s)	360 480 od Clin 2 30 00 <u>Node S'</u> × √ 11.755 1.000 0.8 <u>Node S'</u> × √ 10.355 1.200 1.2 <u>Node S'</u>	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C Min Min W17-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 10 288 dditional (A %) 4ydro-Bral Obje Sump Avai roduct Nur t Diameter (4ydro-Bral Cobje Sump Avai roduct Nur t Diameter (4ydro-Bral Diameter (4ydro-Bral	60 80 Area 0 0 0 ke [®] Con ctive lable mber r (m) mm) ke [®] Con ctive lable mber r (m) mm) ke [®] Con	4320 5760 Additio (C mtrol (HE) Mi √ CTL-SHI 0.075 1200 mtrol (HE) Mi √ CTL-SHI 0.075 1200 mtrol	72 80 9 nal F 3 %) inimi E-004	200 640 Flow 0 0 0 se upstr 41-8000 se upstr 49-1200	10080 ream stor 0-1000-80 ream stor 0-1200-12	rage 200
	1! 30 Replace	5 60 0 120 Re Fl es Downstra Invert I Design D Design F Fl es Downstra Invert I Design D Design F	180 240 eturn Perio (years) 10 ap Valve eam Link evel (m) epth (m) flow (I/s) ap Valve eam Link evel (m) epth (m) flow (I/s)	360 480 od Clin 2 30 00 <u>Node S</u> × √ 11.755 1.000 0.8 <u>Node S</u> × √ 10.355 1.200 1.2 <u>Node S</u>	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 10 288 dditional (A %) iydro-Bral Obje Sump Avai roduct Nur t Diameter Diameter (iydro-Bral Sump Avai roduct Nur t Diameter (iydro-Bral Diameter (iydro-Bral	60 80 Area 0 0 0 0 ke [®] Con ctive lable mber r (m) mm) ke [®] Con ctive lable mber r (m) mm) ke [®] Con ctive	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi	72 8(onal F 2 %) inimi E-004 inimi	200 640 Flow 0 0 0 0 se upstr 41-8000 se upstr 49-1200 se upstr	10080 ream stor 0-1000-80 ream stor 0-1200-12	rage 200 rage
	1! 30 Replace	5 60 0 120 Re Fl es Downstra Invert I Design D Design F Pes Downstra Invert I Design D Design F	180 240 eturn Perio (years) (ap Valve eam Link evel (m) epth (m) flow (l/s) ap Valve eam Link evel (m) epth (m) flow (l/s)	360 480 od Clin 2 30 00 <u>Node S</u> × √ 11.755 1.000 0.8 <u>Node S</u> × √ 10.355 1.200 1.2 <u>Node S</u> × √	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C Min Min W17-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 10 288 dditional (A %) 4ydro-Bral Obje Sump Avai oduct Nur t Diameter Diameter (4ydro-Bral Obje Sump Avai oduct Nur t Diameter Diameter (4ydro-Bral Diameter (0bje Sump Avai oduct Nur t Diameter (0bje Sump Avai Obje Sump Avai Obje Sump Avai	60 80 Area 0 0 0 ctive lable mber r (m) mm) ke [®] Col ctive lable mber r (m) mm) ke [®] Col ctive lable mber ctive lable mber r (m) mm) ctive lable mber r (m) mm) ctive lable	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √	72 8(onal F 2 %) inimi E-004 inimi	200 640 Flow 0 0 0 se upstr 41-8000 se upstr 49-1200 se upstr	10080 ream stor 0-1000-80 ream stor	rage 200 rage
	1! 30 Replace Replace	5 60 0 120 Re Fl es Downstro Invert L Design D Design F Fl es Downstro Design F Fl es Downstro Design F	180 240 eturn Perio (years) (ap Valve eam Link evel (m) flow (l/s) ap Valve eam Link evel (m) flow (l/s) ap Valve eam Link evel (m) flow (l/s)	360 480 od Clin 2 30 00 Node S ¹ × √ 11.755 1.000 0.8 Node S ¹ × √ 10.355 1.200 1.2 Node S ¹ × √ 1.200	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C Min Min W17-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 0 288 dditional (A%) 4ydro-Bral Obje Sump Avai oduct Nur t Diameter Diameter (4ydro-Bral Obje Sump Avai oduct Nur t Diameter Diameter (4ydro-Bral Obje Sump Avai oduct Nur t Diameter (4ydro-Bral Obje Sump Avai oduct Nur t Diameter (4ydro-Bral Obje Sump Avai oduct Nur t Diameter (4ydro-Bral	Area 0 0 0 0 ke [®] Co ctive lable mber r (m) mm) ke [®] Co ctive lable mber r (m) mm) ke [®] Co	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI 0.075 1200	72 86 9 nal F 3 % inimi E-004 inimi E-004	200 640 Flow 0 0 0 se upstr 41-8000 se upstr 49-1200 se upstr 49-1200	10080 ream stor 0-1000-80 ream stor 0-1200-12	rage 200 rage 200
	1! 30 Replace Replace	5 60 0 120 Re Fl es Downstra Invert I Design D Design F Fl es Downstra Invert I Design D Design F	180 240 eturn Perio (years) ap Valve eam Link evel (m) epth (m) flow (I/s) ap Valve eam Link evel (m) epth (m) flow (I/s) ap Valve eam Link evel (m) epth (m) flow (I/s)	360 480 od Clin 2 30 00 <u>Node S</u> × √ 11.755 1.000 0.8 <u>Node S</u> × √ 10.355 1.200 1.2 <u>Node S</u> × √ 10.355	Stc 600 720 mate Char (CC %) W19-HB C Min Min W10-HB C Min Min W17-HB C	orm Dui 96 144 nge A 20 20 20 20 20 20 20 20 20 20 20 20 20	rations 0 216 10 288 10 288	Area 0 0 0 0 ke [®] Co ber r (m) mm) ke [®] Co ber r (m) mm) ke [®] Co ctive lable mber r (m) mm) ke [®] Co	4320 5760 Additio (C ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI 0.075 1200 ntrol (HE) Mi √ CTL-SHI 0.075 1200	72 86 9 nal F 2 %) inimi E-004 inimi E-004	200 540 Flow 0 0 0 0 se upstr 41-8000 se upstr 49-1200 se upstr 49-1200	10080 ream stor)-1000-80 ream stor)-1200-12	rage 200 rage 200

- o -	Remco Ltd t/a Malone	File: FLOW 24-08-19.pfd	Page 9
Causeway		Network: Storm Network	
		13/09/2024	
	Node BASIN OUT Flow thro	ugh Pond Storage Structure	
		- <u></u>	
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)	0.00000 0.00000 Invert L	Porosity 1.00 Main Cha evel (m) 11.800 Main Cha	nnel Length (m) 10.000 nnel Slope (1:X) 9999999.0
Safety Factor	2.0 Time to half empt	y (mins) 0	Main Channel n 0.025
	Ini BASIN IN2	ets BASIN IN1	
Depth A	area Inf Area Depth Are	a Inf Area Depth Area	Inf Area
(m) (m^2) (m^2) (m) (m^2) (m) (m^2	²) (m ²) (m) (m ²)	(m²)
0.000	5.5 0.0 0.800 208	.0 0.0 0.801 0.0	0.0
	Node SW09 Depth/A	rea Storage Structure	
Base Inf Coefficient Side Inf Coefficient	(m/hr) 0.00000 Safety Fa (m/hr) 0.00000 Porc	ctor 2.0 Invert sity 1.00 Time to half emp	Level (m) 10.380 oty (mins) 0
Depth A	rea Inf Area Depth Are	ea Inf Area Depth Area	Inf Area
(m) (0.000 1	m²) (m²) (m) (m 28.0 0.0 0.760 128	(m^2) (m^2) (m) (m^2) (m) (m^2)	(m²) 0.0
	Node SW16 Depth/A	rea Storage Structure	
Base Inf Coefficient	: (m/hr) 0.00000 Safety Fa	ctor 2.0 Invert	Level (m) 11.040
Side Inf Coefficient	(m/hr) 0.00000 Porc	sity 1.00 Time to half emp	oty (mins)
Depth /	Area Inf Area Depth Are	a Inf Area Depth Area	Inf Area
(m) (0.000	, m²) (m²) (m) (m ² 79.0 0.0 0.760 79	(m²) (m) (m²) 0 0.0 0.761 0.0	(m²) 0.0

File: FLOW 24-08-19.pfd

Network: Storm Network

Conor Macken 13/09/2024

Induce (init) (init)<
15 minute winter SW01 10 10.779 0.044 3.4 0.0537 0.0000 0K 15 minute winter SW03 10 10.679 0.074 3.4 0.0537 0.0000 0K 15 minute winter SW03 10 10.679 0.071 6.6 0.0884 0.0000 0K 15 minute winter SW05 10 10.649 0.068 8.2 0.0851 0.0000 0K 15 minute winter SW06 10 10.637 0.191 14.1 0.2365 0.0000 0K 15 minute winter SW09 248 10.453 0.023 0.9 0.111 0.000 0K 360 minute winter SW10-HB 248 10.453 0.023 0.9 0.2163 0.0000 0K 360 minute winter SW12 248 10.258 0.023 0.9 0.2164 0.0000 0K 360 minute winter SW12 248 10.258 0.023 0.9 0.2164 0.0000 0K 360 minute winter SW12 248 10.253
15 minute winter SW02 10 10.779 0.0444 5.4 0.0337 0.0000 0K 15 minute winter SW04 10 10.637 0.058 5.0 0.0725 0.0000 0K 15 minute winter SW05 10 10.649 0.068 8.2 0.0881 0.0000 0K 15 minute winter SW06 10 10.647 0.164 9.8 0.2035 0.0000 0K 15 minute winter SW06 10 10.637 0.191 14.1 0.2367 0.0000 0K 360 minute winter SW09 248 10.453 0.093 0.1111 0.0000 0K 360 minute winter SW12 248 10.258 0.023 0.9 0.1111 0.0000 0K 360 minute winter SW13 248 10.258 0.023 0.9 0.0264 0.0000 0K 360 minute winter SW13 248 10.218 0.033 1.4 0.0264 0.0000 0K 360 minute winter SW14 10 11.466 0.041
15 minute winter SW03 10 10.053 0.071 6.0 0.084 0.0000 0K 15 minute winter SW05 10 10.670 0.071 6.0 0.084 0.0000 0K 15 minute winter SW05 10 10.642 0.164 9.8 0.2035 0.0000 0K 15 minute winter SW07 10 10.633 0.202 16.0 0.2282 0.0000 0K 360 minute winter SW09 248 10.453 0.098 0.9 0.1111 0.0000 0K 360 minute winter SW10-HB 248 10.258 0.023 0.9 0.0264 0.0000 0K 360 minute winter SW12 248 10.238 0.023 0.9 0.0264 0.0000 0K 360 minute winter SW13 248 10.203 0.22 0.1546 0.0000 0K 360 minute winter SW14 10 11.48 0.031 1.6 0.348 0.0000 0K 360 minute winter SW15 280 11.218 0.027
15 minute winter 5004 10 10.600 0.071 0.08 0.0000 0 K 15 minute winter SW06 10 10.642 0.164 9.8 0.2035 0.0000 0 K 15 minute winter SW07 10 10.637 0.191 14.1 0.2282 0.0000 0 K 15 minute winter SW08 10 10.633 0.022 16.0 0.2282 0.0000 0 K 360 minute winter SW09 248 10.453 0.073 2.1 9.4696 0.0000 0 K 360 minute winter SW12 248 10.258 0.023 0.9 0.0263 0.0000 0 K 360 minute winter SW12 248 10.238 0.023 0.8 0.0260 0.0000 0 K 360 minute winter SW15 280 11.218 0.073 2.0 0.1546 0.0000 0 K 360 minute winter SW15 280 11.218 0.074 0.8 0.2336 0.0000 0 K 360 minute winter SW17-HB 280 11.218 0
15 minute winter SW05 10 10.639 0.000 0.223 0.0000 0K 15 minute winter SW07 10 10.637 0.191 14.1 0.2367 0.0000 0K 15 minute winter SW08 10 10.633 0.202 16.0 0.2282 0.0000 0K 360 minute winter SW09 248 10.453 0.073 2.1 9.4966 0.0000 0K 360 minute winter SW10-HB 248 10.453 0.093 0.9 0.0111 0.0000 0K 360 minute winter SW12 248 10.258 0.023 0.9 0.0264 0.0000 0K 360 minute winter SW13 248 10.203 0.23 0.9 0.0264 0.0000 0K 360 minute winter SW14 10 11.466 0.041 5.7 0.0693 0.0000 0K 360 minute winter SW15 280 11.218 0.021 0.6 0.0348 0.0000 0K 360 minute winter SW19 180 11.218 0.29
15 minute winter SW00 10 10.632 0.104 14.1 0.2367 0.0000 0K 15 minute winter SW07 10 10.633 0.202 16.0 0.2282 0.0000 0K 360 minute winter SW09 248 10.453 0.073 2.1 9.4696 0.0000 0K 360 minute winter SW10-HB 248 10.453 0.073 0.9 0.1263 0.0000 0K 360 minute winter SW12 248 10.258 0.023 0.9 0.0264 0.0000 0K 360 minute winter SW13 248 10.238 0.023 0.8 0.0260 0.0000 0K 360 minute winter SW15 280 11.218 0.023 0.8 0.0260 0.0000 0K 360 minute winter SW15 280 11.218 0.207 0.8 0.0300 0K 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 0K 360 minute winter SW20 14 11.728 0.021
15 minute winter SW08 10 10.633 0.202 16.0 0.2282 0.0000 OK 360 minute winter SW09 248 10.453 0.073 2.1 9.4696 0.0000 OK 360 minute winter SW10-HB 248 10.453 0.023 0.9 0.1111 0.0000 OK 360 minute winter SW11 248 10.258 0.023 0.9 0.0264 0.0000 OK 360 minute winter SW12 248 10.258 0.023 0.9 0.0264 0.0000 OK 360 minute winter SW12 248 10.258 0.023 0.8 0.0260 0.0000 OK 360 minute winter SW14 10 11.466 0.041 5.7 0.0693 0.0000 OK 360 minute winter SW15 280 11.218 0.93 2.0 0.1464 0.0000 OK 360 minute winter SW10/THB 280 11.218 0.217 0.8 0.2326 0.0000 OK 360 minute winter SW10/THB 36 1
360 minute winter SW09 10 100.053 0.000 0.0000 0K 360 minute winter SW10-HB 248 10.453 0.073 2.1 9.4696 0.0000 0K 360 minute winter SW11 248 10.453 0.098 0.9 0.1111 0.0000 0K 360 minute winter SW12 248 10.258 0.023 0.9 0.0264 0.0000 0K 360 minute winter SW13 248 10.258 0.023 0.8 0.0260 0.0000 0K 360 minute winter SW13 248 10.258 0.023 0.8 0.0260 0.0000 0K 360 minute winter SW14 10 11.466 0.041 5.7 0.0693 0.0000 0K 360 minute winter SW17-HB 280 11.218 0.174 8.0 14.3220 0.0000 0K 360 minute winter SW17-HB 280 11.218 0.217 0.8 0.236 0.0000 0K 360 minute winter SW21 264 11.516 0.016 <t< td=""></t<>
360 minute winter SW10-HB 248 10.453 0.098 0.9 0.1111 0.0000 OK 360 minute winter SW11 248 10.258 0.023 0.9 0.0263 0.0000 OK 360 minute winter SW12 248 10.258 0.023 0.9 0.0264 0.0000 OK 360 minute winter SW13 248 10.203 0.023 0.9 0.0264 0.0000 OK 360 minute winter SW14 10 11.466 0.041 5.7 0.0693 0.0000 OK 360 minute winter SW15 280 11.218 0.178 3.0 14.3220 0.0000 OK 360 minute winter SW16 280 11.218 0.207 0.8 0.2336 0.0000 OK 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW24 256 9.787<
360 minute winter SW11 248 10.326 0.023 0.9 0.0263 0.0000 OK 360 minute winter SW12 248 10.258 0.023 0.9 0.0264 0.0000 OK 360 minute winter SW13 248 10.203 0.023 0.8 0.0264 0.0000 OK 15 minute winter SW14 10 11.466 0.041 5.7 0.0693 0.0000 OK 360 minute winter SW15 280 11.218 0.073 0.0 14.3220 0.0000 OK 360 minute winter SW16 280 11.218 0.078 3.0 14.3220 0.0000 OK 360 minute winter SW16 280 11.218 0.021 0.8 0.2336 0.0000 OK 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW21 264 11.516
360 minute winter SW12 248 10.258 0.023 0.9 0.0264 0.0000 OK 360 minute winter SW13 248 10.258 0.023 0.8 0.0260 0.0000 OK 360 minute winter SW14 10 11.466 0.041 5.7 0.0593 0.0000 OK 360 minute winter SW15 280 11.218 0.093 2.0 0.1546 0.0000 OK 360 minute winter SW16 280 11.218 0.07 0.8 0.2234 0.0000 OK 360 minute winter SW17-HB 280 11.218 0.07 0.8 0.2346 0.0000 OK 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter SW19-HB 336 11.929 0.174 0.8 0.1968 0.0000 OK 360 minute winter SW20 14 11.728 0.021 0.6 0.0185 0.0000 OK 360 minute winter SW21 264 11.516
360 minute winter SW13 248 10.203 0.023 0.8 0.0260 0.0000 OK 15 minute winter SW14 10 11.466 0.041 5.7 0.0693 0.0000 OK 360 minute winter SW15 280 11.218 0.093 2.0 0.1546 0.0000 OK 360 minute winter SW16 280 11.218 0.077 0.8 0.2336 0.0000 OK 360 minute winter SW17-HB 280 11.218 0.207 0.8 0.2336 0.0000 OK 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter SW19-HB 336 11.929 0.174 0.8 0.1968 0.0000 OK 360 minute winter SW20 14 11.725 0.000 0.6 0.0185 0.0000 OK 360 minute winter SW21 266 9.787 0.036 2.2 0.0419 0.000 OK 360 minute winter SW01 1.000 SW02<
15 minute winter SW14 10 11.466 0.041 5.7 0.0603 0.0000 OK 360 minute winter SW15 280 11.218 0.093 2.0 0.1546 0.0000 OK 360 minute winter SW15 280 11.218 0.078 3.0 14.3220 0.0000 OK 360 minute winter SW17-HB 280 11.218 0.27 0.8 0.2336 0.0000 OK 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter SW19-HB 336 11.929 0.174 0.8 0.1968 0.0000 OK 360 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW21 264 11.516 0.016 0.6 0.0185 0.0000 OK 360 minute winter SW22 256 9.787 0.036 2.2 0.0410 0.0000 OK 360 minute winter SW01 1.000 SW02
360 minute winter SW15 280 11.218 0.093 2.0 0.1546 0.0000 OK 360 minute winter SW16 280 11.218 0.178 3.0 14.3220 0.0000 OK 360 minute winter SW17-HB 280 11.218 0.207 0.8 0.2336 0.0000 OK 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter SW19-HB 336 11.929 0.129 1.9 0.1460 0.0000 OK 360 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW21 264 11.516 0.016 0.6 0.0185 0.0000 OK 360 minute winter SW23 1 11.275 0.000 0.0 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK 360 minute winter SW01 1.000 SW02 1.7 </td
360 minute winter SW16 280 11.218 0.178 3.0 14.3220 0.0000 OK 360 minute winter SW17-HB 280 11.218 0.207 0.8 0.2336 0.0000 OK 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter SW19-HB 336 11.929 0.174 0.8 0.1968 0.0000 OK 360 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW21 264 11.516 0.016 0.6 0.0185 0.0000 OK 360 minute winter SW22 256 9.787 0.036 2.2 0.0409 0.0000 OK 360 minute winter SW01 1.000 SW02 1.7 0.390 0.042 0.1035 15 minute winter SW02 1.001 SW03 3
360 minute winter SW17-HB 280 11.218 0.207 0.8 0.2336 0.0000 OK 360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter BASIN OUT 336 11.929 0.129 1.9 0.1460 0.0000 OK 360 minute winter SW19-HB 336 11.929 0.174 0.8 0.1968 0.0000 OK 360 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW21 264 11.516 0.016 0.6 0.0185 0.0000 OK 360 minute winter SW22 256 9.989 0.036 2.2 0.0409 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK 360 minute winter SW01 1.000 SW02 1.7 0.390 0.042 <
360 minute winter SW18 256 10.144 0.031 1.6 0.0348 0.0000 OK 360 minute winter BASIN OUT 336 11.929 0.129 1.9 0.1460 0.0000 OK 360 minute winter SW19-HB 336 11.929 0.174 0.8 0.1968 0.0000 OK 15 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW21 264 11.516 0.016 0.6 0.0185 0.0000 OK 360 minute winter SW22 256 9.989 0.036 2.2 0.0409 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK 360 minute winter SW01 1.000 SW02 1.7 0.390 0.042 0.1035 15 minute winter SW01 1.001 SW03 3.3 0.495 0.083 0.1134 15 minute winter SW03 1.002 SW04 4.9 0.5
360 minute winter BASIN OUT 336 11.929 0.129 1.9 0.1460 0.0000 OK 360 minute winter SW19-HB 336 11.929 0.174 0.8 0.1968 0.0000 OK 15 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW21 264 11.516 0.016 0.6 0.0185 0.0000 OK 360 minute winter SW22 256 9.989 0.036 2.2 0.0409 0.0000 OK 360 minute winter SW23 1 11.275 0.000 0.0 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK Link Event US Link DS Outflow Velocity Flow/Cap Link Discharge (Upstream Depth) Node I//s0 SW02 1.7 0.390 0.042 0.1035 15 minute winter SW02 1.001 SW03 3.3 0.495<
360 minute winter SW19-HB 336 11.929 0.174 0.8 0.1968 0.0000 OK 15 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW21 264 11.516 0.016 0.6 0.0185 0.0000 OK 360 minute winter SW22 256 9.989 0.036 2.2 0.0409 0.0000 OK 360 minute winter SW23 1 11.275 0.000 0.0 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK 15 minute winter SW01 1.000 SW02 1.7 0.390 0.042 0.1035 15 minute winter SW02 1.001 SW03 3.3 0.495 0.083 0.1134 15 minute winter SW03 1.002 SW04 4.9 0.525 0.122
15 minute winter SW20 14 11.728 0.021 0.6 0.0232 0.0000 OK 360 minute winter SW21 264 11.516 0.016 0.6 0.0185 0.0000 OK 360 minute winter SW22 256 9.989 0.036 2.2 0.0409 0.0000 OK 15 minute summer SW23 1 11.275 0.000 0.0 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK 15 minute winter SW01 1.000 SW02 1.7 0.390 0.042 0.1035 15 minute winter SW02 1.001 SW03 3.3 0.495 0.083 0.1134 15 minute winter SW03 1.002 SW04 4.9 0.525 0.122 0.0565 15 minute winter SW05 1.004 SW06 8.1 0.599 0.203 0.3596
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
360 minute winter SW22 256 9.989 0.036 2.2 0.0409 0.0000 OK 15 minute summer SW23 1 11.275 0.000 2.2 0.0411 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK Link Event US Link DS Outflow Velocity Flow/Cap Link Discharge 15 minute winter SW01 1.000 SW02 1.7 0.390 0.042 0.1035 Vol (m³) 15 minute winter SW02 1.001 SW03 3.3 0.495 0.083 0.1134 15 minute winter SW04 1.003 SW05 6.5 0.626 0.161 0.0308 15 minute winter SW04 1.003 SW06 8.1 0.599 0.203 0.3596 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0
15 minute summer SW23 1 11.275 0.000 0.0000 0.0000 OK 360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK Link Event (Upstream Depth) US Link DS Outflow Node Velocity (I/s) Flow/Cap Link Vol (m³) Discharge Vol (m³) 15 minute winter SW01 1.000 SW02 1.7 0.390 0.042 0.1035 15 minute winter SW02 1.001 SW03 3.3 0.495 0.083 0.1134 15 minute winter SW03 1.002 SW04 4.9 0.525 0.122 0.0565 15 minute winter SW04 1.003 SW05 6.5 0.626 0.161 0.0308 15 minute winter SW05 1.004 SW06 8.1 0.599 0.203 0.3596 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0919
360 minute winter SW24 256 9.787 0.036 2.2 0.0411 0.0000 OK Link Event (Upstream Depth) US Node Link Node DS Node Outflow (I/s) Velocity (m/s) Flow/Cap Link Vol (m³) Discharge Vol (m³) 15 minute winter SW01 1.000 SW02 1.7 0.390 0.042 0.1035 15 minute winter SW02 1.01 SW03 3.3 0.495 0.083 0.1134 15 minute winter SW03 1.002 SW04 4.9 0.525 0.122 0.0565 15 minute winter SW05 6.5 0.626 0.1611 0.0308 15 minute winter SW05 1.004 SW06 8.1 0.599 0.203 0.3596 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0
Link Event (Upstream Depth)US NodeLink LinkDS NodeOutflow (I/s)Velocity (m/s)Flow/Cap (blow/Cap Vol (m³)Link Discharge Vol (m³)15 minute winterSW011.000SW021.70.3900.0420.103515 minute winterSW021.001SW033.30.4950.0830.113415 minute winterSW031.002SW044.90.5250.1220.056515 minute winterSW041.003SW056.50.6260.1610.030815 minute winterSW051.004SW068.10.5990.2030.359615 minute winterSW061.005SW0712.60.5920.3130.176915 minute winterSW071.006SW0816.00.6750.3980.091915 minute winterSW081.007SW0918.41.5030.4590.1614360 minute winterSW091.008SW10-HB0.90.1360.0120.1008
Link Event OS Link DS Outflow Velocity Flow/Cap Link Discharge (Upstream Depth) Node Node (I/s) (m/s) Vol (m³) Vol (m³) 15 minute winter SW01 1.000 SW02 1.7 0.390 0.042 0.1035 15 minute winter SW02 1.001 SW03 3.3 0.495 0.083 0.1134 15 minute winter SW03 1.002 SW04 4.9 0.525 0.122 0.0565 15 minute winter SW04 1.003 SW05 6.5 0.626 0.161 0.0308 15 minute winter SW05 1.004 SW06 8.1 0.599 0.203 0.3596 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0919 15 minute winter SW08 1.007 SW09 18.4
15 minute winter SW01 1.000 SW02 1.7 0.390 0.042 0.1035 15 minute winter SW02 1.001 SW03 3.3 0.495 0.083 0.1134 15 minute winter SW03 1.002 SW04 4.9 0.525 0.122 0.0565 15 minute winter SW04 1.003 SW05 6.5 0.626 0.161 0.0308 15 minute winter SW05 1.004 SW06 8.1 0.599 0.203 0.3596 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0919 15 minute winter SW08 1.007 SW09 18.4 1.503 0.459 0.1614 360 minute winter SW09 1.008 SW10-HB 0.9 0.136 0.012 0.1008
15 minute winter SW01 1.000 SW02 1.7 0.350 0.042 0.1033 15 minute winter SW02 1.001 SW03 3.3 0.495 0.083 0.1134 15 minute winter SW03 1.002 SW04 4.9 0.525 0.122 0.0565 15 minute winter SW04 1.003 SW05 6.5 0.626 0.161 0.0308 15 minute winter SW05 1.004 SW06 8.1 0.599 0.203 0.3596 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0919 15 minute winter SW08 1.007 SW09 18.4 1.503 0.459 0.1614 360 minute winter SW09 1.008 SW10-HB 0.9 0.136 0.012 0.1008 360 minute winter SW10-HB Hydro-Brake® SW11 0.9 0.36 0.012 0.1008
15 minute winter SW02 1.001 SW03 3.5 0.495 0.085 0.1134 15 minute winter SW03 1.002 SW04 4.9 0.525 0.122 0.0565 15 minute winter SW04 1.003 SW05 6.5 0.626 0.161 0.0308 15 minute winter SW05 1.004 SW06 8.1 0.599 0.203 0.3596 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0919 15 minute winter SW08 1.007 SW09 18.4 1.503 0.459 0.1614 360 minute winter SW09 1.008 SW10-HB 0.9 0.136 0.012 0.1008 360 minute winter SW10-HB Hydro-Brake® SW11 0.9 0.459 0.1008
15 minute winter SW03 1.002 SW04 4.5 0.525 0.122 0.0505 15 minute winter SW04 1.003 SW05 6.5 0.626 0.161 0.0308 15 minute winter SW05 1.004 SW06 8.1 0.599 0.203 0.3596 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0919 15 minute winter SW08 1.007 SW09 18.4 1.503 0.459 0.1614 360 minute winter SW09 1.008 SW10-HB 0.9 0.136 0.012 0.1008 360 minute winter SW10-HB Hydro-Brake® SW11 0.9 0.136 0.012 0.1008
15 minute winter SW04 1.005 SW05 0.5 0.020 0.101 0.0506 15 minute winter SW05 1.004 SW06 8.1 0.599 0.203 0.3596 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0919 15 minute winter SW08 1.007 SW09 18.4 1.503 0.459 0.1614 360 minute winter SW09 1.008 SW10-HB 0.9 0.136 0.012 0.1008
15 minute winter SW05 1.004 SW06 0.11 0.555 0.205 0.5550 15 minute winter SW06 1.005 SW07 12.6 0.592 0.313 0.1769 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0919 15 minute winter SW08 1.007 SW09 18.4 1.503 0.459 0.1614 360 minute winter SW09 1.008 SW10-HB 0.9 0.136 0.012 0.1008 360 minute winter SW10-HB Hydro-Brake® SW11 0.9 0.136 0.012 0.1008
15 minute winter SW07 1.005 SW07 1.10 0.051 0.015 0.015 15 minute winter SW07 1.006 SW08 16.0 0.675 0.398 0.0919 15 minute winter SW08 1.007 SW09 18.4 1.503 0.459 0.1614 360 minute winter SW09 1.008 SW10-HB 0.9 0.136 0.012 0.1008 360 minute winter SW10-HB Hydro-Brake® SW11 0.9 0.136 0.012 0.1008
15 minute winter SW09 100 0000 0000 0000 15 minute winter SW08 1.007 SW09 18.4 1.503 0.459 0.1614 360 minute winter SW09 1.008 SW10-HB 0.9 0.136 0.012 0.1008 360 minute winter SW10-HB Hydro-Brake® SW11 0.9 0.136 0.012 0.1008
360 minute winter SW09 1.008 SW10-HB 0.9 0.136 0.012 0.1008 360 minute winter SW10-HB Hydro-Brake® SW11 0.9 0.136 0.012 0.1008
360 minute winter SW10-HB Hydro-Brake® SW11 09
360 minute winter SW11 1.010 SW12 0.9 0.340 0.012 0.0414
360 minute winter SW12 1.011 SW13 0.8 0.342 0.012 0.0330
360 minute winter SW13 1.012 SW18 0.8 0.276 0.012 0.0505
15 minute winter SW14 2.000 SW15 5.7 0.607 0.075 0.1353
360 minute winter SW15 2.001 SW16 2.0 0.510 0.050 0.3506
360 minute winter SW16 2.002 SW17-HB 0.8 0.172 0.019 0.1717
360 minute winter SW17-HB Hydro-Brake [®] SW18 0.7
360 minute winter SW18 1.013 SW22 1.6 0.369 0.022 0.1673
360 minute winter SW18 1.013 SW22 1.6 0.369 0.022 0.1673 360 minute winter BASIN OUT 3.000 SW19-HB 0.8 0.161 0.019 0.2112
360 minute winter SW18 1.013 SW22 1.6 0.369 0.022 0.1673 360 minute winter BASIN OUT 3.000 SW19-HB 0.8 0.161 0.019 0.2112 360 minute winter SW19-HB Hydro-Brake® SW20 0.6 0.6
360 minute winter SW18 1.013 SW22 1.6 0.369 0.022 0.1673 360 minute winter BASIN OUT 3.000 SW19-HB 0.8 0.161 0.019 0.2112 360 minute winter SW19-HB Hydro-Brake® SW20 0.6
360 minute winter SW18 1.013 SW22 1.6 0.369 0.022 0.1673 360 minute winter BASIN OUT 3.000 SW19-HB 0.8 0.161 0.019 0.2112 360 minute winter SW19-HB Hydro-Brake® SW20 0.6 0.6 0.015 0.0519 360 minute winter SW21 3.003 SW22 0.6 0.486 0.010 0.0319
360 minute winter SW18 1.013 SW22 1.6 0.369 0.022 0.1673 360 minute winter BASIN OUT 3.000 SW19-HB 0.8 0.161 0.019 0.2112 360 minute winter SW19-HB Hydro-Brake® SW20 0.6 0.6 0.015 0.0519 360 minute winter SW21 3.003 SW22 0.6 0.486 0.010 0.0319 360 minute winter SW22 1.014 SW24 2.2 0.456 0.031 0.2374
360 minute winterSW181.013SW221.60.3690.0220.1673360 minute winterBASIN OUT3.000SW19-HB0.80.1610.0190.2112360 minute winterSW19-HBHydro-Brake®SW200.6

Flow+ v12.0 Copyright © 1988-2024 Causeway Technologies Ltd

File: FLOW 24-08-19.pfd Network: Storm Network Conor Macken 13/09/2024

Page 11

Results for 2	year +20% CC Critical Storm Duration.	Lowest mass balance: 98.91%

No	de Event	US	Peak	Level	Depth	Inflo	w Node	Flood	Status	
		Node	(mins)	(m)	(m)	(l/s)	Vol (m	³) (m³)		
360 m	inute winter	SW25	256	9.717	0.038	2.	2 0.042	0.0000	OK	
360 m	inute winter	SW26	256	9.651	0.022	2.	2 0.024	4 0.0000	ОК	
360 m	inute winter	SW27	256	8.265	0.037	2.	2 0.042	0.0000	ОК	
360 m	inute winter	EXSW MH	256	8.250	0.034	2.	2 0.000	0.0000	OK	
15 mir	nute winter	SW28	10	12.108	0.033	1.	7 0.044	1 0.0000	OK	
15 mir	nute winter	SW29	10	12.019	0.037	3.	4 0.048	0.0000	ОК	
15 mir	nute winter	SW30	10	11.936	0.035	1.	7 0.047	2 0.0000	ОК	
360 m	inute winter	SW31	336	11.929	0.089	1.	2 0.114	8 0.0000	ОК	
360 m	inute winter	BASIN IN1	336	11.931	0.131	1.	2 0.148	0.0000	ОК	
15 mir	nute winter	SW32	10	11.997	0.033	1.	7 0.043	0.0000	ОК	
15 mir	nute winter	SW33	10	11.960	0.046	3.	4 0.059	0.0000	ОК	
360 m	inute winter	SW34	336	11.930	0.078	0.	9 0.101	.1 0.0000	ОК	
360 m	inute winter	BASIN IN2	336	11.930	0.130	1.	1 0.147	0.0000	ОК	
Link Event	US	Link		DS	Outf	low	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node			Node	(1/	s)	(m/s)		Vol (m³)	Vol (m ³)
360 minute winter	SW25	1.016		SW26	•••	2.2	0.613	0.031	0.0446	
360 minute winter	SW26	1.017		SW27		2.2	0.621	0.010	0.1405	
360 minute winter	SW27	1.018		EXSW MH		2.2	0.465	0.028	0.0116	59.8
15 minute winter	SW28	5.000		SW29		1.7	0.428	0.048	0.0790	
15 minute winter	SW29	5.001		SW31		3.4	0.448	0.059	0.0926	
15 minute winter	SW30	6.000		SW31		1.7	0.235	0.053	0.1196	
360 minute winter	SW31	5.002		BASIN IN1		1.2	0.338	0.037	0.1994	
360 minute winter	BASIN IN1	Flow through	pond	BASIN OU	Г	1.9	0.020	0.012	8.5874	
15 minute winter	SW32	7.000		SW33		1.7	0.366	0.046	0.0470	
15 minute winter	SW33	7.001		SW34		3.4	0.483	0.092	0.0867	
360 minute winter	SW34	7.002		BASIN IN2		0.9	0.339	0.025	0.1867	
360 minute winter	BASIN IN2	Flow through	pond	BASIN OU	Г	1.9	0.020	0.012	8.5874	

Node Event	: 1	US	Peak	Level	Depth	Inflow	Node	Flood	Statu	S
	N	ode (mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)		
15 minute winte	er SWO	1	10	10.918	0.043	3.2	0.0553	0.0000	ОК	
15 minute winte	er SWO	2	10	10.795	0.060	6.4	0.0740	0.0000	OK	
15 minute sumr	ner SWO	3	10	10.729	0.094	9.5	0.1180	0.0000	ОК	
15 minute sumr	ner SW0	4	10	10.720	0.121	12.0	0.1505	0.0000	ОК	
15 minute sumr	ner SW0	5	10	10.706	0.125	15.5	0.1559	0.0000	ОК	
15 minute winte	er SWO	6	9	10.688	0.210	20.8	0.2611	0.0000	ОК	
15 minute sumr	ner SW0	7	9	10.682	0.236	25.0	0.2920	0.0000	SURCHAF	RGED
15 minute sumr	ner SW0	8	9	10.677	0.246	26.0	0.2779	0.0000	SURCHAF	RGED
360 minute win	ter SW0	9	272	10.520	0.140	3.5	18.0300	0.0000	ОК	
360 minute win	ter SW1	0-HB	272	10.520	0.165	0.9	0.1862	0.0000	ОК	
360 minute win	ter SW1	.1	272	10.327	0.024	0.9	0.0273	0.0000	ОК	
360 minute win	ter SW1	.2	272	10.259	0.024	0.9	0.0275	0.0000	ОК	
360 minute win	ter SW1	.3	272	10.204	0.024	0.9	0.0270	0.0000	ОК	
15 minute sumr	ner SW1	.4	10	11.481	0.056	10.5	0.0938	0.0000	ОК	
480 minute win	ter SW1	.5	440	11.428	0.303	2.8	0.5067	0.0000	SURCHAF	RGED
480 minute win	ter SW1	.6	440	11.428	0.388	4.0	31.3268	0.0000	SURCHAF	RGED
480 minute win	ter SW1	7-HB	440	11.428	0.417	0.8	0.4721	0.0000	SURCHAF	RGED
480 minute sum	nmer SW1	.8	280	10.144	0.031	1.6	0.0352	0.0000	ОК	
360 minute win	ter BASI	N OUT	328	12.016	0.216	4.7	0.2448	0.0000	ОК	
360 minute win	ter SW1	.9-HB	352	12.016	0.261	0.8	0.2957	0.0000	SURCHAF	RGED
15 minute winte	er SW2	.0	12	11.728	0.021	0.6	0.0236	0.0000	OK	
30 minute winte	er SW2	1	31	11.516	0.016	0.6	0.0185	0.0000	OK	
60 minute winte	er SW2	.2	69	9.989	0.036	2.2	0.0412	0.0000	OK	
15 minute sumr	ner SW2	3	1	11.275	0.000	0.0	0.0000	0.0000	OK	
60 minute winte	er SW2	4	70	9.788	0.037	2.2	0.0415	0.0000	OK	
Link Event	US	Lir	nk	DS	Out	flow V	elocity Fl	ow/Cap	Link	Discharge
Link Event (Upstream Depth)	US Node	Lir	nk	DS Node	Out (I,	flow V /s)	elocity Fl (m/s)	ow/Cap	Link Vol (m³)	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter	US Node SW01	Lir 1.000	nk	DS Node SW02	Out (I,	flow V /s) 3.2	elocity Fl (m/s) 0.468	ow/Cap 0.080	Link Vol (m³) 0.1627	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter	US Node SW01 SW02	Lir 1.000 1.001	ık	DS Node SW02 SW03	Out (I,	flow V /s) 3.2 6.3	elocity Fl (m/s) 0.468 0.553	ow/Cap 0.080 0.158	Link Vol (m ³) 0.1627 0.1997	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer	US Node SW01 SW02 SW03	Lir 1.000 1.001 1.002	ık	DS Node SW02 SW03 SW04	Out (I,	flow V /s) 3.2 6.3 9.2	elocity Fl (m/s) 0.468 0.553 0.579	ow/Cap 0.080 0.158 0.229	Link Vol (m ³) 0.1627 0.1997 0.1127	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer	US Node SW01 SW02 SW03 SW04	Lir 1.000 1.001 1.002 1.003	ık	DS Node SW02 SW03 SW04 SW05	Out (I,	flow V /s) 3.2 6.3 9.2 12.4	elocity Fl (m/s) 0.468 0.553 0.579 0.715	ow/Cap 0.080 0.158 0.229 0.307	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer	US Node SW01 SW02 SW03 SW04 SW05	Lir 1.000 1.001 1.002 1.003 1.004	ık	DS Node SW02 SW03 SW04 SW05 SW06	Out (I,	flow V /s) 3.2 6.3 9.2 12.4 17.6	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685	0.080 0.158 0.229 0.307 0.442	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06	Lir 1.000 1.001 1.002 1.003 1.004 1.005	nk	DS Node SW02 SW03 SW04 SW05 SW06 SW07	Out (I,	flow V /s) 3.2 6.3 9.2 12.4 17.6 23.0	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709	0.080 0.158 0.229 0.307 0.442 0.570	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW06	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006	ık	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08	Out (I)	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833	0.080 0.158 0.229 0.307 0.442 0.570 0.647	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW06 SW07 SW08	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007	ık	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09	Out (I)	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW08 SW09	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008	ık	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H	Out (I,	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136	0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro-	ık Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11	Out (I,	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136	0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB SW11	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro-1 1.010	ı k Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12	Out (I) B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136	0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB SW11 SW12	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011	ık Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW12 SW13	Out (I) B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0439	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW07 SW08 SW07 SW08 SW07 SW08 SW07 SW08 SW07 SW08 SW07 SW08 SW07 SW02 SW10 SW11	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012	ı k Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW11 SW12 SW13 SW18	Out (I) B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0351	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB SW11 SW12 SW13 SW14	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000	ιk Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW11 SW12 SW13 SW18 SW15	Out (I,	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 10.5	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.138	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB SW11 SW12 SW11 SW12 SW13 SW14 SW15	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000 2.001	ιk Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW12 SW13 SW18 SW15 SW16	Out (I,	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 10.5 2.6	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.728 0.551	0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.138 0.066	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter 480 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-HB SW11 SW12 SW12 SW13 SW14 SW15 SW16	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000 2.001 2.001	n k Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW12 SW13 SW18 SW15 SW16 SW17-H	Out (I) B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 10.5 2.6 0.8	elocity (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.551 0.178	0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691 0.1901	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 15 minute summer 480 minute winter 480 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW10-HB SW11 SW12 SW11 SW12 SW13 SW14 SW12 SW13 SW14 SW15 SW16 SW16-HB	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000 2.001 2.002 Hydro- 1.002	∙k Brake® Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW12 SW13 SW18 SW15 SW16 SW17-H SW18 SW17-H	Out (I) B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 10.5 2.6 0.8 0.7	elocity Fl (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.551 0.178	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.014 0.015 0	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691 0.1901	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter 480 minute summer 480 minute summer 480 minute summer	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB SW11 SW12 SW13 SW14 SW13 SW14 SW15 SW16 SW17-HB SW18	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000 2.001 2.002 Hydro- 1.013 - 1.013	∙k Brake® Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW12 SW13 SW18 SW15 SW16 SW17-H SW18 SW17-H SW18	Out (I) B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 10.5 2.6 0.8 0.7 1.6	elocity (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.551 0.178 0.373 0.373	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.023 0.023	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691 0.1901	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB SW11 SW12 SW13 SW14 SW15 SW14 SW15 SW16 SW17-HB SW18 BASIN OUT	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000 2.001 2.002 Hydro- 1.013 3.000	nk Brake® Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW18 SW12 SW13 SW18 SW15 SW16 SW17-H SW18 SW17-H SW18 SW22 SW19-H	Out (I, B B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 10.5 2.6 0.8 0.7 1.6 0.8 0.7 1.6 0.8 0.7	elocity (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.551 0.178 0.373 0.161	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.138 0.066 0.019 0.023 0.021	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691 0.1901 0.1697 0.2954	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB SW11 SW12 SW11 SW12 SW13 SW14 SW15 SW16 SW15 SW16 SW17-HB SW18 BASIN OUT SW19-HB	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000 2.001 2.002 Hydro- 1.013 3.000 Hydro-	hk Brake® Brake® Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW10-H SW12 SW13 SW18 SW15 SW16 SW17-H SW18 SW15 SW16 SW17-H SW18 SW22 SW19-H SW20	Out (I, B B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 10.5 2.6 0.8 0.7 1.6 0.8 0.6	elocity (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.551 0.178 0.373 0.161	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.021 0.023 0.021	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691 0.1901 0.1697 0.2954	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter 480 minute summer 480 minute winter 480 minute winter 480 minute winter 480 minute winter 360 minute winter 15 minute summer 360 minute winter 480 minute winter 360 minute winter 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-HB SW11 SW12 SW11 SW12 SW13 SW14 SW15 SW16 SW15 SW16 SW17-HB SW18 BASIN OUT SW19-HB	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000 2.001 2.001 2.002 Hydro- 1.013 3.000 Hydro- 3.002	nk Brake® Brake® Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW16 SW17-H SW18 SW15 SW16 SW17-H SW18 SW15 SW16 SW17-H SW18 SW22 SW19-H SW20 SW21 SW21	Out (I, B B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 10.5 2.6 0.8 0.7 1.6 0.8 0.6 0.6	elocity (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.551 0.178 0.373 0.161 0.487 0.487 0.425	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.021 0.021 0.016 0.021	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691 0.1901 0.1697 0.2954 0.0532	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter 480 minute summer 480 minute summer 480 minute winter 480 minute winter 480 minute winter 480 minute winter 560 minute winter 480 minute winter 480 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-HB SW11 SW12 SW13 SW14 SW12 SW13 SW14 SW15 SW16 SW17-HB SW16 SW17-HB SW18 BASIN OUT SW19-HB	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro-1 1.010 1.011 1.012 2.000 2.001 2.002 Hydro-1 1.013 3.000 Hydro-1 3.002 3.003 1.014	nk Brake® Brake® Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW12 SW13 SW12 SW13 SW18 SW15 SW16 SW17-H SW18 SW22 SW19-H SW20 SW21 SW22 SW21 SW22 SW24	Out (I) B B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	elocity (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.551 0.178 0.373 0.161 0.487 0.486 0.487 0.486	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.023 0.021 0.023 0.021	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691 0.1901 0.1697 0.2954 0.0532 0.0319 0.2422	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute winter 360 minute summer 480 minute winter 480 minute winter 480 minute winter 480 minute winter 360 minute winter 480 minute winter 360 minute winter 30 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB SW11 SW12 SW11 SW12 SW13 SW14 SW15 SW14 SW15 SW16 SW17-HB SW18 BASIN OUT SW19-HB SW20 SW21 SW22 SW22	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000 2.001 2.002 Hydro- 1.013 3.000 Hydro- 3.002 3.003 1.014 4.202	n k Brake® Brake® Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW10-H SW11 SW12 SW13 SW18 SW15 SW16 SW17-H SW18 SW15 SW16 SW17-H SW22 SW19-H SW20 SW21 SW22 SW24 SW24	Out (I) B B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	elocity (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.551 0.178 0.373 0.161 0.487 0.486 0.458 0.900	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.023 0.021 0.023 0.021 0.016 0.010 0.022	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691 0.1901 0.1697 0.2954 0.0532 0.0319 0.2402	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 360 minute winter 360 minute winter 360 minute winter 360 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 360 minute winter 360 minute winter 480 minute winter 360 minute winter 15 minute winter 30 minute winter 30 minute winter	US Node SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10-HB SW11 SW12 SW13 SW14 SW15 SW14 SW15 SW14 SW15 SW16 SW17-HB SW18 BASIN OUT SW19-HB SW19-HB SW20 SW21 SW22 SW23 SW24	Lir 1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 Hydro- 1.010 1.011 1.012 2.000 2.001 2.002 Hydro- 1.013 3.000 Hydro- 3.002 3.003 1.014 4.000 1.015	n k Brake® Brake® Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW18 SW15 SW16 SW17-H SW18 SW15 SW16 SW17-H SW18 SW22 SW19-H SW20 SW21 SW21 SW21 SW24 SW24 SW24 SW24	Out (I, B B	flow V (s) 3.2 6.3 9.2 12.4 17.6 23.0 26.0 27.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	elocity (m/s) 0.468 0.553 0.579 0.715 0.685 0.709 0.833 1.775 0.136 0.349 0.352 0.296 0.728 0.551 0.178 0.373 0.161 0.487 0.486 0.458 0.000 0.444	ow/Cap 0.080 0.158 0.229 0.307 0.442 0.570 0.647 0.692 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.021 0.021	Link Vol (m ³) 0.1627 0.1997 0.1127 0.0655 0.5226 0.2072 0.0995 0.1709 0.2165 0.0439 0.0351 0.0519 0.2055 0.5691 0.1901 0.1697 0.2954 0.0532 0.0319 0.2402 0.0000 0.2057	Discharge Vol (m³)

Flow+ v12.0 Copyright © 1988-2024 Causeway Technologies Ltd
360 minute winter

360 minute winter

360 minute winter

360 minute winter

SW33

SW34

7.001

7.002

BASIN IN2 Flow through pond BASIN OUT

Page 13

Results for 30	year +20% CC Critical	Storm Duration.	Lowest mass balance: 98.91%

Noc	le Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflo (I/s	w Nod ;) Vol (n	e Floo n³) (m³	d Status)	
480 min	ute summer	SW25	280	9.717	0.038	2	2.2 0.04	29 0.000	, 00 ОК	
480 min	ute summer	SW26	280	9.651	0.022	2	.2 0.02	46 0.000	00 ОК	
480 min	ute summer	SW27	280	8.266	0.038	2	2.2 0.04	24 0.00	00 ОК	
480 min	ute summer	EXSW MH	280	8.251	0.035	2	.2 0.00	00 0.00	00 ОК	
15 minu	ite summer	SW28	10	12.121	0.046	3	0.06	06 0.00	00 ОК	
15 minu	ite winter	SW29	10	12.033	0.051	6	6.4 0.06	64 0.000	00 ОК	
360 min	ute winter	SW30	304	12.020	0.119	0	0.5 0.16	07 0.00	00 ОК	
360 min	ute winter	SW31	336	12.019	0.179	2	.0 0.23	09 0.00	00 ОК	
360 min	ute winter	BASIN IN1	320	12.022	0.222	1	8 0.25	13 0.000	00 ОК	
360 min	ute winter	SW32	344	12.020	0.056	0	0.5 0.07	39 0.00	00 ОК	
360 min	ute winter	SW33	344	12.020	0.106	1	0 0.13	74 0.00	00 ОК	
360 min	ute winter	SW34	272	12.020	0.168	1		64 0.000	00 ОК	
360 min	ute winter	BASIN IN2	352	12.023	0.223	1	4 0.25	27 0.00	00 ОК	
Link Event	US	Link		DS	Out	low	Velocity	Flow/Ca	p Link	Discharge
(Upstream Depth)	Node			Node	(1/	's)	(m/s)	-	Vol (m³)	Vol (m ³)
480 minute summer	SW25	1.016		SW26		2.2	0.617	0.03	1 0.0451	. ,
480 minute summer	SW26	1.017		SW27		2.2	0.624	0.01	1 0.1422	
480 minute summer	SW27	1.018		EXSW MH		2.2	0.467	0.02	9 0.0117	80.6
15 minute summer	SW28	5.000		SW29		3.2	0.515	0.09	1 0.1245	
15 minute winter	SW29	5.001		SW31		6.4	0.517	0.11	3 0.1526	
360 minute winter	SW30	6.000		SW31		0.8	0.160	0.02	4 0.4351	
360 minute winter	SW31	5.002		BASIN IN1	_	1.8	0.338	0.05	7 0.3827	
360 minute winter	BASIN IN1	Flow throug	h pond	BASIN OU	т	4.7	0.020	0.02	9 16.1766	
360 minute winter	SW32	7.000	-	SW33		0.5	0.253	0.01	4 0.1305	

SW34

BASIN IN2

1.0

1.4

4.7

0.326

0.339

0.020

0.027

0.038

0.3095

0.3692

0.029 16.1766

Node Even	t	US	Peak	Level	Depth	Inflow	Node	Flood	Statu	IS
		Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)		
15 minute win	ter	SW01	10	10.923	0.048	4.1	0.0626	0.0000	OK	
15 minute win	ter	SW02	10	10.803	0.068	8.2	0.0841	0.0000	OK	
15 minute sum	nmer	SW03	10	10.753	0.118	12.2	0.1482	0.0000	OK	
15 minute sum	nmer	SW04	10	10.744	0.145	16.7	0.1812	0.0000	OK	
15 minute win	ter	SW05	9	10.732	0.151	21.4	0.1888	0.0000	OK	
15 minute sum	nmer	SW06	9	10.712	0.234	26.9	0.2900	0.0000	SURCHAR	RGED
15 minute sum	nmer	SW07	9	10.697	0.251	32.0	0.3113	0.0000	SURCHAR	RGED
15 minute win	ter	SW08	8	10.687	0.256	33.0	0.2896	0.0000	SURCHAR	RGED
240 minute wi	nter	SW09	224	10.574	0.194	6.3	24.9904	0.0000	ОК	
240 minute wi	nter	SW10-HB	224	10.574	0.219	1.0	0.2471	0.0000	OK	
600 minute wi	nter	SW11	420	10.327	0.024	0.9	0.0275	0.0000	OK	
600 minute wi	nter	SW12	420	10.259	0.024	0.9	0.0276	0.0000	OK	
240 minute wi	nter	SW13	184	10.204	0.024	0.9	0.0272	0.0000	ОК	
480 minute wi	nter	SW14	464	11.555	0.130	1.8	0.2168	0.0000	OK	
480 minute wi	nter	SW15	464	11.555	0.430	3.6	0.7178	0.0000	SURCHAR	RGED
480 minute wi	nter	SW16	464	11.555	0.515	5.2	41.5226	0.0000	SURCHAR	RGED
480 minute wi	nter	SW17-HB	464	11.555	0.544	0.8	0.6150	0.0000	SURCHAR	RGED
480 minute wi	nter	SW18	464	10.144	0.031	1.6	0.0353	0.0000	OK	
600 minute wi	nter	BASIN OUT	Г 585	12.094	0.294	2.5	0.3323	0.0000	SURCHAR	RGED
600 minute wi	nter	SW19-HB	585	12.094	0.339	1.1	0.3833	0.0000	SURCHAR	RGED
15 minute sum	nmer	SW20	12	11.728	0.021	0.6	0.0237	0.0000	OK	
15 minute win	ter	SW21	18	11.516	0.016	0.6	0.0185	0.0000	ОК	
30 minute sum	nmer	SW22	40	9.989	0.036	2.2	0.0412	0.0000	ОК	
15 minute sum	nmer	SW23	1	11.275	0.000	0.0	0.0000	0.0000	ОК	
30 minute sum	nmer	SW24	41	9.788	0.037	2.2	0.0415	0.0000	ОК	
Link Event	U	S	Link	DS	Out	flow V	elocity Flo	ow/Cap	Link	Discharge
Link Event (Upstream Depth)	U No	S de	Link	DS Node	Out (I,	flow Vo /s) (elocity Flo (m/s)	ow/Cap	Link Vol (m³)	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter	U No SW01	S de 1.0	Link	DS Node SW02	Out (I,	flow Vo /s) (4.1	elocity Flo (m/s) 0.502	ow/Cap 0.103	Link Vol (m³) 0.1944	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter	U No SW01 SW02	S de 1.0 1.0	Link 000 001	DS Node SW02 SW03	Out (l/	flow V /s) (4.1 8.1	elocity Flo (m/s) 0.502 0.562	ow/Cap 0.103 0.203	Link Vol (m ³) 0.1944 0.2553	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer	U No SW01 SW02 SW03	S de 1.0 1.0	Link 000 001 002	DS Node SW02 SW03 SW04	Out (I,	flow Vo /s) (4.1 8.1 12.6	elocity Flo (m/s) 0.502 0.562 0.588	ow/Cap 0.103 0.203 0.315	Link Vol (m ³) 0.1944 0.2553 0.1453	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer	U No SW01 SW02 SW03 SW04	S de 1.0 1.0 1.0	Link 000 001 002 003	DS Node SW02 SW03 SW04 SW05	Out (I,	flow V /s) 4.1 8.1 12.6 17.3	elocity Flo (m/s) 0.502 0.562 0.588 0.718	ow/Cap 0.103 0.203 0.315 0.427	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute winter	U No SW01 SW02 SW03 SW04 SW04	S de 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004	DS Node SW02 SW03 SW04 SW05 SW06	Out (I,	flow Va 4.1 8.1 12.6 17.3 22.3	elocity Flo (m/s) 0.502 0.562 0.588 0.718 0.746	0.103 0.203 0.315 0.427 0.561	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer	U No SW01 SW02 SW03 SW04 SW05 SW06	S de 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005	DS Node SW02 SW03 SW04 SW05 SW06 SW07	Out (I,	flow V 4.1 8.1 12.6 17.3 22.3 27.9	elocity Flo (m/s) 0.502 0.562 0.588 0.718 0.746 0.760	0.103 0.203 0.315 0.427 0.561 0.692	Link Vol (m³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08	Out (I,	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7	elocity Flo (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934	0.103 0.203 0.315 0.427 0.561 0.692 0.814	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	U No SW01 SW03 SW04 SW05 SW06 SW06 SW07 SW08	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09	Out (I,	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5	elocity Flo (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H	Out (I,	flow V (s) (4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0	elocity Flo (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute winter 240 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW07 SW08 SW09 SW10	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 007 008 dro-Brake [®]	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11	Out (I,	flow Va 4.1 8.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute winter 240 minute winter 600 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW05 SW06 SW07 SW08 SW09 SW10 SW11	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake [®] 10	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW06 SW07 SW08 SW09 SW10-H SW11 SW12	Out (I,	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute winter 240 minute winter 600 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW10 SW11 SW12	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake® 10 011	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13	Out (I,	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute winter 240 minute winter 600 minute winter 240 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW11 SW12 SW13	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake [®] 10 011	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW18	Out (I,	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 0.9	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute summer 15 minute summer 240 minute winter 240 minute winter 600 minute winter 240 minute winter 400 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW11 SW12 SW13 SW14	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake [®] 010 011 012 000	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-F SW11 SW12 SW13 SW18 SW15	Out (I,	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 1.8	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.013 0.024	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524 0.4451	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute summer 15 minute summer 15 minute summer 240 minute winter 240 minute winter 600 minute winter 240 minute winter 480 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW11 SW12 SW13 SW14 SW15	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake® 10 011 012 000 001	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-F SW11 SW12 SW13 SW18 SW15 SW16	Out (I,	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 1.8 3.4	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.024 0.085	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0354 0.0524 0.4451 0.5691	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute summer 15 minute summer 240 minute winter 240 minute winter 600 minute winter 240 minute winter 480 minute winter 480 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW10 SW11 SW12 SW13 SW14 SW15 SW16	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake [®] 10 11 112 000 001 002	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-F SW11 SW12 SW11 SW12 SW13 SW18 SW15 SW16 SW17-F	Out (I,	flow Va (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 1.8 3.4 0.8	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561 0.188	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.024 0.085 0.020	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524 0.4451 0.5691 0.1901	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute summer 15 minute summer 240 minute winter 240 minute winter 600 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW10 SW10 SW11 SW12 SW13 SW14 SW15 SW16 SW17	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake® 10 011 012 000 001 002 002 dro-Brake®	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW18 SW15 SW16 SW17-H SW18	Out (I,	flow V (s) 4.1 8.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 0.9 1.8 3.4 0.8 0.7	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561 0.188	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.013 0.024 0.085 0.020	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524 0.4451 0.5691 0.1901	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute winter 240 minute winter 240 minute winter 600 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake [®] 10 11 12 000 001 002 dro-Brake [®] 13	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW12 SW13 SW18 SW15 SW16 SW17-H SW18 SW17-H SW18 SW12	Out (I,	flow V (s) 4.1 8.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.8 3.4 0.8 0.7 1.6	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561 0.188 0.376	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.013 0.024 0.085 0.020	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524 0.4451 0.5691 0.1901	Discharge Vol (m³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute summer 15 minute summer 15 minute summer 240 minute winter 240 minute winter 240 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18 BASIN	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake [®] 10 011 12 000 001 002 dro-Brake [®] 13 000	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-F SW11 SW12 SW13 SW12 SW13 SW18 SW15 SW16 SW17-F SW18 SW12-F	Out (I, IB IB	flow V (s) 4.1 8.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 0.9 0.9 1.8 3.4 0.8 0.7 1.6 1.1	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561 0.188 0.376 0.376 0.150	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.013 0.024 0.025 0.020 0.023 0.028	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524 0.4451 0.5691 0.1901 0.1694 0.2974	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute summer 15 minute summer 15 minute winter 240 minute winter 240 minute winter 240 minute winter 480 minute winter 600 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18 BASIN SW19	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake [®] 10 011 012 000 001 002 dro-Brake [®] 13 000 dro-Brake [®]	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-F SW11 SW12 SW13 SW12 SW13 SW18 SW15 SW16 SW17-F SW18 SW12- SW19-F SW20	Out (I, IB IB	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 0.9 0.9 1.8 3.4 0.8 0.7 1.6 1.1 0.6	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561 0.188 0.376 0.376 0.150	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.013 0.013 0.024 0.025 0.020	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0354 0.0524 0.4451 0.5691 0.1901 0.1694 0.2974	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute summer 15 minute winter 240 minute winter 240 minute winter 240 minute winter 480 minute winter 500 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW16 SW17 SW18 BASIN SW19 SW20	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake® 10 011 012 000 001 002 dro-Brake® 13 000 dro-Brake® 000 013 000 014 015 015 015 015 015 015 015 015	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-F SW11 SW12 SW13 SW12 SW13 SW18 SW15 SW16 SW17-F SW18 SW17-F SW18 SW22 SW19-F SW20 SW21	Out (I, IB IB	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 0.9 0.9 1.8 3.4 0.8 0.7 1.6 1.1 0.6 0.6	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561 0.188 0.376 0.150 0.486	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.013 0.024 0.025 0.020 0.023 0.028 0.016	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524 0.4451 0.5691 0.1901 0.1694 0.2974	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute summer 15 minute winter 240 minute winter 240 minute winter 600 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 500 minute winter 480 minute winter 480 minute winter 480 minute winter 500 minute winter 480 minute winter 480 minute winter 500 minute winter 480 minute winter 500 minute winter 500 minute winter 500 minute winter 500 minute winter 500 minute winter 500 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW10 SW10 SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18 BASIN SW19 SW20 SW21	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake® 10 011 012 000 001 002 dro-Brake® 13 000 dro-Brake® 13 000 dro-Brake® 13 000 002 003	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW16 SW17-H SW16 SW17-H SW18 SW17-H SW18 SW17-H SW18 SW19-H SW20 SW19-H SW20 SW21 SW21 SW22	Out (I, IB IB	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561 0.188 0.376 0.150 0.486 0.486	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.013 0.024 0.085 0.020 0.023 0.028 0.016 0.010	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524 0.4451 0.5691 0.1901 0.1694 0.2974 0.0533 0.0320	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute winter 240 minute winter 240 minute winter 600 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 500 minute winter 480 minute winter 480 minute winter 500 minute winter 480 minute winter 480 minute winter 500 minute winter	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18 BASIN SW19 SW20 SW21 SW21 SW22	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake [®] 10 011 112 000 001 002 dro-Brake [®] 13 000 dro-Brake [®] 13 000 dro-Brake [®] 13 000 dro-Brake [®] 13 000 dro-Brake [®] 13 000 14	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW12 SW13 SW14 SW12 SW13 SW16 SW17-H SW18 SW17-H SW18 SW12 SW19-H SW20 SW21 SW22 SW24	Out (I, IB IB	flow V (s) 4.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561 0.188 0.376 0.150 0.486 0.486 0.486 0.458	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.013 0.013 0.024 0.020 0.023 0.028 0.016 0.010 0.032	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524 0.4451 0.5691 0.1901 0.1694 0.2974 0.0533 0.0320 0.2403	Discharge Vol (m ³)
Link Event (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute winter 240 minute winter 240 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 480 minute winter 500 minute winter 480 minute winter 480 minute winter 500 minute winter 480 minute winter 500 minute winter 480 minute winter 500 minute winter 15 minute summer 15 minute summer 15 minute summer	U No SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10 SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18 BASIN SW19 SW20 SW21 SW22 SW23	S de 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Link 000 001 002 003 004 005 006 007 008 dro-Brake [®] 10 011 012 000 001 002 dro-Brake [®] 13 000 dro-Brake [®] 13 000 dro-Brake [®] 13 000 dro-Brake [®] 13 000 01 02 01 01 02 01 01 01 02 01 01 02 03 04 05 05 06 07 08 07 08 07 08 07 08 07 08 07 08 07 08 07 08 07 08 07 08 01 01 01 01 02 00 01 01 02 00 01 01 02 00 01 01 02 00 01 01 02 00 01 01 02 00 01 02 00 01 02 00 01 00 00 01 02 00 00 00 01 00 00 00 00 00 00	DS Node SW02 SW03 SW04 SW05 SW06 SW07 SW08 SW09 SW10-H SW11 SW12 SW13 SW12 SW13 SW14 SW12 SW13 SW16 SW17-H SW18 SW15 SW16 SW17-H SW18 SW12 SW19-H SW20 SW21 SW22 SW24 SW24 SW24	Out (I, IB IB	flow V (s) 4.1 8.1 12.6 17.3 22.3 27.9 32.7 34.5 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.8 3.4 0.8 0.7 1.6 1.1 0.6 0.6 0.6 0.6 0.2 0.0	elocity Fla (m/s) 0.502 0.562 0.588 0.718 0.746 0.760 0.934 1.813 0.161 0.350 0.353 0.297 0.414 0.561 0.188 0.376 0.150 0.486 0.486 0.486 0.488 0.000	0.103 0.203 0.315 0.427 0.561 0.692 0.814 0.859 0.014 0.013 0.013 0.013 0.013 0.024 0.020 0.023 0.020 0.023 0.028 0.016 0.010 0.032 0.000	Link Vol (m ³) 0.1944 0.2553 0.1453 0.0807 0.5953 0.2102 0.0995 0.1751 0.3112 0.0443 0.0354 0.0524 0.4451 0.5691 0.1901 0.1694 0.2974 0.0533 0.0320 0.2403 0.0000	Discharge Vol (m ³)

Flow+ v12.0 Copyright © 1988-2024 Causeway Technologies Ltd

15 minute summer

600 minute winter

720 minute winter

SW28

SW29

SW30

SW31

SW32

SW33

SW34

BASIN IN1

5.000

5.001

6.000

5.002

7.000

7.001

7.002

BASIN IN2 Flow through pond

Flow through pond

					10/03	/ 202 1				
<u>I</u>	Results fo	r 100 year +2	<u>:0% CC Cr</u>	itical Stor	m Durat	ion. Low	est mass ba	alance: 98	<u>8.91%</u>	
Node E	event	US	Peak	Level	Depth	Inflow	Node	Flood	Status	
		Node	(mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)		
30 minute	summer	SW25	42	9.717	0.038	2.2	0.0429	0.0000	OK	
30 minute	summer	SW26	42	9.651	0.022	2.2	0.0246	0.0000	OK	
30 minute	summer	SW27	43	8.266	0.038	2.2	0.0424	0.0000	OK	
30 minute	summer	EXSW MH	43	8.251	0.035	2.2	0.0000	0.0000	ОК	
15 minute	summer	SW28	10	12.127	0.052	4.1	0.0690	0.0000	ОК	
600 minute	e winter	SW29	570	12.095	0.113	1.0	0.1486	0.0000	ОК	
600 minute	e winter	SW30	540	12.096	0.195	0.6	0.2639	0.0000	ОК	
600 minute	e winter	SW31	585	12.096	0.256	1.9	0.3308	0.0000	SURCHARGE	D
600 minute	e winter	BASIN IN1	540	12.099	0.299	2.1	0.3381	0.0000	ОК	
600 minute	e winter	SW32	585	12.101	0.137	0.7	0.1810	0.0000	ОК	
600 minute	e winter	SW33	585	12.101	0.187	1.0	0.2427	0.0000	ОК	
600 minute	e winter	SW34	585	12.102	0.250	2.2	0.3225	0.0000	SURCHARGE	D
720 minute	e winter	BASIN IN2	690	12.099	0.299	2.4	0.3380	0.0000	ОК	
Link Event	US	L	.ink	D)S	Outflow	Velocity	Flow/Ca	ap Link	Discharge
(Upstream Depth)	Node			No	ode	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	SW25	1.016		SW26	5	2.2	0.617	0.03	0.0451	
30 minute summer	SW26	1.017		SW27	7	2.2	0.731	0.01	L1 0.1422	
30 minute summer	SW27	1.018		EXSW	/ MH	2.2	0.467	0.02	0.0117	31.9

SW29

SW31

SW31

SW33

SW34

BASIN IN1

BASIN OUT

BASIN IN2

BASIN OUT

4.1

1.3

1.1

2.1

2.5

0.8

2.0

2.3

3.1

0.551

0.250

0.129

0.336

0.007

0.237

0.298

0.342

0.007

0.116

0.022

0.035

0.066

0.015

0.022

0.054

0.062

0.019

0.1492

0.3588

0.6052

0.4146

24.0853

0.3041

0.4639

0.4119

23.5640

APPENDIX D – FOUL WATER PIPE NETWORK CALCULATIONS

		Name	Vel (m/s)	Flow (I/s)	U De	US epth	DS Dep	5 ith		
1.008	FW09	EXCSMH 01	18.33	69	.545	9.4	123	0.122	150.0	225
1.007	FW08	FW09	13.49	79	.635	9.5	545	0.090	150.0	225
1.006	FW07	FW08	22.82	79	.787	9.6	535	0.152	150.0	225
1.005	FW06	FW07	5.39	49	.823	9.7	787	0.036	150.0	225
1.004	FW05	FW06	8.30	0 9	.961	9.8	323	0.138	60.0	225
1.003	FW04	FW05	23.48	1 10	.352	9.9	961	0.391	60.0	225
1.002	FW03	FW04	9.65	6 10	.513	10.3	352	0.161	60.0	225
1.001	FW02	FW03	3.22	7 10	.567	10.5	513	0.054	60.0	225
1 000	Node	Node	(m)	1 0 (m)	(m 10 5	1) 567	(m)	(1:X)	(mm)
Name	115	DS	Longt	<u>Links</u>	<u>.</u> IS II	ля		Fall	Slone	Dia
					10	12	00	1.887		
				12.10	0	12	200	2.555		
		FW08	9.0	12.10	00	12	200	2.465		
		FW07	9.0	12.40	00	12	200	2.613		
		FW06	9.0	12.70	00	12	200	2.877		
		FW05	9.0	12.70	00	12	00	2.739		
		FW04	9.0	12.30	00	12	00	1.948		
		FW03	9.0	12.30	00	12	00	1.787		
		FW02	9.0	12.30	00	12	00	1.733		
		FW01	9.0	12.30	00	12	200	1.425		
				Leve (m)	el	(mm)	(m)		
		Name	Units	Cove	er	Diame	ter	Depth		
				<u>Node</u>	<u>s</u>					
	Additio	nal Flow (%)	10	l li	ncluc	de Inte	rme	diate Gro	ound v	/
lr	ndustrial	Flow (I/s/ha)	0.0		Pre	eferred	Cov	er Denth	(m) 1	200
	0.0	Mi	nimı	ım Bac	kdro	n Height	·(m) (.even inve) 500		
Fr Elow per dw	equency	of use (kDU)	0.50		ſ	Minimu	um V Con	/elocity (I	m/s) C Type L).75 ovol Inve
			<u>Des</u>	ign Sei	tting	<u>s</u>				
				1	3/09	9/2024				
Causeway	'			C	Cono	r Mack	en		-	
	Kenico		ne		lotw	ork Eo	4-08 l N	otwork 1		Page 1

			(m)	(m)
1.000	1.483	1.7	1.200	1.508
1.001	1.483	2.3	1.508	1.562
1.002	1.483	2.9	1.562	1.723
1.003	1.483	3.3	1.723	2.514
1.004	1.483	3.7	2.514	2.652
1.005	0.936	4.0	2.652	2.388
1.006	0.936	4.4	2.388	2.240
1.007	0.936	4.7	2.240	2.330
1.008	0.936	4.7	2.330	1.662

Cau	sew	/ay	Remco Lt	td t/a Mal	one	Network: Foul Network 1 Conor Macken 13/09/2024						Page 2	
					<u>Pip</u>	beline S	Schedul	<u>e</u>					
	Link	Length	Slope	Dia (mm)	US CL	US	IL U	S Depth	DS C	CL C	DS IL	DS Depth	I
	1 000	19 102	(1: A)	(IIIII) 225	12 200	וו) 10 ג ו	ון דב	1 200	12.20	י 10 1	(III) 1 567	1 509	
	1.000	10.492	60.0	225	12.500	10.0	575	1.200	12.5	10 10	J.507	1.506	
	1.001	5.227	60.0	225	12.500	10.5	107	1.500	12.5	10 10	7.2T2	1.502	
	1.002	9.000	60.0	225	12.500	10.5	212	1.502	12.5) 0 1	J.552	1.725	
	1.003	23.481	60.0	225	12.300	10.3	35Z	1.723	12.70	0 30	9.901 2.901	2.514	•
	1.004	8.300 F 204	150.0	225	12.700	9.5	101	2.514	12.70		9.823	2.052	
	1.005	2.394	150.0	225	12.700) 9.0) 0 ⁻	525 707	2.052	12.40	0 :	9.707	2.500	
	1.000	12 407	150.0	225	12.400	9.1	/ 8 / 5 2 5	2.388	12.10	0 30	9.033	2.240	
	1.007	18 226	150.0	225	12.100) 9.0 N 0.5	545	2.240	11 2		9.545 2.77 a	1 662	
	1.000	10.550	150.0	225	12.100))	J-4-J	2.550	11.5		J.42J	1.002	
	Link	US	Dia	Node	N	ин	ſ	os	Dia	No	de	мн	
		Node	(mm)	Type	Ţ	vpe	N	ode	(mm)	Tv	pe	Type	
	1.000	FW01	1200	Manhole	e Ado	ptable	FW02	2	1200	Man	hole	Adoptable	
	1.001	FW02	1200	Manhole	e Ado	, ptable	FW03	3	1200	Man	hole	Adoptable	
	1.002	FW03	1200	Manhole	e Ado	, ptable	FW04	1	1200	Man	hole	Adoptable	
	1.003	FW04	1200	Manhole	e Ado	ptable	FW0	5	1200	Man	hole	Adoptable	
	1.004	FW05	1200	Manhole	e Ado	ptable	FW0	5	1200	Man	hole	Adoptable	
	1.005	FW06	1200	Manhole	e Ado	ptable	FW0	7	1200	Man	hole	Adoptable	
	1.006	FW07	1200	Manhole	e Ado	, ptable	FW08	3	1200	Man	hole	Adoptable	
	1.007	FW08	1200	Manhole	e Ado	ptable	FW09	Ð	1200	Man	hole	Adoptable	
	1.008	FW09	1200	Manhole	e Ado	ptable	EXCS	MH 01	1200	Man	hole	Adoptable	
					Ma	nhole	Schedu	<u>le</u>					
Node	Ea (sting m)	North (m)	ing) (CL (m)	Depth (m)	Dia (mm)	Cor	nectio	ns	Link	: IL (m)	Dia (mm)
FW01	7145	08.344	734800	.399 12	.300	1.425	1200) 0	<u> </u>				
									\mathbb{D}				
										0	1.00	0 10.875	225
FW02	7145	06.037	734818	8.747 12	.300	1.733	1200)		1	1.00	0 10.567	225
								(}→ 0				
									ť	0	1 00'	1 10 567	225
FW/03	7145	09 239	734819	149 17	300	1 787	1200) 0	•	1	1 00	1 10 513	225
	, 1-13	23.235	, 5 1015	12		1.,07	1200	1-(ĥ	Ť	1.00.		225

1

							-			
							0	1.002	10.513	225
FW04	714508.034	734828.730	12.300	1.948	1200		1	1.002	10.352	225
						0 < (
						1	0	1.003	10.352	225
FW05	714484.736	734825.801	12.700	2.739	1200		1	1.003	9.961	225
						P -1				
						v o	0	1.004	9.961	225
FW06	714485.771	734817.566	12.700	2.877	1200	1	1	1.004	9.823	225
							0	1.005	9.823	225

	Remco Ltd t/a Malone	File: FLOW 24-08-19.pfd	Page 3
Course		Network: Foul Network 1	
Causeway		Conor Macken	
		13/09/2024	

Manhole Schedule

Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
714490.519	734815.007	12.400	2.613	1200	1	1	1.005	9.787	225
					ò	0	1.006	9.787	225
714493.366	734792.358	12.100	2.465	1200		1	1.006	9.635	225
						0	1.007	9.635	225
714480.719	734787.643	12.100	2.555	1200	\bigcirc -1	1	1.007	9.545	225
					o < ()				
						0	1.008	9.545	225
714462.607	734784.786	11.310	1.887	1200		1	1.008	9.423	225
	Easting (m) 714490.519 714493.366 714480.719 714462.607	Easting (m) Northing (m) 714490.519 734815.007 714493.366 734792.358 714493.366 734787.643 714480.719 734787.643 714462.607 734784.786	Easting (m) Northing (m) CL (m) 714490.519 734815.007 12.400 714493.366 734792.358 12.100 714480.719 734787.643 12.100 714462.607 734784.786 11.310	Easting (m) Northing (m) CL (m) Depth (m) 714490.519 734815.007 12.400 2.613 714493.366 734792.358 12.100 2.465 714480.719 734787.643 12.100 2.555 714462.607 734784.786 11.310 1.887	Easting (m) Northing (m) CL (m) Depth (m) Dia (m) 714490.519 734815.007 12.400 2.613 1200 714493.366 734792.358 12.100 2.465 1200 714493.366 734787.643 12.100 2.455 1200 714480.719 734787.643 12.100 2.555 1200 714462.607 734784.786 11.310 1.887 1200	Easting (m) Northing (m) CL (m) Depth (m) Dia (mm) Connection (mm) 714490.519 734815.007 12.400 2.613 1200 $1 - \int_{0}^{1} \int_{0$	Easting (m) Northing (m) CL (m) Depth (m) Dia (mm) Connections 714490.519 734815.007 12.400 2.613 1200 1 1 1 1 1 1 0 0 714490.519 734815.007 12.400 2.613 1200 1 0 0 714493.366 734792.358 12.100 2.465 1200 1 0 0 714480.719 734787.643 12.100 2.555 1200 1 0 0 714462.607 734784.786 11.310 1.887 1200 1 0	Easting (m)Northing (m)CL (m)Depth (m)Dia (mm)ConnectionsLink714490.519734815.00712.4002.6131200 $1 - 1$ 1.005714493.366734792.35812.1002.4651200 $1 - 1$ 1.006714493.366734792.35812.1002.4651200 $1 - 1$ 1.007714480.719734787.64312.1002.5551200 $1 - 1$ 1.007714462.607734784.78611.3101.8871200 $1 - 1$ 1.008714462.607734784.78611.3101.8871200 $1 - 1$ 1.008	Easting (m)Northing (m)CL (m)Depth (m)Dia (connections)ConnectionsLinkIL714490.519734815.00712.4002.6131200 $1 \downarrow \downarrow \downarrow \downarrow$ 1.0059.787714493.366734792.35812.1002.4651200 $1 \downarrow \downarrow \downarrow$ 01.0069.787714493.366734792.35812.1002.4651200 $1 \downarrow \downarrow \downarrow$ 1.0069.635714480.719734787.64312.1002.5551200 $1 \downarrow \downarrow \downarrow$ 1.0079.635714462.607734784.78611.3101.8871200 $1 \downarrow \downarrow \downarrow$ 1.0089.543

Name	Units	Cover	Diameter	Depth
		Level	(mm)	(m)
		(m)		
FW10	5.0	13.100	1200	1.725
FW11	5.0	13.150	1200	2.130
FW12	5.0	13.150	1200	2.207
FW13	5.0	13.000	1200	2.262
FW14	5.0	13.000	1200	2.369
FW15	5.0	12.500	1200	2.215
FW16	5.0	12.170	1200	2.125
FW17	5.0	13.100	1200	1.925
FW18	5.0	12.800	1200	1.425
FW19	5.0	12.800	1200	1.788
FW20	5.0	13.100	1200	2.540
FW21	5.0	13.100	1200	2.613
FW22	5.0	13.100	1200	3.048
FW23	5.0	12.400	1200	2.592
FW24	5.0	13.600	1200	2.025
FW25	5.0	12.500	1200	1.216
FW26	5.0	12.200	1200	2.751
FW27		11.870	1200	2.473
EXCS MH02		11.190	1200	1.892

<u>Links</u>

Name	US Node	DS Node	Length (m)	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)
1.000	FW10	FW11	21.279	11.375	11.020	0.355	60.0	225
1.001	FW11	FW12	4.626	11.020	10.943	0.077	60.0	225
1.002	FW12	FW13	12.330	10.943	10.738	0.205	60.0	225
1.003	FW13	FW14	6.397	10.738	10.631	0.107	60.0	225
1.004	FW14	FW15	20.745	10.631	10.285	0.346	60.0	225
1.005	FW15	FW16	14.390	10.285	10.045	0.240	60.0	225
1.006	FW16	FW23	35.561	10.045	9.808	0.237	150.0	225
2.000	FW17	FW19	9.798	11.175	11.012	0.163	60.0	225

Name	Vel	Flow	US	DS
	(m/s)	(I/s)	Depth	Depth
			(m)	(m)
1.000	1.483	1.2	1.500	1.905
1.001	1.483	1.7	1.905	1.982
1.002	1.483	2.1	1.982	2.037
1.003	1.483	2.5	2.037	2.144
1.004	1.483	2.8	2.144	1.990
1.005	1.483	3.0	1.990	1.900
1.006	0.936	3.3	1.900	2.367
2.000	1.483	1.2	1.700	1.563

<u>Links</u>

File: FLOW 24-08-19.pfd

Conor Macken 13/09/2024

Network: Foul Network 2

Name	US	DS	Length	US IL	DS IL	Fall	Slope	Dia
	Node	Node	(m)	(m)	(m)	(m)	(1:X)	(mm)
3.000	FW18	FW19	5.724	11.375	11.280	0.095	60.0	225
2.001	FW19	FW20	27.127	11.012	10.560	0.452	60.0	225
2.002	FW20	FW21	4.355	10.560	10.487	0.073	60.0	225
2.003	FW21	FW22	26.100	10.487	10.052	0.435	60.0	225
2.004	FW22	FW23	20.499	10.052	9.808	0.244	84.0	225
1.007	FW23	FW26	53.870	9.808	9.449	0.359	150.0	225
4.000	FW24	FW25	17.477	11.575	11.284	0.291	60.0	225
4.001	FW25	FW26	5.027	11.284	11.200	0.084	59.8	225
1.008	FW26	FW27	7.871	9.449	9.397	0.052	150.0	225
1.009	FW27	EXCS MH02	14.801	9.397	9.298	0.099	150.0	225

Name	Vel (m/s)	Flow (I/s)	US Depth	DS Depth
			(m)	(m)
3.000	1.483	1.2	1.200	1.295
2.001	1.483	2.1	1.563	2.315
2.002	1.483	2.5	2.315	2.388
2.003	1.483	2.8	2.388	2.823
2.004	1.253	3.0	2.823	2.367
1.007	0.936	4.6	2.367	2.526
4.000	1.483	1.2	1.800	0.991
4.001	1.486	1.7	0.991	0.775
1.008	0.936	5.1	2.526	2.248
1.009	0.936	5.1	2.248	1.667

Pipeline Schedule

Link	Length	Slope	Dia	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	(m)	(m)	(m)	(m)	(m)	(m)
1.000	21.279	60.0	225	13.100	11.375	1.500	13.150	11.020	1.905
1.001	4.626	60.0	225	13.150	11.020	1.905	13.150	10.943	1.982
1.002	12.330	60.0	225	13.150	10.943	1.982	13.000	10.738	2.037
1.003	6.397	60.0	225	13.000	10.738	2.037	13.000	10.631	2.144
1.004	20.745	60.0	225	13.000	10.631	2.144	12.500	10.285	1.990
1.005	14.390	60.0	225	12.500	10.285	1.990	12.170	10.045	1.900
1.006	35.561	150.0	225	12.170	10.045	1.900	12.400	9.808	2.367
2.000	9.798	60.0	225	13.100	11.175	1.700	12.800	11.012	1.563
3.000	5.724	60.0	225	12.800	11.375	1.200	12.800	11.280	1.295
2.001	27.127	60.0	225	12.800	11.012	1.563	13.100	10.560	2.315

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	FW10	1200	Manhole	Adoptable	FW11	1200	Manhole	Adoptable
1.001	FW11	1200	Manhole	Adoptable	FW12	1200	Manhole	Adoptable
1.002	FW12	1200	Manhole	Adoptable	FW13	1200	Manhole	Adoptable
1.003	FW13	1200	Manhole	Adoptable	FW14	1200	Manhole	Adoptable
1.004	FW14	1200	Manhole	Adoptable	FW15	1200	Manhole	Adoptable
1.005	FW15	1200	Manhole	Adoptable	FW16	1200	Manhole	Adoptable
1.006	FW16	1200	Manhole	Adoptable	FW23	1200	Manhole	Adoptable
2.000	FW17	1200	Manhole	Adoptable	FW19	1200	Manhole	Adoptable
3.000	FW18	1200	Manhole	Adoptable	FW19	1200	Manhole	Adoptable
2.001	FW19	1200	Manhole	Adoptable	FW20	1200	Manhole	Adoptable

Cause	eway	Remco	o Ltd t/a M	alone		File: FLOW 24 Network: Foul Conor Macker 13/09/2024	-08-19.p l Networ า	fd [.] k 2	Page 3
						13/03/2024			
				<u>Pip</u>	eline So	<u>hedule</u>			
Li	ink Len	gth Slo	pe Dia	US CL	US I	L US Depth	n DS C	L DS IL	DS Depth
	(n	n) (1:)	K) (mm)	(m)	(m)) (m)	(m)) (m)	(m)
2.0	002 4.	355 60	.0 225	13.100	10.56	50 2.315	5 13.10	0 10.48	7 2.388
2.0	003 26.	100 60	.0 225	13.100	10.48	37 2.388	3 13.10	00 10.05	2 2.823
2.0	004 20.4	199 84	.0 225	13.100	10.05	52 2.823	3 12.40	00 9.80	8 2.367
1.0	007 53.	370 150	.0 225	12.400	9.80	2.367	7 12.20	0 9.44	9 2.526
4.0	000 17.4	477 60	.0 225	13.600	11.57	75 1.800) 12.50	00 11.28	4 0.991
4.0	001 5.	027 59	.8 225	12.500	11.28	0.99	1 12.20	00 11.20	0 0.775
1.0	008 7.3	371 150	.0 225	12.200	9.44	49 2.526	5 11.8	70 9.39	7 2.248
1.0	009 14.	301 150	.0 225	11.870	9.39	97 2.248	3 11.19	90 9.29	8 1.667
li I	ink U	S Dia	Node	. N	ин	DS	Dia	Node	МН
-	No	de (mm) Type		vpe	Node	(mm)	Type	Type
2.	002 FW	20 120	0 Manho	le Ador	otable	FW21	1200	Manhole	Adoptable
2.	003 FW	21 120	0 Manho	le Ador	otable	FW22	1200	Manhole	Adoptable
2.	004 FW	22 120	0 Manho	le Ador	otable	FW23	1200	Manhole	Adoptable
1.	007 FW	23 120	0 Manho	le Ador	otable	FW26	1200	Manhole	Adoptable
4.	000 FW	24 120	0 Manho	le Ador	otable	FW25	1200	Manhole	Adoptable
4.	001 FW	25 120	0 Manho	le Ador	otable	FW26	1200	Manhole	Adoptable
1.	008 FW	26 120	0 Manho	le Ador	otable	FW27	1200	Manhole	Adoptable
1.	009 FW	27 120	0 Manho	le Ador	otable	EXCS MH02	1200	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
FW10	714398.017	734837.405	13.100	1.725	1200	φ				
						o	0	1.000	11.375	225
FW11	714399.877	734816.207	13.150	2.130	1200		1	1.000	11.020	225
							0	1.001	11.020	225
FW12	714403.684	734813.579	13.150	2.207	1200	1 000	1	1.001	10.943	225
							0	1.002	10.943	225
FW13	714415.919	734815.105	13.000	2.262	1200	1	1	1.002	10.738	225
							0	1.003	10.738	225
FW14	714422.043	734813.255	13.000	2.369	1200	1	1	1.003	10.631	225
							0	1.004	10.631	225
FW15	714442.756	734812.112	12.500	2.215	1200	1	1	1.004	10.285	225
							0	1.005	10.285	225
FW16	714457.024	734813.984	12.170	2.125	1200	1	1	1.005	10.045	225
							0	1.006	10.045	225

- <u>+</u> -	Remco Ltd t/a Malone	File: FLOW 24-08-19.pfd	Page 4
Courses		Network: Foul Network 2	
Causeway		Conor Macken	
		13/09/2024	

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
FW17	714415.653	734834.221	13.100	1.925	1200					<u> </u>
						()→0				
							0	2.000	11.175	225
FW18	714431.054	734836.157	12.800	1.425	1200					
						0 <				
							0	3.000	11.375	225
FW19	714425.375	734835.443	12.800	1.788	1200	° ↑	1	3.000	11.280	225
						2	2	2.000	11.012	225
							0	2.001	11.012	225
FW20	714421.991	734862.358	13.100	2.540	1200	Å	1	2.001	10.560	225
						ϕ				
						1	0	2.002	10.560	225
FW21	714423.854	734866.294	13.100	2.613	1200		1	2.002	10.487	225
						⊘→0				
						1	0	2.003	10.487	225
FW22	714449.748	734869.569	13.100	3.048	1200		1	2.003	10.052	225
						1-(1)				
						, in the second se	0	2.004	10.052	225
FW23	714452.395	734849.242	12.400	2.592	1200	1	1	2.004	9.808	225
						→ 0	2	1.006	9.808	225
						2	0	1.007	9.808	225
FW24	714504.653	734878.475	13.600	2.025	1200					
						(
						ý v	0	4 000	11 575	225
FW25	714505.210	734861.007	12.500	1.216	1200	1	1	4.000	11.284	225
						\square				
						Ŷ				
514/20	74 4505 027	724056 040	42.200	2 754	1200	ŏ	0	4.001	11.284	225
FW26	/14505.83/	/34856.019	12.200	2.751	1200		1	4.001	11.200 9 119	225
						2 - () >0	2	1.007	5.445	225
							0	1.008	9.449	225
FW27	714513.647	734857.001	11.870	2.473	1200		1	1.008	9.397	225
						1				
							0	1.009	9.397	225
EXCS MH02	714528.442	734857.418	11.190	1.892	1200		1	1.009	9.298	225
						1				
								I		

APPENDIX E – MAINTENANCE AND MANAGEMENT PLAN

Maintenance and Management Plan

Project	NDFA Social Housing Bundles 4 & 5	Analysed by	Kezia Adanza
Job no.	23006	Date	

SuDS Component	Maintenance Responsibility	Maintenance Schedule	Required Action	Typical Frequency
Permeable Paving	PPP management company for	Regular Maintenance	Brushing (Standard cosmetic sweep over whole surface) Visual check on inspection chambers and removal of debris.	Once a year or reduced frequency as required
25 y	25 years	Occasional Maintenance	Removal of weeds or management using glyphosate or other suitable weed killer.	As required – once a year on less frequently used pavements
	Dublin City Council	y Remedial Action	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing materials.	As required
			Remediate any landscaping which has been raised within the level of the paving.	As required
			High pressure jetting of permeable pavement underdrains in the event of blockages. Inspections chambers provided to facilitate this work.	As required
			Rehabilitation of surface and upper sub-structure by remedial sweeping.	Every 10 to 15 years or as required (if performance is reduced due to significant flooding)
	Monito		Initial Inspection	Monthly for three months after installation
			Inspect for evidence of poor operation and/ or weed growth – if required, take remedial action,	Every 3 months, 48 hours after large storms in first six months

	Inspect slit accumulation rates and establish appropriate brushing frequencies.	Annually
	Monitor inspection chambers	Annually

Maintenance and Management Plan

Project	NDFA Social Housing Bundles 4 & 5	Analysed by	Kezia Adanza
Job no.	23006	Date	

SuDS Component	Maintenance Responsibility	Maintenance Schedule	Required Action	Typical Frequency
Bioretention Areas	PPP management company for 25 years	Regular Inspections	Inspect infiltration surfaces for silting and ponding, record de- watering time of the facility and assess standing water levels in underdrain to determine if maintenance is necessary.	Quarterly
then Check operation of underdrains by in rain. Dublin City Assess plants for disease infection, p species etc. and replace as necessary		Check operation of underdrains by inspection of flows after rain.	Annually	
			Assess plants for disease infection, poor growth, invasive species etc. and replace as necessary.	Quarterly
			Inspect inlets and outlets for blockage.	Quarterly
	Regular MaintenanceRemove litter, surface debris and weeds.		Quarterly (or more frequently for tidiness or aesthetic reasons)	
			Replace any plants to maintain plant density.	Quarterly to bi-annually
			Remove sediment, litter and debris build-up from around inlets.	As required
		Occasional Maintenance	Infill any holes or scour in the filter medium, improve erosion protection if required.	As required
			Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch.	As required
		Remedial Actions	Remove and replace filter medium and vegetation.	As required but likely to be > 20 years

	Maintenance and Management Plan				
Project	NDFA Social Housing Bundles 4 & 5		Analysed by	Kezia Adanza	
Job no.	23006		Date		

SuDS Component	Maintenance Responsibility	Maintenance Schedule	Required Action	Typical Frequency
Attenuation Storage	PPP management company for 25 years	Regular Inspections	Inspect infiltration surfaces for silting, record de-watering time of the facility and assess standing water levels in underdrain to determine if maintenance is necessary.	Quarterly
	then Check operation of underdrains by inspe rain.		Check operation of underdrains by inspection of flows after rain.	Annually
Dun Laoghair Rathdown County Coun			Inspect inlets and outlets for blockage.	Quarterly
		Regular Maintenance	Remove sediment, litter and debris build-up from around inlets.	As required