IGSL Ltd

NDFA Social Housing Bundles 4/5 Lot 1 – Stanley Street

Ground Investigation Report

Project No. 25000-1

February 2024

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176

E: info@igsl.ie W: www.igsl.ie

DOCUMENT ISSUE REGISTER

Distribution	Report Status	Revision	Date of Issue	Prepared By:	Approved By:
MORCE	Draft PDF by email	0	20-02-2024	J. Lawler BSc MSc PGeo EurGeol FGS	P. Quigley BEng CEng MICE MIEI FGS RoGEP Adviser

TABLE OF CONTENTS

Foreword

- 1. Introduction
- 2. Fieldworks
 - 2.1 General
 - 2.2 Trial Pits & Foundation Inspection Pits
 - 2.3 Cable Percussion Boreholes
 - 2.4 Soakaway Tests (to BRE 365)
 - 2.5 Rotary Core Drillholes
 - 2.6 Surveying of Exploratory Hole Locations
- 3. Laboratory Testing
- 4. Desk Study
 - 4.1 GSI / OSI Database Information
 - 4.2 Archived Reports
- 5. Ground Conditions & Groundwater
 - 5.1 Ground Profile Superficial Deposits
 - 5.2 Bedrock
 - 5.3 Groundwater
- 6. Ground Assessment & Engineering Recommendations
 - 6.1 General
 - **6.2** Foundations
 - **6.3** Groundwater / Infiltration
 - **6.4** Slopes / Batters
 - 6.5 Buried Concrete
 - **6.6** Waste Acceptance Criteria [WAC] & Environmental Testing Soils destined for Landfill

References

FIGURES

Figure 1	- Location Plan
Figure 2	- Cable Percussion boring in the covered shed at BH01
Figure 3	- Tailte Éireann (OSI) drawing dated 1829-1841 and 1897-1913 drawing showing the evolution of the site in the nineteenth and early twentieth centuries
Figure 4	- Tailte Éireann (OSI) aerial orthophotographs showing the site in 1996-2000 and again in 2013-2018. Google Earth Professional image dated 07/2022.
Figure 5	- Quaternary Soils Plot for the Stanley Street Site
Figure 6	- Bedrock Geological Map for the Stanley Street Site
Figure 7	- Archived Reports near Stanley Street site
Figures 8A & 8B	- Sidewall profiles photographed during trial pitting
Figure 9	- SPT Plot versus Depth for Cable Percussion Boreholes

TABLES

Table 1	 Water measurements in on-site exploratory holes
Table 2	- Measured infiltration rates (f) expressed as exposed area (metre) per unit
	time (minute)
Table 3	- Samples subject to WAC Testing
Table 4	- Elevated values (WAC Testing)
	·

APPENDICES

Appendix 1	- Trial Pit Logs & Photographs
Appendix 2	- Foundation Pit Logs & Photographs
Appendix 3	 Cable Percussion Borehole Logs / SPT Calibration Sheet (Er)
Appendix 4	- Soakaway Records
Appendix 5	 Rotary Drillhole Logs & Core Photographs / SPT Calibration Sheet (Er)
Appendix 6	- Geotechnical Laboratory Results (Soil)
Appendix 7	- Geo-Environmental & Chemical Laboratory Results (Soils)
Appendix 8	- Exploratory Hole Location Plan

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project (NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street) have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as Engineers Ireland Specification for Ground Investigation (2nd Ed, 2016), BS 5930 (2015+A1:2020) and BS 1377 (Parts 1 to 9) and the following European Norms:

- EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- EN ISO 14688-1:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- EN ISO 14688-2:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Principles for a classification
- EN ISO 14689-1:2017 Geotechnical Investigation and Testing Identification, description & classification of rock

The Eurocode 7, Part 2 – Ground Investigation and Testing GI specification shall be read in conjunction with the Specification and Related Documents for Ground Investigation in Ireland, 2nd Edition, published by Engineers Ireland in 2016.

Reporting

No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations. The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for MORCE and the information should not be used without their prior written permission. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

Boring Procedures

Where required, 'shell and auger' or cable percussive boring technique is employed as defined by Section 6.3 of IS EN ISO 22475-1:2006. The boring operations, sampling and in-situ testing meet with the recommendations set out in IS EN 1997-2:2007 and BS 1377:1990 and EN ISO 22476-3:2005. The shell and auger boring technique allows for continuous sampling in clay and silt above the water table and sand and gravel below the water table (Table 2 of IS EN ISO 22475-1:2006).

It is highlighted that some disturbance and variation is unavoidable in particular ground (e.g. blowing sands, gravel / cobble dominant glacial deposits etc). Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

In-Situ Testing

Where required, Standard Penetration Tests (SPT's) are conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is

available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Soil Sampling

Three categories of sampling methods are outlined in EN ISO 22475-1:2006. The categories are referenced A, B and C for any given ground conditions and are shown in Tables 1 and 2 of EN ISO 22475-1:2006. Reference should be made to EN 1997-2:2002 for guidelines on sample class and quality for strength and compressibility testing. Samples of quality classes 1 or 2 can only be obtained by using Category A sampling methods.

Class 1 thin wall undisturbed tube samples (UT100) were obtained in fine grained soils and strictly meet the requirements of EN 1997-2:2002 and EN ISO 22475-1:2006. Soil samples for laboratory tests are divided into five classes with respect to the soil properties that are assumed to remain unchanged during sampling, handling transport and storage. The minimum sample quality required for testing purposes to Eurocode 7 compatibility (EN 1997-2:2002) is shown in Table A.

Table A – Details of Sample Quality Requirements

EN 1997 Clause	Test	Minimum Sample Quality Class
5.5.3	Water Content	3
5.5.4	Bulk Density	2
5.5.5	Particle Density	N/S
5.5.6	Particle Size Analysis	N/S
5.5.7	Consistency Limits	4
5.5.8	Density Index	N/S
5.5.9	Soil Dispersivity	N/S
5.5.10	Frost Susceptibility	N/S
5.6.2	Organic Content	4
5.6.3	Carbonate Content	3
5.6.4	Sulphate Content	3
5.6.5	рН	3
5.6.6	Chloride Content	3
5.7	Strength Index	1
5.8	Strength Tests	1
5.9	Compressibility Tests	1
5.10	Compaction Tests	N/S
5.11	Permeability	2

N/S – not stated. Presume a representative sample of appropriate size.

Samples recovered from trial pits or trenches meet the requirements of IS EN ISO 22475-1. It is highlighted that unforeseen circumstances such as variations in geological strata may lead to lower quality sample classes being obtained.

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible, drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are

subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2017 and IS EN ISO 14688-2:2017. Rock weathering classification conforms to IS EN ISO 14689-1:2017 along with discontinuities (bedding planes, joints, cleavages, faults etc) as classified in Section 6.4 of IS EN ISO 14689-1:2017 and Annex C of same. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Where peat has been encountered, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 and Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986.

Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material will be discarded. Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

1. INTRODUCTION

An investigation of subsoil conditions was undertaken by IGSL Limited at the site of a proposed social housing development at Stanley Street, Dublin 7. The works were undertaken for Malone O'Regan Consulting Engineers [MORCE] on behalf of the National Development Finance Agency (the "NDFA"). The site is currently a Dublin City Council Mechanical Division Depot used as a Fire Maintenance Depot. The site consists of a number of covered sheds and office buildings fronting on to both Grangegorman Lower and Brunswick Street North. The site is accessed off Brunswick Street from the south. A terraced row of houses bounds the northern aspect of the site at Stanhope Street and Stanhope Green. The western flank of the site backs on to the rear of the premises fronting on to the R805 Regional Road (Figure 1).

Figure 1 - Location Plan

Retrieved from Google Earth Professional (Dated 07/2022)

The investigations comprised cable percussion boreholes, machine-dug trial pits, foundation inspection pits and soakaway tests (to BRE365). The investigations were executed in accordance with BS 5930, Code of Practice for Site Investigations (2015+A1:2020) and EN 1997-2 Eurocode 7 Part 2 Ground Investigation & Testing and supervised by an IGSL geotechnical engineer.

Geotechnical, chemical and environmental laboratory testing was scheduled on a range of soil samples. The geotechnical soil testing included moisture contents, Atterberg Limits and particle size distribution [PSD] testing in addition to hydrometer testing. Suites of both chemical testing and environmental testing were undertaken on soils. This report presents an interpretation of the data and an assessment of the key geotechnical issues. The exploratory hole locations are plotted on the site plan in Appendix 8.

2. FIELDWORK

2.1 General

The fieldworks were undertaken during November and December 2023 and comprised the following:

- Trial Pit (11 No.) of which 6 no. are Foundation Inspection Pits
- o Cable Percussion Boring (16 No.1)
- Soakaway Tests (to BRE 365) (2 No.)
- Rotary Core Drilling
- Surveying of Exploratory Hole Locations

2.2 Trial Pits & Foundation Inspection Pits

Trial pitting was performed at eleven locations across the site. Six of the trial pits prefixed TP/FP were undertaken adjacent to existing structures to examine the depth of building footings on site. All eleven trial pits were excavated, logged and sampled under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). Bulk disturbed samples (typically 20 to 30kg) were taken as the pits progressed.

The bulk samples were placed in heavy-duty polyethylene bags. The trial pits were backfilled with the as-dug arisings and reinstated to the satisfaction of IGSL's site geotechnical engineer. The trial pit logs and photos are presented in Appendix 1 and include descriptions of the soils encountered, groundwater conditions and stability of the pit sidewalls.

As mentioned, in order to establish the depth and projection of existing foundations associated with the buildings currently occupying the site, foundation inspection pits were undertaken at six locations at the base of external facing walls for both single-storey and two-storey structures as well as existing sheds / warehousing. As with pits, the inspection pits were excavated and logged under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). Machine-assisted hand digging was used at each location with pits ranging in depth from 0.65 to 2.60m bgl. The pit logs and photos are presented in Appendix 2 and include descriptions of the soils encountered, the foundations exposed and any groundwater conditions noted during the excavation, if observed.

2.3 Cable Percussion Boreholes

Cable percussive boring (200mm diameter) was conducted at sixteen locations [BH_] using a Dando 2000 rig. The boreholes extended to depths of between 0.70m and 8.60m. Re-setups were conducted at both BH02A and BH11A due to shallow obstructions. At each location, boring commenced through hand-dug service inspection pits. Disturbed bulk samples were recovered at 1m intervals or change of strata during boring and these are denoted 'B' on the engineering logs.

Standard Penetration Tests (SPT's) were performed in the boreholes and given the nature of the soils, a solid cone was used. It is noted that the SPT N-Values reported are the number of blows for 300mm increment penetration (e.g. BH01 at 2.0m where N=15). These exclude the seating blow values, which represent the initial 150mm depth of penetration. Where partial penetration was achieved during testing, the number of blows is shown for the actual penetration depth achieved (e.g. BH01 at 5.0m where N=50/75mm). It is highlighted that the SPT N-Values reported on the engineering logs are uncorrected for energy ratio.

Descriptions of the soils encountered, in-situ tests undertaken and samples recovered are presented on the borehole records in Appendix 3. Details of groundwater strikes and hard strata boring (i.e. chiselling) are also presented on the aforementioned records.

¹ Additional boreholes (BH02A & BH11A) were undertaken adjacent to location BH02 after encountering a buried concrete pipe.

Figure 2 – Cable Percussion boring in the covered shed at BH01

2.4 Soakaway Tests (to BRE 365)

Two number infiltration tests were performed to assess the suitability of the sub-soils for dispersion of storm water through a soakaway system. The infiltration tests were each performed in accordance with BRE Digest 365 'Soakaway Design'. To obtain a measure of the infiltration rate of the sub-soils, water was poured into each test pit, with records taken of the fall in water level against time. Following the first soak cycle, the procedure was repeated to ensure saturation of the sub-soils. The infiltration rate is the volume of water dispersed per unit of exposed area per unit of time, and is generally expressed as metres / minute or metres / second. Designs are based on the slowest infiltration rate, which is generally calculated from the final soak cycle. The soakaway design logs are presented in Appendix 4.

2.5 Rotary Core Drillholes

To be completed

2.6 Surveying of Exploratory Hole Locations

Following completion of the exploratory works, surveying was carried out using GPS techniques. Co-ordinates (x, y) were measured to Irish Transverse Mercator and ground levels (z) established to Malin Head. The co-ordinates and ground levels are incorporated on the exploratory hole logs with locations shown on the exploratory hole plans in Appendix 8.

3. LABORATORY TESTING

Geotechnical laboratory testing was carried out at IGSL's INAB-accredited laboratory in accordance with the methods set out in BS1377; British Standard Methods of Test for Soils for Civil Engineering Purposes; British Standards Institute:1990. The laboratory applies best practice management systems as per International Standard IS EN ISO/IEC 17025. The geotechnical testing included moisture contents, Atterberg Limits, particle size distribution [PSD] and hydrometer testing. The results from geotechnical testing on selected trial pit and cable percussive borehole soil samples are presented in Appendix 6.

Chemical analysis incorporating BRE SD1 Suite B (Brownfield – Pyrite Present) was scheduled on recovered soils. The soil chemical results are presented in Appendix 7. A total of twenty-eight soil samples were selected for Waste Acceptance Criteria (WAC) analysis as per the *Rilta* Suite of testing. The results can be used to classify the material with regard to its potential for disposal to landfill. The results are enclosed in the report in Appendix 7.

4. DESK STUDY

4.1 GSI / OSI Database Information

Reference to the OSI drawings from the nineteenth century (1829-41) shows vacant ground bound to the north by a 'Rope Walk'. A 'ropewalk' is a long straight narrow lane, or a covered pathway, where long strands of material are laid before being twisted into rope. It is likely that tarred hemp cables were once stretched and twisted here to make ropes for rigging. There were many such 'rope walks' all over Dublin and its docklands. Each one needed to be 100 yards long to wind a single rope.

The early twentieth century drawing indicates the presence of a 'Scavenging Depot & Destructor' plant on the site. It is noted that a common Borough Boundary exists as a dashed line in both this and the early nineteenth century drawing.

The National Inventory of Architectural Heritage (October, 2012) references the tramlines which still exist in the cobbled laneway that is Stanley Street. The tram lines can be seen to extend into the depot and circuitously meander around and into the warehouses that then occupied the site. The websites report on the site notes;

These tram lines formed part of Dublin Corporations waste disposal system for the city in the opening decades of the twentieth century. Rubbish and street sweepings were collected by horse-drawn carts and brought to a Destructor Plant at Stanley Street, with the waste from this subsequently loaded into specially-constructed tipping wagons, which travelled along track laid from the North Quays up Queen Street, Redcow Lane and North Brunswick Street and carried to the Fairview sloblands, working at night to avoid pedestrians and traffic. Although the tracks and 70 specifically-designed tipping wagons were supplied by Dublin Corporation, DUTC provided power for the lines at a reduced rate. The layout at the Stanley Street Depot incorporated sidings, turntables and point work. The system ceased to operate in 1925.

Figure 3 – Tailte Éireann (OSI) drawing dated 1829-1841 and 1897-1913 drawing showing the evolution of the site in the nineteenth and early twentieth centuries. A common E-W trending Borough Boundary exists as a dashed line in both drawings.

Images taken from Tailte Éireann 'Townland and Historical Map Viewer'

The coloured aerial orthophotographs and Google Earth imagery depict little change in site layout since the turn of the century. Warehousing and sheds form a cover over much of the site. It is not known whether the same perimeter buildings along the Lower Grangegorman street survive from the early twentieth century drawing (See Figure 3). It is likely that the stone-built buildings in rough-hewn Calp Limestone do. Fountain Place and its collection of terraced housing no longer exists to the west of the site. This area appears to have been built over by the extension westwards of the yard space. The site is currently used as the Dublin Fire Brigade Maintenance Section of Dublin City Council.

Figure 4 – Tailte Éireann (OSI) aerial orthophotographs showing the site in 1996-2000 and again in 2013-2018. Google Earth Professional image dated 07/2022.

The Quaternary Soils plot for the area (Figure 5 - retrieved from GSI website) reaffirms the findings of the investigation and highlights the underlying clay-dominant till derived from the ubiquitous Carboniferous Limestone of the area.

Figure 5 – Quaternary Soils Plot for the Stanley Street Site

Reference to the GSI map for the area (Figure 6, 1:100,000 Solid Geology series) shows that the site is underlain by Lower Carboniferous, Lucan Formation. The Lucan Formation (Nolan 1986, 1989) forms the bulk of the basinal rocks throughout the geologically termed 'Dublin Basin', and is characterised by graded, intraclastic skeletal packstone/grainstone interbedded with anoxic calcareous mudstone / black shale, laminated calcisiltite and argillaceous micrite (i.e. impure limestone with clay minerals).

Its base is defined by the first appearance of thick graded beds of limestone, and a marked decrease in the proportion of interbedded shale, compared with the underlying Tober Colleen Formation. The Lucan Formation is widely known as the Calp Limestone (Marchant and Sevastopulo, 1980) but is also referred to as the Upper Dark Limestone and has long been a source of building materials and aggregate for Dublin. The Calp is largely undifferentiated geologically.

LU

Figure 6 - Bedrock Geological Map for the Stanley Street Site (retrieved from the GSI website)

Key: LU = Lucan Formation

4.2 Archived Reports

There are a number of reports presented online on the GSI database which by inference, shed light on the possible ground conditions on site.

4.2.1 Site Investigation for Proposed Bus Station at Broadstone Station, Dublin (Materials Testing Station, Queen's University Belfast, 1948) [1]

The project comprised six boreholes. The southern end of the site (closest to the Stanley Street site) found seven feet of fill underlain by six feet of 'yellow Marl'. The underlying boulder clay was remarked as being 'extremely hard and stony'. An attempt was made at one borehole to reach rockhead. At a depth of 38 feet (11.50m) further progress was found to be impossible and boring was discontinued.

4.2.2 Trial Borings at Queen Street / Blackhall Place (The Irish Piling & Construction Company, 1981) [2]

The project comprised six boreholes. Sketched logs revealed depths achieved of between 12ft 5ins and 21feet 5ins depth, an equivalent of ca. 6.50m. Borehole 1 ended in 'Boulders with little brown clay'.

4.2.3 Report on a Site Investigation at 84, North King Street (IGSL, 2003) [3]

Two boreholes were constructed at a site off North King Street to the southeast of the site. The bores were completed at 16.60m and 14.0m. The end depths imply bedrock lies at even greater depth.

4.2.4 Report on a Site Investigation at James Crean & Sons, 145-149 North King Street (GSI, n.d.) [4]

A scanned written note lists 'Calp Limestone' bedrock at 55 feet or 16.70m bgl.

Figure 7 – Archived Reports near Stanley Street site (adapted from the GSI website)

Key

- 1. Site Investigation for Proposed Bus Station at Broadstone Station, Dublin
- 2. Trial Borings at Queen Street / Blackhall Place
- 3. Report on a Site Investigation at 84, North King Street
- 4. Report on a Site Investigation at James Crean & Sons, 145-149 North King Street

5. GROUND CONDITIONS & GROUNDWATER

5.1 Ground Profile – Superficial Deposits

The following is a summary of the ground conditions encountered across the site.

MADE GROUND

- O Given the layout of the site with its concrete paved yard areas and shed spaces, all trial pits and boreholes required removal of a concrete pavement. The concrete ranged in thickness from 140mm to 300mm thick (as viewed in trial pit excavations) and was often complete with integral reinforcing mesh. A concrete thickness of 350mm was reported in BH13.
- O Underlying the concrete pavement, there was little evidence of engineered backfill / gravel hardcore in a number of pits. Instead, the underlying Made Ground was described as dark grey brown sandy gravelly CLAY with red brick, concrete rubble, sea shells, pottery fragments and mortar (TP01). Ash fill, cabling, glass shards and cobbles were also unearthed in other pits. This layer was reported as extending to depths ranging 0.80m to 1.10m bgl. A cemented gravelly ASH-type material was logged from 0.17m in TP02 to its base at 1.50m (11.72m OD). No further digging was possible in this very stiff layer.
- In total, across trial pits, mixed clay Made Ground was observed to range in depth from 0.85m bgl (12.53m OD) in TP03 to at least 2.0m bgl (9.47m OD) in TP10 (no base was found to the Made Ground in TP10). In boreholes, a 'black sandy gravelly CLAY with red brick fragments' was logged in BH02A to a depth of 2.0m (11.60m OD) with grey brown gravelly Clay with red brick fragments noted to a depth of 2.90m (10.02m OD) in BH10.
- Where an engineered gravel hardcore was observed beneath the concrete, such pits were positioned near more recently constructed structures such as at TP/FP11 in the east of the site where a grey angular Gravel and Cobble FILL was observed from 0.20m to 1.25m bgl. Similar grey gravel hardcore was observed in TP/FP06 to the side of a rising wall (to 2.0m bgl / 11.52m OD). In TP10, angular Gravel and Cobble FILL was also witnessed to a depth of 1.50m before passing into brown mottled grey sandy gravelly CLAY with red brick, mortar and shells. Minor placed gravel layers were reported in each of TP/FP05, TP/FP07, TP08 and TP/FP09.
- Borehole BH09, towards the west of the site, reported Clay Made Ground with Cl.804-type angular stone Fill to a depth of 2.80m bgl.
- Overall, there appears to be a lower accumulation of Made Ground towards the southeast and south of the site. This is evidenced in both BH13 and TP08 where no Clay Made Ground was recorded with firm to stiff indigenous soils in their place.

Possible ALLUVIUM / Glaciolacustrine Sediments

• Beneath the upper cover of concrete and Made Ground, the natural soils were often reported as soft in consistency. This is especially true to the north and east of the site. Trial pit TP01, positioned along the northern boundary adjacent to Grangecourt Apartments on Stanhope Street, found 'soft brownish grey sandy gravelly CLAY with cobbles' from 0.95m bgl (12.57m OD) to 1.90m bgl (11.62m OD). This soil layer exhibited a strong hydrocarbon odour. In nearby TP03, a soft yellowish brown slightly sandy CLAY was logged from 0.85m (12.53m OD) to 1.10m (12.28m OD) where it passed to a soft brown slightly sandy slightly gravelly CLAY with a high cobble content. This extended to 1.80m bgl (11.58m OD). This equates very well with the extent of the "soft" layer in TP01.

- As with TP01 and TP03, trial pit TP05 recorded a base of soft to firm soils at 1.90m bgl (11.53m OD). The soft to firm deposits extended from the base of Made Ground at 1.20m bgl.
- Trial Pit TP04 suggests soft ground pushes to greater depths locally. The pit ended at 2.70m (10.82m OD) without a visibly obvious improvement in strength. Similarly, in TP11 a 'soft brown slightly sandy gravelly SILT with cobbles' was logged from 1.60m (10.39m OD) to the base of the pit at 2.20m (9.79m OD).
- No soft natural soils were intercepted in either TP07 or TP08.
- o Boreholes encountered soft natural overburden in a number of holes, namely boreholes BH04, BH07 and BH08 and in BH12 and BH14. Each of BH04, 07 and 08 uncovered soft to firm black and soft black sandy gravelly CLAY to depths of 3.40m bgl (9.96m OD), 3.70m (9.78m OD) and 3.30m (9.96m OD). The consistency in base depth suggests the soil layer is laterally extensive in the area of the three adjacent bores. At BH07, the particular soil horizon displayed a strong hydrocarbon odour.
- o In the case of BH12, based on SPT results the soft nature of the ground continues to a depth of 3.20m bgl (8.29m OD). At this depth, a stiff to very stiff over-consolidated glacial till is found. Soft soils are present in BH14 to a depth of 1.50m (10.32m OD) with the soil described as a 'Soft black slightly gravelly SILT/CLAY'. This may be a lateral equivalent of the soft black-coloured upper stratum intercepted in each of BH04, BH07 an BH08.
- o An SPT plot in Figure 9 illustrates the occurrence of soft and soft to firm soil deposits (inclusive of Made Ground) in the upper 2m, occasionally 3m.

Figures 8A & 8B – Sidewall profiles photographed during trial pitting. Fig 8A TP03 Clay Made Ground onto natural soft yellow brown CLAY and soft brown CLAY underlain by firm to stiff grey brown CLAY with cobbles from 1.80m to pit base at 2.50m. Slow water ingress at 1.70m. Fig 8B At TP08, concrete over angular Gravel FILL over firm to stiff brown slightly sandy gravelly CLAY and stiff to very stiff brown slightly sandy gravelly CLAY from 2.10m to pit base at 2.70m bgl.

Fig 8A Fig 8B

In-situ testing was undertaken during the construction of the sixteen drillholes. The standard penetration test [SPT] allows for an appraisal of the ground stiffness. A plot showing the blowcounts generated from testing at each hole is presented in Figure 9.

It highlights the general soft nature of soils in test drives in shallow Made Ground and underlying clay overburden. 'Low strength' deposits are those where N values of <10 blows are present.

Figure 9 – SPT Plot versus Depth for Cable Percussion Boreholes

GLACIAL DEPOSITS (Glacial Lodgement Till)

- At depth across the pits and bores which achieved greatest depth, there was reported an underlying glacial till comprising an initially firm, becoming firm to stiff and stiff grey brown to dark grey brown slightly sandy gravelly cobbly CLAY. Appreciable thicknesses of firm to stiff brown slightly sandy gravelly CLAY were encountered in both TP07 (1.10-2.50m) and TP08 (0.40-2.10m) ahead of the underlying stiff to very stiff brown till (from 2.10m / 9.40m OD in TP08).
- Boreholes demonstrate the entry more succinctly of the stiff to very stiff CLAY flagged by the higher SPT N-values obtained in test drives. Figure 9 shows that from 3.0m, the higher SPT N-values were generally obtained typical of stiff and very stiff CLAY or dense GRAVEL deposits.
- Boreholes terminated in the stiff to very stiff CLAY across all holes save for BH02, BH11 and BH11A, those holes not achieving a significant depth. The bores which terminated in the over-consolidated CLAY ended at depths of between 5.0m and 8.60m. The thickness of the basal stiff to very stiff CLAY prior to termination in the till ranged from 1.40m (BH01) to 5.50m (BH05).
- Minor clayey/silty very sandy Gravel layers were also intercepted in the boreholes from 2.80-3.40m (BH03), from 2.80-4.30m in BH09 and from 3.0m to 3.20m (BH13). In the absence of an actual strike during boring, groundwater was later dipped in or around the Gravel layers in each of the three named bores.

5.2 Bedrock

Consultation of the GSI map for the area suggests the bedrock underlying the site is that of the Lucan Formation limestone and shales (See Section 4). Rotary drilling had not yet been completed at the time of draft reporting.

5.3 Groundwater

Water ingress was noted in open excavations in trial pits TP01, TP03, TP04 and TP05 towards their respective bases between 1.70m and 2.50m. In boreholes, there was generally an absence of water strikes being recorded during hole construction save for two boreholes BH04 and BH05 where water strikes were remarked at 5.50m (7.86m OD) and 4.0m (9.43m OD).

The trend of noting groundwater upon completion of boring (in six of sixteen boreholes) is likely to be a result of casing-off strikes in the impermeable CLAY, thus preventing water entry along the length of the respective holes until casing was removed. Table 1 outlines where water was met in each of the exploratory holes. The potential does exist for there to be seasonal changes in groundwater level. The works were carried out during late autumn / winter 2023.

Table 1 – Water measurements in on-site exploratory holes

	Exploratory Hole No.	Water Struck m bgl (m OD)	Stratum Description	Rate of Flow	Remarks / Stratum of water ingress (m OD)
	BH02A	-	-	-	Water was noted at 4.0m bgl (9.60m OD) in the borehole upon removal of the drill casing. BH ended at 8.50m. (03-11-23)
oles	BH03	-	-	-	Water was noted at 2.0m bgl (11.48m OD) in the borehole upon removal of the drill casing. BH ended at 8.10m. (26-10-23)
Cable Percussion Boreholes	BH04	5.50 (7.86)	Very stiff black slightly sandy gravelly CLAY with cobbles and boulders	Slow – water rose to 5.0m in 20min	Water was noted at 5.0m bgl (8.36m OD) in the borehole upon removal of the drill casing. BH ended at 8.0m. (31-10-23)
	BH05 4.0 (9.43)		Very stiff black slightly sandy gravelly CLAY with cobbles and boulders	Slow – water rose to 3.50m in 20min	Water was noted at 2.0m bgl (11.43m OD) in the borehole upon removal of the drill casing. BH ended at 8.30m. (25-10-23)
	BH06	-	-	-	Water was noted at 5.0m bgl (8.56m OD) in the borehole upon removal of the drill casing. BH ended at 8.60m. (07-11-23)

Cont.

Cable Percussion Boreholes	ВН09	-	-	-	Water was noted at 3.0m bgl (10.49m OD) in the borehole upon removal of the drill casing. BH ended at 8.0m. (15-11-23)
	BH13	,	-	-	Water was noted at 3.0m bgl (8.70m OD) in the borehole upon removal of the drill casing. BH ended at 7.0m. (28-11-23)
	BH14	-	-	-	Water was noted at 3.50m bgl (8.32m OD) in the borehole upon removal of the drill casing. BH ended at 6.20m. (01-12-23)
	TP01 2.30 (11.22)		Firm grey brown slightly sandy gravelly SILT/CLAY with a medium cobble content	Moderate	Trial Pit remarked as unstable. Strong hydrocarbon contamination noted from 0.95-2.50m (pit base)
pits	TP/SA03	1.70 (11.68)	Soft brown slightly sandy slightly gravelly CLAY with a low cobble content	Slow	Trial Pit unstable to 1.80m bgl
Trial Pits	TP04 2.50 slightly san gravelly CL with a medi cobble cont (Possible ve clayey sand		Very soft brown slightly sandy gravelly CLAY with a medium cobble content (Possible very clayey sandy GRAVEL)	Slow	Trial Pit slightly unstable
	TP05	2.30 (11.13)	Firm brown slightly sandy gravelly SILT/CLAY with a high cobble content	Moderate	Trial Pit slightly unstable

6. GROUND ASSESSMENT & ENGINEERING RECOMMENDATIONS

6.1 General

In light of the ground investigation findings, the following geotechnical issues are developed and discussed:

- Foundations
- Groundwater / Infiltration
- Slopes / Batters
- Buried Concrete
- Waste Acceptance Criteria [WAC] & Environmental Testing
 - Soils destined for Landfill

6.2 Foundations

The ground investigation findings demonstrate a variable sequence of soils mantling the site. The findings from some trial pits and almost all boreholes suggest a stiff to very stiff over-consolidated CLAY underlies a cover of initial MADE GROUND overlying natural soft and soft to firm compressible CLAY. The depth to the basal very stiff and stiff till is quite consistent in that it ranges from 3 to 4m below ground level. There is potential to intercept Made Ground to appreciable depths (up to 2.80m / 10.69m OD in BH09) suggesting there is a significant variability in soil composition on the site, most likely attributable to historical periods of excavation and/or infilling at the site. Based on SPT N values, there are areas with soft deposits to depths of ca. 3.0m.

Foundation inspection pits positioned at a range of existing buildings on the site suggest the use of variable foundation types. Extensive rising walls, where no footing was observed to a depth of 2.0m, appear in FP06. It is known from nearby BH06 that a firm brown sandy gravelly CLAY exists from 1.30m bgl and that a stiff brown CLAY extends from 3.50m. It is likely the footings were placed on the natural firm to stiff soils in this case.

At FP11, Made Ground was found to extend to 1.60m with a possible strip footing measured at 1.55m bgl. Trial pitting at TP11 suggest soft brown sandy gravelly CLAY. Given the light bearing capacities envisaged for the single-storey building at FP11, this was likely deemed sufficient for the loading involved.

No footing was observed in pit FP05. Instead only a ground slab was measured to 0.20m bgl. This potentially implies a piled foundation solution.

Given the prominence of Made Ground (varying from 0.40m to 2.80m) and presence of soft and soft to firm soils, the selected foundation solution will have to be founded within deeper competent strata to support structural loads.

Piles are recommended to support the structural loads and negate the risk of unacceptable settlement in the Made Ground and underlying low to medium strength soils. The use of piles would also eliminate the need to form excavations in potentially water-bearing near-surface soils (refer to Section 6.3). The use of a bored displacement pile system would curb the volume of arisings which would otherwise be generated using bored / CFA piles. However, advice should be sought from the piling contractor (or their designer) with regard to the most suitable pile type for the ground conditions.

Given the depth of rockhead (likely >8m), it is expected that adequate embedment in the lower CLAY layer will mobilise skin friction and end bearing. Ahead of coring, pile safe working load capacity (compression) should not be dependent on achieving end-bearing on the bedrock – the GSI GeoUrban Viewer predicts rock in the range 15-20m with nearby archived projects suggesting rockhead in the region of 17m bgl (See Section 4.2). Trial piling (at least 2 No.) would be advised to

confirm embedment or penetration depths and more importantly validate that settlements would be acceptable at safe working load (SWL).

The pile designer should consider negative skin friction from the Made Ground and soft to firm CLAY (upper 2-3m) on the selected piling technique. Floor slab loadings for the building unit are unknown but a suspended floor slab is recommended in view of the presence of soft and compressible Made Ground across the site. It may be possible, if the existing fill is rolled and capped with a layer of SR21 Annex E compliant granular material, an adequate support for floor slabs could be generated, unless unusually high pressures are envisaged. Given the high concentrations of total organic carbon detected in shallow soils (See Section 6.6), ground gas may be present on site. Measures should be incorporated in the ground slab design for the inclusion of a barrier to any such subterranean gases.

An engineered fill platform or piling mat to support the piling plant should be designed in accordance with BRE 470. The thickness and granular fill type (most likely T0 to SR21) should be selected for the ground conditions and specific rig loadings. It is assumed that imported granular fill used will remain in situ under the footprint of the building after piling works are completed, therefore it should meet the chemical and durability / soundness parameters listed in Annex E of SR21:2014+A1:2016. Drainage and maintenance are key factors or considerations in pile platform design and to ensure successful piling operations. It is noted that T0 will not permit free draining conditions, hence surface water management and maintenance of the piling is advised as set out in BRE 470.

Plate bearing tests could be undertaken across the site to assess the performance of the existing Made Ground layer and the results used design platform thickness. Assuming the Made Ground is to be left in place, compaction using a smooth drum roller without vibration with a mass per metre of roll of not less than 5400 kg should be used and achieve an improvement in the performance (stiffness) of the Made Ground before constructing a piling platform.

6.3 Groundwater / Infiltration

As noted in Section 5.3, shallow groundwater strikes were present in the open excavations ranging from slow to moderate ingress at depths ranging 1.70m to 2.50m. Ingress in four of the eleven pits saw water enter in the very soft and soft brown CLAY (TP04 &TP/SA03), as well as in the firm brown and grey brown gravelly CLAY (TP01 & TP05). The absence of water entry in the remaining seven pits may be attributed to the permeability of the natural CLAY (or lack thereof). This should limit the ingress of groundwater where excavations are formed solely in fine soils. Therefore, shallow temporary excavation should generally see an absence of water ingress in natural deposits. It should be noted that groundwater can exist in perched waterbodies often hosted in mixed Made Ground.

Deeper-seated water entry was observed in the boreholes during their construction, from 4.0m to 5.50m bgl. In six of the remaining sixteen bores, water was noted post-borehole construction at depths ranging 2.0m to 5.0m bgl.

Should water be encountered during deeper digs / excavations it is likely that de-watering will be required through a combination of strategic sump pumping and / or perimeter drains. As mentioned in Section 5.3, the potential does exist for there to be seasonal changes in groundwater level. The works were carried out during winter 2023. It may be the case that the various waterbodies at depth are subject to seasonal variations.

Two soakaway tests were conducted on the site. Both tests were carried out primarily in the natural overburden soils within open excavations. The impermeable nature of the soils may account for the low infiltration rates obtained.

It is likely that such soils would not be suitable for conventional soakaways being classified as offering only low natural infiltration (Table 2).

Table 2 – Measured infiltration rates (f) expressed as exposed area (metre) per unit time (minute)

Soakaway Test No. Depth of Test (m bgl)		f (m/min)	f (m/sec)	
TP/SA03	2.50	0.00017 m/min	2.77E -06 m/sec	
TP/SA11	2.20	0.00028 m/min	4.74E -06 m/sec	

6.4 Slopes / Batters

A maximum temporary slope angle of 1V to 1.5H (33°) is anticipated for batters constructed within the upper medium strength fine grained soils. A slope angle of 1V to 2H (26°) should be appropriate for long term batters in the same soils. Instability was noted during pitting with sidewall collapse and general instability displayed by the Made Ground and uppermost lower strength deposits. Where deep excavation works are required in the superficial deposits, the use of trench box support is advised. In addition, the uppermost fine subsoils will be susceptible to softening and degradation and surface water or groundwater ingress can lead to a significant reduction in shear strength. Perched water can exist locally and this should be considered in risk assessments for excavations. Presence of ground gas should also be a consideration given the drape of Made Ground on the site coupled with the hydrcarbon signature identified detected in some of the pits.

Site operatives or personnel should not enter unsupported excavations and should be informed of potential risks. Where site operatives or engineering staff work in close proximity to temporary slopes or batters, these should be inspected and approved by a suitably experienced civil engineer, preferably with geotechnical experience. Where there is a risk of spalling of battered slopes, the use of a geogrid is recommended. The geogrid should be anchored at the top and bottom of the ridge face to contain particles such as gravel, cobbles and / or boulders, anthropogenic materials that may become dislodged.

6.5 Buried Concrete

The chemical analysis tests on natural soil samples (BRE SD1 analysis suite) show pH (2.5:1) values ranging from 8.0 to 9.3. The sulphate aqueous extract (SO₄) results from borehole and trial pit samples determined values of <10 and 770mg/l. This would suggest the 'as-received' soil samples tested could be categorised as BRE Class DS-2.

Table C2 ACEC for brownfield sites in BRE SD 1 (2005) can be used in the selection and design of concrete. If mobile groundwater conditions prevail at the site and given the pH values obtained from the testing, then ACEC class AC-2 would be expected to be appropriate for buried concrete in the soils. In line with I.S. EN 206-1:2013, given the elevated acid soluble sulphate contents reported, concrete could be manufactured to Class XA2 where founded or positioned in the upper soils (Class XA2 being >3000 and \leq 12000 SO₄²⁻ mg/kg).

6.6 Waste Acceptance Criteria [WAC] & Environmental Testing – Soils destined for Landfill Twenty-eight soil samples from boreholes and trial pits were analysed for their compliance to the criteria set out in the 2002 European Landfill Directive (2003/33/EC). Table 3 lists the samples, their origin and sample description. A note is made as to whether or not they exhibited a hydrocarbon odour or not at the time of sampling.

For at least one parameter, twenty-one of the twenty-eight samples failed to meet the inert landfill acceptance criteria (See Table 4).

A total of eighteen soil specimens were noted to contain at a minimum non-hazardous quantities of Total Organic Carbon, and, in the case of five of these samples, hazardous quantities. The samples would therefore not be accepted by an inert landfill but should instead be dealt with by a suitably licensed waste facilitator.

Table 3 – Samples subject to WAC Testing

Trial Pit / Borehole	Sample Depth	Sample Description	Soil Type
BH01	1.0	Sand and Gravel with red brick and steel fragments	MG
BH02A	1.0	Large red brick fragments, concrete, stone and gravel.	MG
BH03	2.0	Firm brown gravelly SILT/CLAY. HC odour	Poss MG
BH03	3.0	Medium dense black silty very sandy GRAVEL.	Sa Gr
		HC odour	
BH04	1.0	Black sandy Clay with red brick fragments	MG
BH05	2.0	Firm brown/black sandy slightly gravelly SILT/CLAY	sa gr CL
BH06	1.0	Black Clay with timber and red bricks	MĞ
BH07	2.0	Loose to medium dense grey brown sandy silty GRAVEL	sa si Gr
BH08	1.0	Black gravelly Clay	MG
BH09	1.0	black sandy gravelly Clay with Cl.804-type angular stone Fill	MG
BH10	2.0	Grey/brown gravelly Clay with red brick fragments	MG
BH11	1.0	Firm black gravelly CLAY with occasional cobbles	Gr Cl
BH12	1.0	Soft brown slightly gravelly SILT/CLAY	sl gr SI/CL
BH13	1.0	Firm black slightly gravelly SILT/CLAY with occasional small cobbles	sl gr Sl/CL
BH14	1.0	Soft black slightly gravelly SILT/CLAY	sl gr SI/CL
TP01	0.70	Dark grey/brown sandy gravelly Clay with red brick, concrete rubble, sea shells, pottery pieces and mortar	MG
TP01	1.50	Soft brownish grey sandy gravelly CLAY with a medium cobbles content. HC odour	sa gr CL
TP01	2.30	Firm grey brown slightly sandy gravelly SILT/CLAY with a medium subangular to subrounded cobbles content. HC odour	sl sa gr SI/CL
TP02	0.70	Dark grey/black cemented ASH Gravel with red brick fragments, small pottery and glass shards and cobbles.	MG
TP03	0.50	Black sandy gravelly Clay with red brick, mortar, roots, concrete blocks, old cable and ash fill.	MG
TP04	0.70	Dark grey/black sandy gravelly Clay with red brick fragments, mortar and sea shells	MG
TP05	0.40	(Very dense) dark grey sandy Gravel. HC odour	MG
TP05	1.60	Soft to firm brown sandy gravelly CLAY with a low cobble content	sa gr Cl
TP06	1.80	Grey slightly sandy angular Gravel with many angular small cobbles	MG
TP07	0.60	Dark grey black sandy gravelly Clay with angular gravel, brown fine sand, ash and pottery fragments, cobbles.	MG
TP08	1.40	Firm to stiff brown slightly sandy gravelly CLAY with a medium cobble content	sl sa gr Cl
TP10	1.60	Brown mottled grey sandy gravelly Clay with red brick, mortar and shells fragments.	MG
TP11	1.30	Dark grey mottled grey sandy gravelly Clay with red brick and mortar fragments	MG

Table 4 below lists the exceedance in each of the aforementioned twenty-one shallow soil samples compared with the published inert, non-hazardous and hazardous landfill limits.

Table 4 – Elevated values (WAC Testing) (Exceedances listed in red)

Parameter	Inert Landfill Limit (mg/kg)	Stable, Non- reactive hazardous waste in non- hazardous Landfill Limit (mg/kg)	Hazardous Waste Landfill Limit (mg/kg)	BH01 1.0m MADE GROUND	BH02A 1.0m MADE GROUND	BH03 3.0m HC Odour	BH04 1.0m MADE GROUND	BH06 1.0m MADE GROUND
Total Organic Carbon	3	5	6	4.9	6.8		13	9.8
Dissolved Organic Carbon	500	800	1000	<50	59		<50	98
Loss on Ignition	1	-	10%	0.76%	8.2%		12%	21%
Dissolved Sulphate	1000	20000	50000	2600		1900	3400	
Total Dissolved Solids [TDS]	4000	60000	100000	3200		2800	4400	

Key

MG - Logged as Made Ground

HC - Hydrocarbon odour detected during sampling

Table 4 – Elevated values (WAC Testing) (Exceedances listed in red) [continued]

Parameter	Inert Landfill Limit (mg/kg)	Stable, Non- reactive hazardous waste in non- hazardous Landfill Limit (mg/kg)	Hazardous Waste Landfill Limit (mg/kg)	BH07 2.0m	BH08 1.0m MADE GROUND	BH09 1.0m MADE GROUND	BH10 2.0m MADE GROUND	BH11 1.0m
Total Organic Carbon	3	5	6	4.2	3.2		3.9	3.3
Dissolved Organic Carbon	500	800	1000	<50	<50		80	<50
Loss on Ignition	-	-	10%	0.92%	0.84%		1.3%	0.59%
Dissolved Sulphate	1000	20000	50000	2400	2400	3500		2900
Total Dissolved Solids [TDS]	4000	60000	100000	3100	3000	4000		4100
TPH Total WAC	500	-	-				8100	

Table 4 – Elevated values (WAC Testing) (Exceedances listed in red) [continued]

Parameter	Inert Landfill Limit (mg/kg)	Stable, Non- reactive hazardous waste in non- hazardous Landfill Limit (mg/kg)	Hazardous Waste Landfill Limit (mg/kg)	BH13 1.0m	BH14 1.0m	TP01 0.70m MADE GROUND	TP01 1.50m	TP02 0.70m MADE GROUND
Total Organic Carbon	3	5	6	4	4.9	9.6		4.0
Dissolved Organic Carbon	500	800	1000	<50	51	99		54
Loss on Ignition	-	-	10%	0.87%	2.8%	11%		35%
Dissolved Sulphate	1000	20000	50000	2300				
Total Dissolved Solids [TDS]	4000	60000	100000	3000				
Dissolved Antimony	0.06	0.7	5					0.10
Dissolved Molydenum	0.5	10	30					
TPH Total WAC	500	-	-				1500	

Table 4 – Elevated values (WAC Testing) (Exceedances listed in red) [continued]

Parameter	Inert Landfill Limit (mg/kg)	Stable, Non- reactive hazardous waste in non- hazardous Landfill Limit (mg/kg)	Hazardous Waste Landfill Limit (mg/kg)	TP03 0.50m MADE GROUND	TP04 0.70m MADE GROUND	TP05 0.40m MADE GROUND	TP06 1.80m MADE GROUND	TP07 0.60m MADE GROUND	
Total Organic Carbon	3	5	6	5.5	3.2	13	3.2	3.1	
Dissolved Organic Carbon	500	800	1000	70	<50	71	52	52	
Loss on Ignition	-	-	10%	5.8%	1.5%	8.8%	0.69%	2.0%	
Dissolved Sulphate	1000	20000	50000				2400	7300	
Total Dissolved Solids [TDS]	4000	60000	100000					3000	7500
Dissolved Antimony	0.06	0.7	5	0.10		0.23			
TPH Total WAC	500	-	-			1500			

[continued]

Table 4 – Elevated values (WAC Testing) (Exceedances listed in red)

Parameter	Inert Landfill Limit (mg/kg)	Stable, Non- reactive hazardous waste in non- hazardous Landfill Limit (mg/kg)	Hazardous Waste Landfill Limit (mg/kg)	TP11 1.30m MADE GROUND	
Total Organic Carbon	3	5	6	4.2	
Dissolved Organic Carbon	500	800	1000	91	
Loss on Ignition	-	-	10%	6.8%	
Dissolved Molydenum	0.5	10	30	0.51	

Key

MG – Logged as Made Ground

Where the inert value for TOC is exceeded, the EU Landfill Directive allows for the following dispensation:

"In the case of soils, a higher limit value may be admitted by the competent authority, provided the DOC value of 500 mg/kg is achieved at L/S = 10 l/kg, either at the soil's own pH or at a pH value between 7.5 and 8.0."

Notably the DOC [Dissolved Organic Carbon] content did not exceed 500mg/kg for any of the named eighteen samples (ranging in concentration from <50mg/kg to 99mg/kg). In certain inert landfills, an additional criterion is set whereby samples with elevated TOC levels must also exhibit Loss on Ignition (LOI) levels that are less than $\underline{5\%}$ by weight. This test returned values ranging 0.59% to 35% indicative of high organic concentrations.

Any relaxation of the criteria as outlined here should be confirmed with the respective inert landfill ahead of soil removal from site.

There are other samples which, in the case of dissolved metal concentrations (dissolved antimony and molybdenum), were found to have exceeded inert levels. Additionally, samples also failed based on dissolved sulphate and/or Total Dissolved Sulphates [TDS]. In the case of the samples in Table 4, they should not be accepted by an inert landfill. However, the Council Decision states that "in certain circumstances, up to three times the higher limit values for specific parameters" can be accepted by an inert landfill. As the values for dissolved antimony (except TP05 at 0.40m), dissolved molybdenum and for a number of dissolved sulphate and TDS would fall under three times the limit, this would imply that such a value would be acceptable.

In the case of the dissolved sulphate content, in Section 2.3.1 of the 2002 European Council Decision (2003/33/EC), it is stated that;

"the values for TDS [Total Dissolved Solids] can be used alternatively to the values for sulphate".

Therefore, it seems possible that where an exceedance is reported for dissolved sulphate but the TDS falls under the cut-off, that those samples would be accepted by an inert landfill. The relaxation of the criteria as outlined here should be confirmed with the respective inert landfill ahead of soil removal from site.

It would be prudent, given the volume of analysis, that a waste characterisation assessment of the results would be carried out in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015). We would recommend that a specialist environmental consultant (such as O'Callaghan Moran Consultants) be engaged to undertake this assessment.

REFERENCES

- **1.0** BS 5930 (2015+A1:2020) Code of Practice for Site Investigation, British Standards Institution (BSI).
- 2.0 BS 1377 (1990) Methods of Testing of Soils for Civil Engineering Purposes, BSI.
- **3.0** Eurocode 7, Part 2: Ground Investigation & Testing (EN 1997-2:2007)
- 4.0 Geological Survey of Ireland (n.d.). Report on a Site Investigation at James Crean & Sons, 145-149 North King Street. Retrieved February 19, 2024 from the GSI website https://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde2a aac3c228
- 5.0 IGSL (2003). Report on a Site Investigation at 84, North King Street. Retrieved February 19, 2024 from the GSI website https://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde2a aac3c228
- 6.0 Irish Standard IS 888:2016, NSAI (Published in March 2016)
- **7.0** Marchant T.R. and Sevastopulo G. D. (1980). The Calp of the Dublin District. Journal of Earth Sciences, 3(2), pp195-203
- 8.0 Materials Testing Station, Queen's University Belfast (1948). Site Investigation for Proposed Bus Station at Broadstone Station, Dublin. Retrieved February 19, 2024 from the GSI website https://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde2a aac3c228
- 9.0 National Inventory of Architectural Heritage (2012, October). Reg No 50070207 Stanley Street, Dublin 7. Retrieved February 16th, 2024 from the 6.0 National Inventory of Architectural Heritage website https://www.buildingsofireland.ie/buildings-search/building/50070207/stanley-street-dublin-7-dublin
- **10.0**Nolan, S. C. (1986). The Carboniferous geology of the Dublin area. Unpublished Ph.D. Thesis, University of Dublin.
- **11.0**Site Investigation Practice: Assessing BS 5930 (1986), Geological Society Special Publication, No. 2.
- 12.0 Sowers, G.F. (1962) Shallow Foundations, Foundation Engineering, McGraw Hill
- 13.0 SR21:2014+A1:2016 Guidance on the use of IS EN 13242+A1:2007
- **14.0**Terzaghi, K., Peck, R.B., & Mesri, G. (1996). Soil Mechanics in Engineering, 3rd Edition. New York, Wiley.
- 15.0 The Irish Piling & Construction Company (1981). Trial Borings at Queen Street / Blackhall Place. Retrieved February 19, 2024 from the GSI website https://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde2a aac3c228

Appendix 1

Trial Pit Logs & Photographs

TRIAL PIT RECORD

REPORT NUMBER

25000-1

LOG	GED BY IR	FA Social Housing Bund		CO-ORDINATES 714,47		173.89 E 371.82 N		DATE STARTED DATE COMPLETED		14/1	Sheet 1 of 1 14/11/2023 14/11/2023	
CLIENT NDFA ENGINEER MORCE			GROUND LE	GROUND LEVEL (m)		13.52			EXCAVATION 5		T tracked xcavator	
							Samples		(Pa)		Hand Penetrometer (KPa)	
		otion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penet	
0.0	gravelly Clay	JND comprised of dark of with red brick, concrete s and mortar.	grey/brown sandy rubble, sea shells,		0.30	13.22						
1.0	cobbles cont subangular to	n grey sandy gravelly CL ent. Sand is fine to coars o subrounded fine to coa o subrounded Strong h n.	se. Gravel is urse. Cobbles are		0.95	12.57		AA209906	В	0.70		
2.0	medium suba	own slightly sandy gravel angular to subrounded c angular to subrounded f	obbles content.		1.90	11.62		AA209907	В	1.50		
-	hydrocarbon	contamination.			2.50	11.02	(Moderate)	AA209908	В	2.30		
	ndwater Cond erate water flov											

IGSL TP LOG 25000 -General Remarks
Strong hydrocarbon contamination from 0.95m

TRIAL PIT RECORD

REPORT NUMBER

25000-1

IGSL									25000-1			
CON	TRACT	NDFA Social Housing Bundles	4/5 - Lot 1 - Stanl	ey Street				TRIAL P	IT NO.	TP02 Sheet 1 of 1		
LOG	LOGGED BY IR		CO-ORDINAT	CO-ORDINATES		714,449.45 E 734,846.37 N			TARTED	D 15/11/2023		
CLIE	NT INEER	NDFA MORCE	GROUND LE	GROUND LEVEL (m)		13.22		DATE COMPLET EXCAVATION METHOD		5T tracked excavator		
			·					Sampl			a)	neter
		Geotechnical Description	ı	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	MADE ASH G glass s	GROUND comprised of dark grey ravel with red brick fragments, sm hards and cobbles. hinated due to cemented stratum Trial Pit at 1.50m	/black cemented all pottery and		1.50	13.05		AA204950	В	0.70		
- 2.0 												
Grou Dry	ındwater	Conditions		1								
Stab	ility											
Good	d											
	eral Rema erminated	arks I at 1.50m due to slow progress in	very stiff stratum.									

REPORT NUMBER

25000-1

CON	TRACT	NDFA Social Housing Bundles 4				01 70 5		TRIAL P			t 1 of 1	
_OG(GED BY	IR	CO-ORDINAT	ES		21.78 E 68.01 N		DATE ST	TARTED OMPLETE		/2023 /2023	
CLIEI	NT NEER	NDFA MORCE	GROUND LEV	/EL (m)	13.38			EXCAVA METHOD		5T tra	acked vator	
								Samples			a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	MADE 0 with red and ash	GROUND comprised of black sand brick, mortar, roots, concrete block	y gravelly Clay ks, old cable		0.17	13.21						
_	Soft bro	wn slightly sandy slightly gravelly C d occasional red brick pieces (MA	CLAY with some DE GROUND)		0.55	12.83		AA204947	В	0.50		
	Soft yell	owish brown slightly sandy CLAY			0.85	12.53						
1.0	cobble c	wn slightly sandy slightly gravelly (content. Sand is fine to coarse. Gra ular to subrounded fine to coarse. (ular.	vel is		1.10	12.28	J. (Slow)	AA204948	В	1.30		
2.0	CLAY w Gravel is	stiff greyish brown slightly sandy sl ith a high cobble content. Sand is a s subangular to subrounded fine to are subangular to subrounded.	ine to coarse.		1.00	11.30		AA204949	В	2.00		
-	End of T	rial Pit at 2.50m		- 'A	2.50	10.88						
Slow	water flow	Conditions w at 1.70m										
Stabi TP ur		o to 1.80m										

General Remarks
Soakaway test carried out in pit - see SA03 log

REPORT NUMBER

25000-1

CON	TRACT	NDFA Social Housing Bund	les 4/5 - Lot 1 - Stanl	ey Street				TRIAL PI SHEET	T NO.	TP0	4 et 1 of 1	
LOG	GED BY	IR	CO-ORDINAT		734,8	26.62 E 55.46 N		DATE ST		14/11/2023		
CLIE	NT INEER	NDFA MORCE	GROUND LE	VEL (m)	13.52			EXCAVA METHOD			acked vator	
									Samples		æ (æ	neter
		Geotechnical Descrip	tion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	MADE G gravelly shells	ETE GROUND comprised of dark g Clay with red brick fragments	rey/black sandy , mortar and sea		0.14	13.38						
1.0	content.	wn sandy slightly gravelly CLA Sand is fine to coarse. Grave ded fine to coarse. Cobbles a ded.	I is subangular to	8 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1.10	12.42		AA204944	В	0.70		
2.0	medium subangu	t brown slightly sandy gravelly cobble content. Sand is fine t lar to subrounded fine to coal lar to subrounded. (Possible	o coarse. Gravel is rse. Cobbles are		1.90	11.62		AA204945	В	2.20		
	End of T	rial Pit at 2.70m			2.70	10.82	1 (Slow)		J	2.20		
		Conditions w at 2.50m										

General Remarks
Foundation of existing building exposed - see FP04 log.

REPORT NUMBER

25000-1

EED BY	NDFA MORCE	GROUND LE		CO-ORDINATES 714,411.29 E 734,836.48 N			DATE ST		Sheet 1 of 1 14/11/2023		
		GROUND LEV	DATE COMPLETED 14/11/2					OMPLETE	D 14/1	1/2023	
			/EL (m)	13.43			EXCAVA METHOD			acked vator	
							:	Samples		'a)	neter
	Geotechnical Description	1	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
CONCR	RETE										
MADE 0 sandy G 0.50m.	GROUND comprised of (very densirated). Strong hydrocarbon contar	se) dark grey mination up to		0.18	13.25						
sandy g	GROUND comprised of dark grey ravelly Clay with red brick, pottery	and grey black r fragments and		0.50	12.93		AA209902	В	0.40		
mortar.							AA209903	В	0.90		
content.	Sand is fine to coarse. Gravel is	subangular to		1.20	12.23						
Firm bro	own slightly sandy gravelly SILT/C	LAY with a high		1.90	11.53		AA209904	В	1.60		
subangu	ular to subrounded cobble conten	t. Gravel is				(Moderate)					
End of T	Frial Pit at 2.60m		<u>×</u>	2.60	10.83		AA209905	В	2.40		
rate wate											
	sandy Go.50m. MADE (sandy gmortar. Soft to f content. subrour Firm brosubangs subangs End of dwater (ate water)	sandy Gravel. Strong hydrocarbon contar 0.50m. MADE GROUND comprised of dark grey sandy gravelly Clay with red brick, pottery mortar. Soft to firm brown sandy gravelly CLAY we content. Sand is fine to coarse. Gravel is subrounded fine to coarse. Cobbles are subrounded fine to coarse. Subangular to subrounded cobble contensubangular to subrounded fine to coarse. Firm brown slightly sandy gravelly SILT/C subangular to subrounded fine to coarse. End of Trial Pit at 2.60m dwater Conditions ate water flow at 2.30m	MADE GROUND comprised of dark grey and grey black sandy gravelly Clay with red brick, pottery fragments and mortar. Soft to firm brown sandy gravelly CLAY with a low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are subangular. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content. Gravel is subangular to subrounded fine to coarse. End of Trial Pit at 2.60m dwater Conditions ate water flow at 2.30m	sandy Gravel. Strong hydrocarbon contamination up to 0.50m. MADE GROUND comprised of dark grey and grey black sandy gravelly Clay with red brick, pottery fragments and mortar. Soft to firm brown sandy gravelly CLAY with a low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are subangular. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content. Gravel is subangular to subrounded fine to coarse. End of Trial Pit at 2.60m dwater Conditions ate water flow at 2.30m ty with unstable	Soft to firm brown sandy gravelly CLAY with a low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are subangular. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded fine to coarse. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content. Gravel is subangular to subrounded fine to coarse. End of Trial Pit at 2.60m dwater Conditions ate water flow at 2.30m 1.20 2.60	MADE GROUND comprised of (very dense) dark grey sandy Gravel. Strong hydrocarbon contamination up to 0.50m. MADE GROUND comprised of dark grey and grey black sandy gravelly Clay with red brick, pottery fragments and mortar. Soft to firm brown sandy gravelly CLAY with a low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are subangular. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content. Gravel is subangular to subrounded fine to coarse. End of Trial Pit at 2.60m 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.30 1.90 1.90 1.10 1.90 1.90 1.90 1.10 1.90 1.90 1.90 1.10 1.90 1.90 1.10 1.90 1.90 1.90 1.10 1.90 1.90 1.90 1.10 1.90 1	MADE GROUND comprised of (very dense) dark grey sandy Gravel. Strong hydrocarbon contamination up to 0.50m. MADE GROUND comprised of dark grey and grey black sandy gravelly Clay with red brick, pottery fragments and mortar. Soft to firm brown sandy gravelly CLAY with a low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are subangular. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content. Gravel is subangular to subrounded fine to coarse. End of Trial Pit at 2.60m dwater Conditions ate water flow at 2.30m ty httly unstable	MADE GROUND comprised of (very dense) dark grey sandy Gravel. Strong hydrocarbon contamination up to 0.50m. MADE GROUND comprised of dark grey and grey black sandy gravelly Clay with red brick, pottery fragments and mortar. Soft to firm brown sandy gravelly CLAY with a low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are subangular. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content. Gravel is subangular to subrounded fine to coarse. End of Trial Pit at 2.60m AA209905 AA209905 AA209906 AA209907 AA209908 AA209908	MADE GROUND comprised of (very dense) dark grey sandy Gravel. Strong hydrocarbon contamination up to 0.50m. MADE GROUND comprised of dark grey and grey black sandy gravelly Clay with red brick, pottery fragments and mortar. Soft to firm brown sandy gravelly CLAY with a low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are subangular. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content. Gravel is subangular to subrounded fine to coarse. End of Trial Pit at 2.60m dwater Conditions ate water flow at 2.30m ty phtly unstable	MADE GROUND comprised of (very dense) dark grey sandy Gravel. Strong hydrocarbon contamination up to 0.50m. MADE GROUND comprised of dark grey and grey black sandy gravelly Clay with red brick, pottery fragments and mortar. Soft to firm brown sandy gravelly CLAY with a low cobble content. Sand is fine to coarse. Cobbles are subangular to subrounded fine to coarse. Cobbles are subangular. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content. Gravel is subangular to subrounded fine to coarse. End of Trial Pit at 2.60m AA209905 B 1.60 1.20 12.23 AA209907 B 1.60 AA209907 B 1.60 AA209908 B 2.40 AA209908 B 2.40 AA209908 B 2.40 The property of	MADE GROUND comprised of (very dense) dark grey and grey black sandy gravelly Clay with red brick, pottery fragments and mortar. MADE GROUND comprised of dark grey and grey black sandy gravelly Clay with red brick, pottery fragments and mortar. Soft to firm brown sandy gravelly CLAY with a low cobble content. Sand is fine to coarse. Cravel is subangular to subrounded fine to coarse. Cobbles are subangular. Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content. Gravel is subangular to subrounded fine to coarse. End of Trial Pit at 2.60m AA209905 B 2.40 AA209905 B 2.40 AA209905 B 2.40 AA209905 B 2.40 AA209905 B 2.40

IGSL TP LOG 25000 -

General Remarks
Foundation of existing building exposed - see FP05 log.

REPORT NUMBER

25000-1

	35L									250	1-00	
CON	NTRACT	NDFA Social Housing Bundles 4	/5 - Lot 1 - Stanle	ey Street				TRIAL P	IT NO.	TPO	16 et 1 of 1	
LOG	GGED BY	IR	CO-ORDINAT	ES	714,4 734,8	18.77 E 23.85 N		DATE S'	15/1	15/11/2023		
CLII	ENT	NDFA MORCE	GROUND LEV	/EL (m)	13.52						5T tracked excavator	
									Samples	3	oa)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0 - 0.0 - 1.0 - 1.0 	Pit term End of	GROUND comprised of grey slightly with many angular small cobbles inated due to major instability Frial Pit at 2.00m	y sandy angular		2.00	13.34		AA209913		1.80		
Gro Dry	undwater (Conditions										
Stat TP v	bility very unstal	ole										
	neral Rema Indation of	rks existing building exposed - see FF	206 log.									

REPORT NUMBER

25000-1

CONTRACT NDFA Social Housing Bundles 4/					· T			TRIAL PI SHEET	I NO.	TP07 Sheet	7 t 1 of 1	
_OG	GED BY	IR	CO-ORDINAT		734,82	47.13 E 24.46 N		DATE ST	TARTED		/2023 /2023	
CLIE ENGI	NT NEER	NDFA MORCE	GROUND LE	VEL (m)	13.10			EXCAVA METHOD		5T tra excav	acked /ator	
								;	Samples		a)	meter
		Geotechnical Description	on	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	MADE G	GROUND comprised of dark gre Clay with angular gravel, brown ery fragments, cobbles.	ey black sandy n fine sand, ash		0.23	12.87						
1.0	Firm bro	50mm diameter gas pipe wn slightly sandy slightly gravel obble content. Sand is fine to co	Ily SILT/CLAY with		1.10	12.00		AA209909	В	0.60		
	subangu subangu	lar to subrounded fine to coars	e. Cobbles are					AA209910	В	1.40		
2.0				★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★<	2.50	10.60		AA209911	В	2.40		
	End of T	rial Pit at 2.50m										
Grou Ory	ndwater (Conditions			I	I	l	1 1				

IGSL TP LOG 25000 -

General Remarks
50mm diameter gas pipe found at 0.65m depth. Foundation of existing building exposed - see FP07 log.

REPORT NUMBER

25000-1

	3SL/			00						25000-		
CON	NTRACT	NDFA Social Housing Bundles 4/5	5 - Lot 1 - Stanl	ey Street				TRIAL PI	IT NO.	TP0)8 et 1 of 1	
LOG	GED BY	IR	CO-ORDINAT	TES	714,4 734,7	76.36 E 92.97 N		DATE ST		21/1	1/2023	
CLIE		NDFA MORCE	GROUND LE	VEL (m)	11.50			EXCAVA METHOD	TION	5T tr	racked avator	
LING	INCLR	WONCE							Samples			eter
		Geotechnical Description					ke				(KPa)	etrome
		2000, 100		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Reinforce	d CONCRETE										
	MADE GF	ROUND comprised of dark grey sli	ghtly clayey		0.23	11.27						
		iff brown slightly sandy gravelly CL cobble content. Sand is fine to coal	AY with a	9_0	0.40	11.10						
	subangula	ar to subrounded fine to coarse. Car to subrounded.	obbles are	0 0	-			AA209920	В	0.60		
				8 -								
1.0				<u> </u>								
				0_0				AA209921	В	1.40		
				0 0	_							
2.0	Stiff to ve	ry stiff brown slightly sandy gravell	v CLAY with a		2.10	9.40						
	high cobb coarse. G	ole and low boulder content. Sand iravel is subangular to subrounded tobbles and boulders are subangul	is fine to I fine to									
	subround	ed.	iai to		1			AA209922	В	2.40		
					1							
	End of Tri	ial Pit at 2.70m			2.70	8.80						
Grou	undwater Co	onditions										
Dry												
Stab Goo	bility d											
Gen	eral Remark	(S										

REPORT NUMBER

25000-1

CON	TRACT	NDFA Social Housing Bur	ndles 4/5 - Lot 1 - Stanl	ey Street				TRIAL P SHEET	II NO.	TP0	9 et 1 of 1	
LOG	GED BY	IR	CO-ORDINAT	ES	714,50 734,80	04.84 E 08.03 N		DATE S	TARTED	20/1	1/2023 1/2023	
CLIEI	NT NEER	NDFA MORCE	GROUND LE	VEL (m)	11.67			EXCAVA METHOL			acked vator	
									Samples		Pa)	ometer
		Geotechnical Desc	ription	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0		ced CONCRETE GROUND comprised of grey	y to dark groy candy		0.30	11.37						
	gravelly mortar.	Clay with angular gravel fra	gments, red brick and		0.65	11.02		AA209916	В	0.50		
	End of	Frial Pit at 0.65m	ODSTRUCTION									
1.0												
2.0												
Grou Dry	ndwater (Conditions		1	1	1	1	'			1	
Stabi Good	lity											

IGSL TP LOG 25000 -

General Remarks
TP terminated at 0.65m due to possible concrete slab - unable to repeat hole due to underground services. Foundation of existing building exposed - see FP09 log.

REPORT NUMBER

25000-1

/00	3SL/									250	1-00	
CON	ITRACT	NDFA Social Housing Bundles 4/	5 - Lot 1 - Stanle	ey Street				TRIAL P	IT NO.	TP1	I 0 et 1 of 1	
LOG	GED BY	IR	CO-ORDINAT		714,50 734,79	03.50 E 95.56 N		DATE STARTED 20/11/2 DATE COMPLETED 20/11/2			1/2023	
CLIE	NT INEER	NDFA MORCE	GROUND LEV	/EL (m)	11.47						5T tracked excavator	
									Samples	3	(a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	MADE (GROUND comprised of grey slightly ngular Gravel and Cobbles 200mm concrete pipe at front of pit			0.22	11.25						
- - - 1.0 - -	0							AA209914	В	0.70		
	MADE (gravelly	GROUND comprised of brown mottl Clay with red brick, mortar and she	ed grey sandy ills fragments.		1.50	9.97		AA209915	В	1.60		
		inated due to major instability Frial Pit at 2.00m			2.00	9.47						
- - - -												
Gro u Dry	undwater (Conditions										
Stab TP v		ole up to 1.50m										
Gene TP to	eneral Remarks P terminated at 2.0m due to major instability.											

REPORT NUMBER

25000-1

TRIAL PIT NO. CONTRACT NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street **TP11** SHEET Sheet 1 of 1 **CO-ORDINATES** 714,521.20 E DATE STARTED 21/11/2023 LOGGED BY 734,818.77 N **DATE COMPLETED** 21/11/2023 GROUND LEVEL (m) **EXCAVATION** 5T tracked CLIENT NDFA METHOD excavator **ENGINEER** MORCE Samples Hand Penetrometer (KPa) Vane Test (KPa) Water Strike Geotechnical Description Elevation Depth (m) Depth Type Reinforced CONCRETE 0.20 11.79 MADE GROUND comprised of grey slightly clayey angular Gravel and Cobbles AA209917 В 0.80 1.0 1.25 10.74 MADE GROUND comprised of dark grey mottled grey AA209918 В 1.30 sandy gravelly Clay with red brick and mortar fragments <u>~</u> ₩ 1.60 10.39 Soft brown slightly sandy gravelly SILT with a medium × × × cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are 0 × &× angular to subangular. AA209919 В 1.80 2.0 2.20 9.79 Pit terminated due to major instability End of Trial Pit at 2.20m **Groundwater Conditions** Dry IGSL.GDT

.GPJ

TP LOG 25000

Stability

TP very unstable up to 1.20m

General Remarks

Soakaway test carried out in pit - see SA11 log. TP terminated at 2.20m due to major instability. Foundation of existing building exposed - see FP11 log.

TRIAL PIT PHOTOGRAPHY RECORD TP 01

TP 01 – spoil

Project Number: 25000-1

Project: NDFA Social Housing Bundles 4/5 – Lot 1 - Stanley Street

Engineer: MORCE

TRIAL PIT PHOTOGRAPHY RECORD TP 02

TRIAL PIT PHOTOGRAPHY RECORD TP 03

TRIAL PIT PHOTOGRAPHY RECORD TP 04

Project Number: 25000-1

Project: NDFA Social Housing Bundles 4/5 – Lot 1 - Stanley Street

Engineer: MORCE

TRIAL PIT PHOTOGRAPHY RECORD TP 05

TRIAL PIT PHOTOGRAPHY RECORD TP 06

TP 06 – spoil

Engineer: MORCE

TRIAL PIT PHOTOGRAPHY RECORD TP 07

TRIAL PIT PHOTOGRAPHY RECORD TP 08

TRIAL PIT PHOTOGRAPHY RECORD TP 09

TP 09 – spoil

TRIAL PIT PHOTOGRAPHY RECORD TP 10

TRIAL PIT PHOTOGRAPHY RECORD TP 11

Appendix 2

Foundation Pit Logs & Photographs

REPORT NUMBER

25000-1

CONTRACT: NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street

LOCATION: FP04 (at TP04)

LOGGED BY: I.Reder

Date of survey: 14/11/2023

Summary of gr	ound condition	IS	
from	to	Description	Ground water
0.00	0.14	CONCRETE	
0.14	1.10	MADE GROUND comprised of dark grey/black sandy gravelly Clay with red brick fragments,	Slow water at
		mortar and sea shells	2.5m
1.10	1.90	Soft brown sandy slightly gravelly CLAY with a low cobble content	2.3111
1.90	2.50	Very soft brown slightly sandy gravelly CLAY with a medium cobble content	

REPORT NUMBER

25000-1

CONTRACT: NDFA Social Housing Bundles 4/5 - Lot 1 – Stanley Street

LOCATION: FP05 (at TP05)

LOGGED BY: I.Reder

Summary of gr	ound condition	S	
from	to	Description	Ground water
0.00	0.18	CONCRETE	
0.18	0.50	MADE GROUND: (Very dense) Dark grey sandy Gravel. Strong hydrocarbon contamination	Moderate water at
0.50	1.20	MADE GROUND: Dark grey and grey black sandy gravelly Clay with red brick, pottery & mortar	2.30m
1.20	1.90	Soft to firm brown sandy gravelly CLAY with a low cobble content	2.30111
1.90	2.60	Firm brown slightly sandy gravelly SILT/CLAY with a high subangular to subrounded cobble content	

REPORT NUMBER

25000-1

CONTRACT: NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street

LOCATION: FP06 (at TP06)

LOGGED BY: I.Reder

Date of survey: 15/11/2023

Description Ground water 0.00 0.18 CONCRETE MADE GROUND comprised of grey slightly sandy angular Gravel with many angular small cobbles 2.00 0.18 DRY 2.00 Hole terminated due to major instablility

NOTE: See also TP06 log

REPORT NUMBER

25000-1

CONTRACT: NDFA Social Housing Bundles 4/5 - Lot 1 – Stanley Street

LOCATION: FP07 (at TP07)

LOGGED BY: I.Reder

Date of survey: 15/11/2023

cultilliary or gr	ouria conarcioni		
from	to	Description	Ground water
0.00	0.23	Reinforced CONCRETE	
0.23	1.10	MADE GROUND comprised of dark grey black sandy gravelly Clay with angular gravel, brown	
		fine sand, ash and pottery fragments, cobbles.	DRY
1.10	2.50	Firm brown slightly sandy slightly gravelly SILT/CLAY with a high cobble content	
			i e

REPORT NUMBER

25000-1

CONTRACT: NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street

LOCATION: FP09 (at TP09)

LOGGED BY: I.Reder

Date of survey: 20/11/2023

Summary of ground conditions

ı	from	to	Description	Ground water
ı	0.00	0.30	Reinforced CONCRETE	
I	0.30	0.65	MADE GROUND comprised of grey to dark grey sandy gravelly Clay with angular gravel	
			Ifragments, red brick and mortar.	DRY
ı	0.65		Pit terminated due to concrete slab obstruction	
- 1				

NOTE: See also TP09 log

REPORT NUMBER

25000-1

CONTRACT: NDFA Social Housing Bundles 4/5 - Lot 1 – Stanley Street

LOCATION: FP11 (at TP11)

LOGGED BY: I.Reder

Date of survey: 21/11/2023

ı	Summary of gr	ound condition	s	
ı	from	to	Description	Ground water
ı	0.00	0.20	Reinforced CONCRETE	
ı	0.20	1.25	MADE GROUND comprised of grey slightly clayey angular Gravel and Cobbles	
	1.25	1.60	MADE GROUND comprised of dark grey mottled grey sandy gravelly Clay with red brick and	Dry
			mortar fragments	
1	1.60	2.20	Soft brown slightly sandy grayelly SILT with a medium cobble content	1

Appendix 3

Cable Percussion Borehole Logs

SPT Calibration Sheet (Er)

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

	ORDIN		714,49	lousing Bu 9.00 E	1	RIG TYP	E			Dando 20	000	SHEET		Sheet 1 of 1	
GR	OUND L	EVEL (m0		9.00 N 13.50			OLE DIAM		•	200 5.00				CED 05/12/2023 ED 06/12/2023	
1,2							HAMMER REF. NO. WB1					BORED		WB	
ENC	GINEER	MOR	CE			ENERGY	/ RATIO (%	6) 		80.95		PROCES nples	SED B	Y FC	1
Deptn (m)			Desc	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	-	Recovery	Field Test Results	Standpipe
1	red bri	GROUNI	eel fragme	ed of Sand nts gravelly CL		el with		13.20	0.30	AA198277	В	1.00		N = 9 (1, 2, 2, 2, 3, 2)	
2	occasi	onal cobb	les	·						AA198278	В	2.00		N = 15 (2, 3, 3, 3, 4, 5)	
	Stiff to	very stiff	black sligh	gravelly CL	AY		9.90	3.60	AA198279		B 3.00		N = 31 (2, 3, 4, 6, 9, 12)		
	WILLI O	casional	cobbles					8.50	5.00	AA198280	В	4.00		N = 28 (2, 4, 4, 5, 9, 10)	
		Borehole	at 5.00 m							AA198281	В	5.00		N = 50/75 mm (25, 50)	
ΙA	RD STF		RING/CHIS	ELLING			Wate	- Co	oina	Cooled	Dia			ATER STRIKE DET	FAILS
on	m (m) 1	o (m)	Time (h)	omments		W S			sing pth	Sealed At	Ris To		me nin)	Comments	
									GP	No water strike)GDI				
15	STALLATION DETAILS					Dat		Hole	Casing	De	oth to ater	Comme	OUNDWATER PROGRE		
NSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type					Dat	<u> </u>	Depth	Depth	W	/ater '					
Εľ	MARKS	Borehole hand dug	sited inte inpection	rnally in sh	ed. CAT so d out.	canned I	ocation ar	nd	B - Bulk LB - Lar	DIE Legen Il Disturbed (tub) Disturbed ge Bulk Disturbe	d	+ Vial + Tub)	Samp P - Ur	Undisturbed 100mm Diameter le didisturbed Piston Sample fater Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

\ાઉડા	ይ/ -													23000-	ı
CONTRA	ACT NDF	A Soc	cial Ho	using Bu	ndles 4/5 - Lot	1 - S	Stanley St	reet				BORE	HOLE NO	D. BH02	
	INIATEC	74	1.4.470	00.5	RIG ⁻	TVD				Danda 2	000	SHEET	•	Sheet 1 of 1	
CO-ORD		73	14,473 34,857	.08 N	BOR	EHC	C OLE DIAM OLE DEPT		nm)	Dando 2 200 0.70	.000			CED 01/11/2023 FED 01/11/2023	
	D LEVEL (m			13.56			MER REI								
CLIENT ENGINE	NDF E R MOF						RATIO (9			WB1 80.95		BORE	SSED B	WB Y FC	
							151110 (7			00.00	Sar	nples			
Œ							-	o	Œ	ē	Φ		2	Field Test	edic "
Depth			Descri	ption			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	bth	(III) Recovery	Results	Standpipe Details
								l ä	۵	8 8	ığ≥	Depth (m)	Be Be		Sta
	NCRETE							13.26	0.30						
MA Cla	DE GROUN y with cobble	D com	nprised d red b	d of browi rick fragn	n sandy gravelly nents	у		13.06 12.86	0.50						
MA	DE GROUN	D com	nprised	d of black	sandy gravelly	_/									
	y with cobble struction - Co					_/									
Enc	of Borehole	at 0.	70 m	(builde c	, o. (1,00)										
2															
3															
4															
5															
6															
7															
- 8															
0															
- 0															
9															
HARD S	To (m)	RING/0 Time					Wate	er Ca	sing	Sealed	Ris	se ·	Time	ATER STRIKE DET	TAILS
0.00	0.30	(h) 2		nments	concrete		Strik	e De	epth	At	To)	(min)	Comments	
0.00	0.30	2	DIE	aking ou	Concrete									No water strike	
										GF	ROUNDWATER PROGRES				
INSTALL	ATION DET	AILS					Dat	:e	Hole Depth	Casing Depth	De V	epth to Vater	Comme	ents	
Date	Tip Dept	h RZ	Top F	RZ Base	Туре				_ opui	Бори	· •				
REMARI	(S CAT sca	nned	locatio	n and ha	and dug inpection	on pi	it carried o	out.	San	nple Leger	nd			I ladiabahad 400 21	
	Concrete rebore.	e pipe	encou	ıntered. N	Moved to BH02	A an	id attempt	B - Bulk Disturbed Sample LB - Large Bulk Disturbed P - Undisturbed Piston Sample							
								LB - Large Bulk Disturbed P - Undisturbed Piston Sample Env - Environmental Sample (Jar + Vial + Tub) W - Water Sample							

.GDT

IGSL

GPJ

25000

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street BOREHOLE NO. BH02A SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 714,474.00 E **DATE COMMENCED** 01/11/2023 **BOREHOLE DIAMETER (mm)** 734,857.00 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 8.50 **DATE COMPLETED** 03/11/2023 13.60 CLIENT SPT HAMMER REF. NO. WB1 WB NDFA **BORED BY ENGINEER** 80.95 PROCESSED BY MORCE **ENERGY RATIO (%)** FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth Description Depth (m) Results - 0 CONCRETE 13.30 0.30 13.10 0.50 MADE GROUND comprised of brown sandy gravelly Clay with cobbles and red brick fragments 12.80 0.80 MADE GROUND comprised of tarmacadam, red brick 12.50 N = 7(1, 2, 2, 2, 1, 2) fragments, glass and concrete fragments 1.10 AA193265 1.00 MADE GROUND comprised of large red brick fragments, concrete, stone and gravel. (Possible old MADE GROUND comprised of black sandy gravelly 11.60 2.00 N = 8 (1, 1, 2, 2, 2, 2) AA193266 В 2.00 Clay with red brick fragments Firm grey/brown sandy gravelly CLAY with some angular cobbles <u>|</u> AA193267 В 3.00 (2, 2, 2, 3, 2, 2) 10.30 3.30 · 🗘 · ō 1-0-Very stiff black slightly sandy slightly gravelly CLAY with cobbles and occasional boulders 0 N = 42AA193268 4.00 (4, 6, 9, 12, 10, 11) N = 48 (3, 8, 9, 12, 15, 12) AA193269 R 5.00 N = 51 (5, 9, 12, 14, 13, 12) AA193270 В 6.00 AA193271 7.00 (6, 19, 12, 12, 16, 14) ° 5.60 8.00 N = 68 (5, 12, 15, 21, 14, 18) AA193272 8.00 Very stiff grey brown sandy very gravelly SILT ٠٥× 5.10 8.50 Obstruction End of Borehole at 8.50 m HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Water Casing Sealed Rise Time From (m) To (m) Comments Comments То (h) Depth Αt (min) 4.50 8.80 No water strike 6.70 6.90 0.75 8.30 8.50 2 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date 03-11-23 End of Bh Type 8.30 Nil 4.00 **REMARKS** CAT scanned location and hand dug injection pit carried out. Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) Sample P - Undisturbed Piston Sample W - Water Sample

GPJ

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street BOREHOLE NO. **BH03** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 714,449.83 E **DATE COMMENCED** 26/10/2023 **BOREHOLE DIAMETER (mm)** 734,864.24 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 8.10 **DATE COMPLETED** 26/10/2023 13.48 CLIENT SPT HAMMER REF. NO. WB1 WB NDFA **BORED BY ENGINEER** MORCE 80.95 PROCESSED BY **ENERGY RATIO (%)** FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth Description Depth (m) Results - 0 CONCRETE 13.18 0.30 MADE GROUND comprised of Gravel Fill MADE GROUND comprised of black sandy Clay with red brick fragments and a strong hydrocarbon odour N = 7 (1, 1, 2, 1, 2, 2) AA208549 В 1.00 11.58 1.90 Firm brown gravelly SILT/CLAY. Hydrocarbon odour noted (Possible Made Ground) AA208550 В 2.00 (2, 3, 9, 3, 3, 3) ____ 10.68 2.80 0x0 0x0 Medium dense black silty very sandy GRAVEL AA208551 В 3.00 (Hydrocarbon odour) 8 Q. 8 Q (2, 3, 4, 6, 6, 7) 10.08 3.40 جري ک Very stiff black slightly sandy gravelly CLAY with some cobbles and occasional small boulders N = 40AA208552 4.00 (3, 5, 10, 9, 10, 11) N = 41 (4, 6, 9, 10, 10, 12) AA208553 R 5.00 N = 45 (4, 12, 11, 10, 10, 14) AA208554 В 6.00 AA208555 7.00 N = 62(5, 10, 12, 14, 16, 20) 5.38 8.10 $N = 50/75 \; mm$ AA208556 8.00 (50, 20, 50)Obstruction End of Borehole at 8.10 m -9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments То (h) Depth Αt (min) 5.70 8.90 1.25 No water strike 6.40 6.60 2 8.00 8.10 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type End of BH 26-10-23 8.10 Nil 2.00 REMARKS CAT scanned location and hand dug inpection pit carried out. Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) Strong hydrocarbon odour noted 0.50-2.80m. Sample P - Undisturbed Piston Sample W - Water Sample

GPJ

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street BOREHOLE NO. **BH04** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 714,445.44 E **DATE COMMENCED 27/10/2023 BOREHOLE DIAMETER (mm)** 734,844.69 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 8.00 **DATE COMPLETED** 31/10/2023 13.36 CLIENT NDFA SPT HAMMER REF. NO. WB1 **BORED BY** WB 80.95 **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Description Depth (Depth Depth (m) Results - 0 CONCRETE 13.16 0.20 13.06 0.30 MADE GROUND comprised of Gravel Fill MADE GROUND comprised of black sandy Clay with red brick fragments N = 7 (1, 1, 2, 1, 2, 2) AA208557 В 1.00 11.56 1.80 Soft to firm black sandy gravelly CLAY. Gravel is fine. F 2 N = 5 (2, 1, 2, 1, 1, 1) AA208558 2.00 - 3 AA208559 В 3.00 (2, 3, 4, 3, 3, 3) 9.96 3.40 Very stiff black slightly sandy gravelly CLAY with some cobbles and occasional small boulders AA208560 4.00 (2, 3, 4, 9, 7, 12) N = 57 (4, 9, 12, 16, 14, 15) AA208561 R 5.00 N = 56 (5, 15, 12, 18, 12, 14) AA208562 В 6.00 AA208563 7.00 N = 51(4, 17, 10, 10, 17, 14) 5.36 8.00 N = 50/75 mm (15, 10, 50) AA208564 8.00 Obstruction End of Borehole at 8.00 m -9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike То (h) Depth At (min) 1.5 1.5 6.00 Slow 5.50 8.66 5.50 5.50 5.00 20 7.80 8.00 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date 31-10-23 End of BH Type 5.00 8.00 Nil **REMARKS** CAT scanned location and hand dug injection pit carried out. Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) Sample P - Undisturbed Piston Sample W - Water Sample

GPJ

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street BOREHOLE NO. **BH05** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 714,421.20 E **DATE COMMENCED 24/10/2023 BOREHOLE DIAMETER (mm)** 734,864.75 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 8.30 **DATE COMPLETED** 25/10/2023 13.43 CLIENT NDFA SPT HAMMER REF. NO. WB1 WB **BORED BY ENGINEER** MORCE 80.95 PROCESSED BY **ENERGY RATIO (%)** FC Samples Standpipe Details $\widehat{\Xi}$ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Description Depth (Depth Depth (m) Results - 0 CONCRETE 13.23 0.20 13.18 0.25 MADE GROUND comprised of Gravel Fill MADE GROUND comprised of black sandy gravelly Clay material with red brick fragments 12.53 0.90 N = 16Firm brown/black sandy slightly gravelly SILT/CLAY. AA208541 В 1.00 XO (2, 4, 4, 4, 4, 4)Gravel is fine. N = 18 (2, 3, 5, 4, 5, 4) -2 AA208542 В 2.00 10.63 2.80 Very stiff black slightly sandy gravelly CLAY with N = 42AA208543 В 3.00 occasional cobbles and boulders (4, 5, 6, 13, 13, 10) N = 45AA208544 4.00 (3, 6, 10, 12, 11, 12) N = 47 (3, 4, 9, 12, 14, 12) AA208545 R 5.00 N = 55 (5, 12, 14, 12, 19, 10) AA208546 В 6.00 AA208547 7.00 N = 42(9, 9, 10, 9, 10, 13) N = 50/150 mm (5, 12, 17, 33) AA208548 R 8.00 8.30 5.13 Obstruction End of Borehole at 8.30 m HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike То (h) Depth At (min) 8.30 Slow 3.50 4.00 4.00 5.10 3.50 20 0.5 6.30 6.40 0.75 8.30 8.10 2 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date 25-10-23 End of BH Type 2.00 8.30 Nil **REMARKS** CAT scanned location and hand dug injection pit carried out. Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) Sample P - Undisturbed Piston Sample W - Water Sample

GPJ

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street BOREHOLE NO. **BH06** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 714,414.24 E **DATE COMMENCED** 06/11/2023 **BOREHOLE DIAMETER (mm)** 734,837.48 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 8.60 **DATE COMPLETED** 07/11/2023 13.56 CLIENT NDFA SPT HAMMER REF. NO. WB1 WB **BORED BY** 80.95 **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth Description Depth (m) Results - 0 CONCRETE 13.36 0.20 MADE GROUND comprised of tarmacadam and red 13.06 0.50 brick fragments MADE GROUND comprised of black Clay with timber and red bricks) N = 7(1, 2, 2, 1, 2, 2) AA193273 В 1.00 12.26 1.30 Firm brown sandy gravelly CLAY with occasional .0 N = 10 (2, 3, 2, 2, 3, 3) F-2 AA193274 В 2.00 AA193275 В 3.00 Гз (2, 1, 1, 2, 2, 1) 10.06 3.50 Stiff brown slightly sandy slightly gravelly CLAY with <u>.</u> some subangular cobbles $\overline{\bigcirc}$ N = 194.00 AA193276 (2, 3, 5, 4, 5, 5)N = 20 AA193277 В 5.00 (2, 3, 3, 4, 6, 7) & <u>-</u> ф Ф 7.76 5.80 Very stiff black slightly sandy slightly gravelly CLAY <u>.</u> N = 40 (3, 5, 9, 12, 10, 9) AA193278 В 6.00 with cobbles <u></u> AA193279 7.00 N = 52(4, 11, 12, 14, 15, 11) N = 65 (5, 12, 19, 22, 10, 14) AA193280 R 8.00 ---4.96 8.60 N = 50/75 mmObstruction (25, 50) End of Borehole at 8.60 m HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments То (h) Depth Αt (min) 7.30 7.50 1.25 No water strike 8.40 8.60 1.75 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date 07-11-23 End of BH Type 8.00 Nil 5.00 **REMARKS** CAT scanned location and hand dug injection pit carried out. Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) Sample P - Undisturbed Piston Sample W - Water Sample

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

	ORDIN	NATES	714,	423.07 E	ndles 4/5 - Lot 1	/PE			Dando 20	000	SHEET		Sheet 1 of 1	
aRC	DUND	LEVEL (r		812.50 N 13.48		HOLE DIAM		•	200 7.40				CED 09/11/2023 ED 10/11/2023	
						AMMER RE	WB1 80.95		BORED PROCES		WB FC			
					'					San	nples			
			De	escription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
\dagger	CON	CRETE					13.18	0.30						X//
	Soft t		own slight	ly gravelly Sli	LT/CLAY. Gravel		5	0.00	AA193286	В	1.00		N = 23 (2, 3, 4, 4, 9, 6)	
		- 4di	i una alauana				11.48		AA193287	В	2.00		N = 10	
	GRA'	VEL black gra		e grey brown	g hydrocarbon	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.18	2.30					(2, 2, 3, 3, 2, 2) N = 7	
				slightly grave	elly CLAY with		9.78	3.70	AA193288		3.00		(1, 2, 2, 1, 2, 2)	
	some	cobbles					5		AA193289	В	4.00		N = 16 (2, 3, 4, 4, 4, 4)	
						0 0	7.68	5.80	AA193290	В	5.00		N = 14 (3, 4, 4, 3, 3, 4)	
		stiff grey cobbles	slightly sa	andy slightly g	gravelly CLAY		5 - - 5		AA193291	В	6.00		N = 41 (3, 5, 9, 12, 10, 10)	
	Olt					0-0-	6.08	7.40	AA193292	В	7.00		N = 50/225 mm (4, 8, 14, 19, 17)	
3		ruction of Boreho	ole at 7.40	m										
IA	RD ST	RATA BO	ORING/CH	IISELLING								W	ATER STRIKE DE	TAILS
		To (m)	Time	Comments		Wate		0	Sealed	Ris		ime	Comments	
7.	` '	7.40	(h) 1.5			Strik	ie D	epth	At	To) (n	niri)	No water strike	
								Hole	Casing	Dρ	oth to		OUNDWATER PRO	JGRE
	TALLA Date	Tip De		p RZ Base	Type	Da	te	Depth	Depth	N N	pth to rater	Comme	nts	
ΕN	MARKS			vehicles to l pection pit ca	be moved. CAT surried out.	scanned loc	ation	B - Bulk LB - Larg	DIE Legen Il Disturbed (tub) Disturbed ge Bulk Disturbe vironmental San	d	No. 1. Tub	Sampl P - Un	Indisturbed 100mm Diameter le le disturbed Piston Sample later Sample	

IGSL.GDT

GPJ

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street BOREHOLE NO. **BH08** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 714,440.74 E **DATE COMMENCED** 08/11/2023 **BOREHOLE DIAMETER (mm)** 734,824.81 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 5.90 **DATE COMPLETED** 08/11/2023 13.26 NDFA SPT HAMMER REF. NO. CLIENT WB1 **BORED BY** WB 80.95 **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Description Depth (Depth (m) Results - 0 CONCRETE 13.01 0.25 MADE GROUND comprised of black gravelly Clay. Gravel is angular. N = 13AA193281 В 1.00 (1, 2, 3, 3, 4, 3) 11.76 1.50 Soft to firm black sandy gravelly CLAY -2 AA193282 2.00 (1, 1, 2, 3, 2, 2) N = 12AA193283 В 3.00 (2, 3, 3, 3, 3, 3) 9.96 3.30 Very stiff black slightly sandy slightly gravelly CLAY with some subangular cobbles N = 56AA193284 4.00 (4, 9, 12, 16, 14, 14) N = 62 (5, 19, 17, 12, 15, 18) AA193285 В 5.00 N = 50/75 mm (25, 50) 7.36 5.90 End of Borehole at 5.90 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Depth То (h) At (min) 4.30 4.50 0.75 No water strike 5.70 5.90 1.5 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Type **REMARKS** CAT scanned location and hand dug insection pit carried out. Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) Sample P - Undisturbed Piston Sample W - Water Sample

REPORT NUMBER

ONTRA			al Housing Bund			eet		- L 00		BOREHO SHEET	JLE INO	Sheet 1 of 1	
	INATES D LEVEL (1	734	1,419.40 E 1,798.95 N 13.49		OLE DIAME OLE DEPTH		nm)	Dando 20 200 8.00	000			CED 13/11/2023 TED 15/11/2023	
LIENT	NE)FA		SPT HA	MMER REF	. NO.		WB1		BORED	ву	WB	
NGINEE	R MO	DRCE		ENERG	Y RATIO (%	s)		80.95		PROCES	SSED B	Y FC	
≘						_	<u> </u>			nples			e
		[escription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
CON	NCRETE					13.19	0.30				+-		X//
MAI Clay	DE GROU with Cl.8	ND com 04-type a	orised of black sa angular stone Fill	andy gravelly		10.10	0.50	AA193293	В	1.00		N = 11 (2, 2, 3, 2, 3, 3)	
2						10.69	2.80	AA193294	В	2.00		N = 11 (2, 2, 3, 2, 3, 3)	
Den	se grey cl	ayey/silty	very sandy GRA	AVEL				AA193295	В	3.00		N = 29 (3, 4, 9, 7, 6, 7)	
Very	/ stiff blac	k slightly	sandy gravelly C	CLAY	Q 7 0 8	9.19	4.30	AA193296	В	4.00		N = 41 (3, 6, 10, 12, 9, 10)	
								AA193297	В	5.00 6.00		N = 50 (4, 9, 11, 14, 16, 9) N = 50/225 mm	
												(3, 8, 10, 19, 21) N = 50/150 mm	
						5.49	8.00	AA193299	В	7.00		(5, 18, 20, 30)	
	truction of Boreho	ble at 8.0	0 m			3.40	0.00	AA193300	В	8.00		N = 50/75 mm (25, 50)	
HARD S	TRATA B		HISELLING		Water	r Co	cina	Soolod	Die	<u> </u>		ATER STRIKE DET	FAILS
om (m)	To (m)	Time (h)	Comments		Water Strike		sing epth	Sealed At	Ris To		me nin)	Comments	
												No water strike)OD'
ICTALL	ATION DE	TAUC			Det		Hole	Casing	De	pth to		OUNDWATER PRO	JUKE
Date	Tip De		op RZ Base	Туре	15-11-2	, I	Depth 8.00	Depth Nil		rater	Comme End of BH	nts	
EMARK	S CAT s	canned l	ocation and hand	dug inpection p	oit carried o	ut.	B - Bulk LB - Lar	ple Legen Il Disturbed (tub) Disturbed ge Bulk Disturbe ovironmental San	d)(5-1 T-1)	Samp P - Ur	Undisturbed 100mm Diameter ole ndisturbed Piston Sample Vater Sample	

REPORT NUMBER

	ITRAC					ndles 4/5		Stanley St	reet				BOREH SHEET	OLE NO.	Sheet 1 of 1	
		NATES LEVEL (n	734	4,443.7 4,799.4				PE OLE DIAMI OLE DEPT		nm)	Dando 20 200 6.00				CED 20/11/2023 ED 21/11/2023	
	ENT INEEF	ND R MC	FA RCE					MMER REF (RATIO (%			WB1 80.95			BY SSED BY	WB FC	
_									_	=			nples			Ф
Depin (iii)			[Descrip	otion			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
	CON	CRETE							12.62	0.30						W/
	stone	Fill				4-type an			11.97	0.95					N = 9	
	Clay	E GROUI with red b	ND comprick frag	prised gments	of grey/b	rown gra	velly				AA191709	В	1.00		(2, 3, 3, 2, 2, 2)	
											AA191710	В	2.00		N = 12 (2, 2, 3, 4, 2, 3)	
	Stiff to	o very sti	f black s ne cobb	slightly les	sandy s	lightly gra	avelly		10.02	2.90	AA191711	В	3.00		N = 16 (2, 3, 3, 4, 5, 4)	
											AA191712	В	4.00		N = 20 (2, 5, 9, 3, 4, 4)	
											AA191713	В	5.00		N = 33 (3, 4, 9, 7, 8, 9)	
		ruction of Boreho	le at 6.0	0 m				\	6.92	6.00	AA191714	В	6.00		N = 50/75 mm (4, 3, 50)	
3																
ΙA		RATA BO	Time	HISEL	LING			Wate	× Ca	sing	Sealed	Ris	T	ime c	ATER STRIKE DE	TAILS
	` '	To (m)	(h)	Com	nments			Strike		epth	At	To		min)	Comments	
5.9	90	6.00	1												No water strike	
										Hels	Casim		41- 1	GRO	OUNDWATER PRO	OGRE
	TALLA Date	Tip Der	TAILS oth RZ	Гор В	Z Base	Тур	oe	Dat	e	Hole Depth	Casing Depth	De W	pth to later	Commer	nts	
ΕN	IARKS	G CAT so	anned l	ocation	n and hai	nd dug in	pection p	oit carried o	out.	B - Bulk	ple Legen Il Disturbed (tub) Disturbed ge Bulk Disturbe			Sample P - Une	indisturbed 100mm Diameter e disturbed Piston Sample ater Sample	

REPORT NUMBER

	NTRA			al Housing Bu	indles 4/5			reet				BOREHO SHEET	OLE NO.	BH11 Sheet 1 of 1	
		NATES LEVEL (r	734	,462.37 E ,817.76 N 13.04			E OLE DIAM OLE DEPT		nm)	Dando 20 200 1.80				CED 02/12/2023 ED 04/12/2023	
CLI	ENT GINEE	ND)FA)RCE				MMER REI			WB1 80.95		BORED PROCES		WB FC	
											San	nples			0
Depth (m)			D	escription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0			ND comp	rised of CI.80	04-type an	gular		12.84	0.20						
1	Firm	black gra	velly CL/	AY with occas	ional cobb	oles				AA198276	В	1.00		N = 10 (2, 2, 2, 3, 2, 3)	
2		ruction of Boreho	ole at 1.80) m			\ \frac{1}{\text{\tin}\text{\tett{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\tittt{\text{\text{\text{\texi}\text{\texit{\text{\texi}\text{\text{\text{\texi}\text{\texi}\tint{\text{\texi}\text{\texi}\tittitt{\text{\texi{\text{\texi}\text{\texi}\texit{\text{\t	11.24	1.80						
3															
4															
5															
6															
7															
8															
9															
НА	RD S	TRATA BO		HISELLING										ATER STRIKE DE	TAILS
ron	n (m)	To (m)	Time (h)	Comments			Wate Strik		sing epth	Sealed At	Ris To		ime nin)	Comments	
1.	.70	1.80	1											No water strike	
INIC	TALL	ATION DE	TAII C				Dat		Hole	Casing	De	pth to		OUNDWATER PRO	GRES
	Date	Tip De		op RZ Base	Тур	oe	Dat		Depth	Depth	W	pth to later	Commer	IIS	
RE	MARK	S CAT so Obstru- rebore	ction end	cation and ha ountered. Re	and dug in located to	pection p BH11A a	it carried of and attempt	out. oted	I B - Bulk	DIE Legen I Disturbed (tub Disturbed ge Bulk Disturbe			UT - U Sample P - Uni	ndisturbed 100mm Diameter e disturbed Piston Sample	

REPORT NUMBER

COI	NTRAC	r NDF	A Social	Housing Bund			reet				BOREH SHEET	OLE NO.	BH11A Sheet 1 of 1	
	ORDIN	ATES .EVEL (m	734,8	62.00 E 17.00 N 13.00		YPE HOLE DIAM HOLE DEPT		nm)	Dando 20 200 1.80	000			CED 04/12/2023 ED 04/12/2023	
	ENT SINEER	NDF MOF			I	AMMER REI			WB1 80.95			BY SSED BY	WB FC	
Depth (m)			Des	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	mples Depth	Recovery	Field Test Results	Standpipe Details
0	CONC MADE stone	GROUN	D compris	sed of Cl.804-t	ype angular		12.80	0.20						3
1	Firm b	lack grav	elly CLAY	,			12.10	1.80	AA191715	Б В	1.50		N = 16 (4, 3, 3, 4, 4, 5)	
2	Obstru End o		e at 1.80 r	n			11.20	1.80						
3														
4														
5														
6														
7														
8														
9														
HA	RD STI	RATA BO	RING/CHI	SELLING		10/-1-		-!	011	D:-			ATER STRIKE DET	TAILS
ron	n (m)	Γο (m)	Time (h)	Comments		Wate Strik		sing epth	Sealed At	Ris To		min)	Comments	
													No water strike	
INS	TALLA	TION DET	AILS			Dat		Hole	Casing	De	epth to Vater	Commer	OUNDWATER PRO	OGRESS
	Date			RZ Base	Туре	Dat		Depth	Depth	v	vater	30		
REN	MARKS	CAT sca	nned loca	ation and hand	dug inpection	pit carried	out.	Samp	ole Legen	ıd		UT II	ndisturbed 100mm Diameter	

REPORT NUMBER

ONTR					idles 4/5		Stanley St	reet				SHEET	OLE NO.	BH12 Sheet 1 of 1	
	DINATES D LEVEL (73	14,480. 34,789.				PE OLE DIAM OLE DEPT		nm)	Dando 20 200 6.00				ED 22/11/2023 ED 27/11/2023	
LIENT		DFA ORCE					MMER REI			WB1 80.95		BORED PROCES		WB FC	
									_		San	nples			a do
			Descrip	ption			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
	NCRETE	IND		l -f Ol 00 /				11.24	0.25						W
	DE GROU ne Fill	IND COM	nprisea	1 Of CI.802	ı-type anç	guiar		10.69	0.80						
Sof	ft brown sli	ightly gra	avelly S	SILT/CLA	Y		0			AA189257	В	1.00		N = 10 (2, 2, 2, 3, 3, 2)	
Sof	ft brown sa	andy gray	vally C	I AV with	occasion	al	2 - 3	9.99	1.50	_					
	bles	iliuy gra	velly O	LAT WILL	occasion	ai				AA189258	В	2.00		N = 7	
							3			AA109250		2.00		(1, 2, 1, 2, 2, 2)	
							\$								
C+if	if to very st	iff blook	oliabth	v oondy a	rovally Cl	A V		8.29	3.20	AA189259	В	3.00		N = 31 (3, 5, 6, 7, 9, 9)	
with	n some co	bbles	Silgriti	y sandy g	ravelly Gi	-A I									
										AA189260	В	4.00		N = 27 (3, 4, 7, 7, 6, 7)	
														(0, 4, 7, 7, 0, 7)	
														N = 55	
							<u> </u>			AA189261	В	5.00		(5, 9, 17, 14, 14, 10)	
								F 40	0.00						
	struction d of Boreh	olo et 6	00 ~				0 -	5.49	6.00	AA189262	В	6.00		N = 30/75 mm (25, 30)	K //
Enc	u oi boieii	ole at 6.	00 111												
ARD S	STRATA B	ORING/	CHISEI	LLING									WA	ATER STRIKE DET	AIL
om (m) To (m)	Time (h)	Con	nments			Wate Strike		sing epth	Sealed At	Ris To		ime nin) C	omments	
5.80	6.00	1.5												No water strike	
													GRO	DUNDWATER PRO	GR
	LATION DI		Ton	D7 Page	T		Dat	е	Hole Depth	Casing Depth	De W	epth to vater	Commer	nts	
Date	I IID De	pth RZ	10p F	1∠ Base	Тур	е									
EMAR	KS CATs	canned	locatio	n and har	nd dug in	pection p	it carried o	out.	Sam	ple Legen	d			adjatush ad 100 21	
									D - Sma	all Disturbed (tub) Disturbed ge Bulk Disturbe)		UT - Ur Sample	ndisturbed 100mm Diameter disturbed Piston Sample	

IGSL.GDT

GPJ

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street BOREHOLE NO. **BH13** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 714,511.24 E **DATE COMMENCED 27/11/2023 BOREHOLE DIAMETER (mm)** 734,798.16 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 7.00 **DATE COMPLETED** 28/11/2023 11.70 CLIENT SPT HAMMER REF. NO. WB1 WB NDFA **BORED BY ENGINEER** MORCE 80.95 PROCESSED BY **ENERGY RATIO (%)** FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth Description Depth (m) Results - 0 CONCRETE 11.35 11.30 \ 0.40 MADE GROUND comprised of brown slightly clayey **≅**⊙ angular Gravel Fill D.K Firm black slightly gravelly SILT/CLAY with occasional AA198263 В 1.00 small cobbles (3, 4, 4, 3, 5, 5) N = 10 (2, 2, 3, 2, 2, 3) -2 AA198264 2.00 3.00 8.70 N = 13AA198265 В 3.00 8.50 Medium dense grey brown sandy silty GRAVEL (2, 2, 3, 3, 3, 4) Firm light brown/grey gravelly SILT/CLAY 8.20 3.50 Firm to stiff brown sandy gravelly CLAY ō N = 194.00 AA198266 (2, 3, 4, 4, 5, 6)_____ 0_____ 6.70 5.00 N = 38 (3, 3, 5, 9, 12, 12) AA198267 В 5.00 <u>.</u> Very stiff black and brown slightly sandy gravelly CLÁY with occasional cobbles N = 50 (4, 9, 11, 11, 14, 14) AA198268 В 6.00 **™** 4.70 7.00 N = 50/75 mmAA198269 7.00 Obstruction (25, 50) End of Borehole at 7.00 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike То (h) Depth Αt (min) 7.00 6.90 1 No water strike **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date End of BH 28-11-23 Type 3.00 7.00 Nil **REMARKS** CAT scanned location and hand dug insection pit carried out. Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) Sample P - Undisturbed Piston Sample W - Water Sample

IGSL.GDT

GPJ

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-1

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street BOREHOLE NO. **BH14** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 714,514.46 E **DATE COMMENCED** 30/11/2023 **BOREHOLE DIAMETER (mm)** 734,823.56 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.20 **DATE COMPLETED** 01/12/2023 11.82 CLIENT NDFA SPT HAMMER REF. NO. WB1 WB **BORED BY ENGINEER** MORCE 80.95 PROCESSED BY **ENERGY RATIO (%)** FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Description Depth (Depth Depth (m) Results - 0 CONCRETE 11.52 0.30 MADE GROUND comprised of Cl.804-type angular 10.82 1.00 AA198270 1.00 Soft black slightly gravelly SILT/CLAY (1, 2, 2, 3, 2, 2) 0 10.32 1.50 Firm grey very gravelly CLAY <u>_</u> -2 AA198271 2.00 (2, 3, 4, 3, 3, 4) Ō. 9.12 2.70 Firm and firm to stiff brown very gravelly CLAY AA198272 В 3.00 Q (2, 2, 2, 3, 2, 4) ______ N = 254.00 AA198273 (3, 5, 6, 6, 7, 6) 4.30 0 7.52 Stiff to very stiff black slightly sandy slightly gravelly <u>.</u> CLAY with occasional cobbles <u></u> N = 28 (3, 4, 4, 5, 9, 10) AA198274 В 5.00 **™** N = 50 (4, 9, 10, 12, 19, 9) В AA198275 6.00 -6 5.62 6.20 Obstruction End of Borehole at 6.20 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments То (h) Depth At (min) 6.00 6.20 1 No water strike **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date 01-12-23 End of BH Type 3.50 6.20 Nil **REMARKS** CAT scanned location and hand dug insection pit carried out. Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) Sample P - Undisturbed Piston Sample W - Water Sample

SPT Calibration Report

Hammer Energy Measurement Report

SPT Hammer Type of Hammer Test No EQU2023 57 Client IGSL

Test Depth (m) 9.70 Mass of hammer m = 63.5 kgFalling height h = 0.76m $m \times g \times h = 473$ J $E_{\text{theor}} =$

Characteristics of the instrumented rod

Key

- 2 Part of instrumented rod
- 3 Drive Rod
- 4 Strain Gauge
- 5 Accelerometer
- 6 Ground
- F Force
- d_r Diameter of rod
- Fig. B.1 and B.2

BS EN ISO 22476-3: 2005 + A1: 2011

 $d_r = 0.052 \,\mathrm{m}$ Diameter Length of instrumented rod 0.558 m Area A = 11.61 cm² Modulus $E_a = 206843 \text{ MPa}$

DATE OF TEST VALID UNTIL HAMMER ID

05/03/2024 06/03/2023 W.C.

 $E_{\text{meas}} =$ **0.383** kN-m

E theor = **0.473** kN-m

Comments

Energy Ratio (Er) =

Equipe SPT Analyzer Operator

JL

Certificate prepared by

Certificate checked by

Certificate date

10/03/2023

Appendix 4

Soakaway Records

f -value from field tests Soakaway Design IGS Contract: NDFA Social Housing Bundles 4/5 - Lot 1 - Stanley Street 25000-1 Contract No. Test No. SA03 714421.776 Easting Engineer MORCE Northing 734868.012 Date: 14/11/2023 Elevation (m OD) 13.383 Summary of ground conditions Description Ground water from to 0.00 0.17 CONCRETE MADE GROUND comprised of black sandy gravelly Clay with red brick, mortar, roots, concrete blocks, 0.17 0.55 old cable and ash fill. Slow water at Soft brown slightly sandy slightly gravelly CLAY with some roots and occasional red brick pieces 0.55 0.85 (MADE GROUND) 1.7m 0.85 1.10 Soft yellowish brown slightly sandy CLAY 1.80 Soft brown slightly sandy slightly gravelly CLAY with a low cobble content 1.10 2.50 1.80 Firm to stiff greyish brown slightly sandy slightly gravelly CLAY with a high cobble content Notes: SA03 undertaken in trial pit TP03 - see TP03 log Field Data Field Test Depth of Pit (D) Depth to Elapsed 2.50 Width of Pit (B) 0.50 Water Time m (min) Length of Pit (L) 1.60 (m) 1.100 0.00 Initial depth to Water = 1.10 m 1.110 1.00 1.220 Final depth to water = m 1.115 2.00 Elapsed time (mins)= 90.00 1.120 3.00 1.125 4.00 Top of permeable soil 1.130 Base of permeable soil 5.00 1.135 6.00 7.00 1.135 8.00 1.140 1.140 9.00 1.145 10.00 Base area= 0.8 m2 1.150 12.00 m2 *Av. side area of permeable stratum over test perior 5.628 1.155 14.00 Total Exposed area = 6.428 m2 1.160 16.00 1.162 18.00 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 1.165 1.170 25.00 f= 0.00017 m/min 2.76568E-06 m/sec 1.175 30.00 or 1.185 40.00 1.195 50.00 1.205 60.00 1.210 70.00 80.00 1.215 Depth of water vs Elapsed Time (mins)

Soakav	vay De	esign f -value fro	om field test	S	IGSL
		Housing Bundles 4/5 - Lot 1 - S		Contract No.	25000-
Test No. S	A11	_		Easting	714521.19
Engineer M	1ORCE			Northing	734818.76
	14/11/202			Elevation (m OD)	11.98
Summary of	ground cor				•
from	to	Description			Ground water
0.00	0.20	Reinforced CONCRETE			
0.20	1.25	MADE GROUND comprised of g			_
1.25	1.60	MADE GROUND comprised of d		sandy gravelly Clay with	DRY
		red brick and mortar fragment			
1.60	2.20	Soft brown slightly sandy grav	elly SILT with a mediu	m cobble content	
lotes: SA11	undertake	n in TP11 - see TP11 log			
ield Data		Fie	ld Test		
icia bata		<u>11C</u>	id TCSt		
Depth to	Elapsed	Dei	oth of Pit (D)	2.20	lm .
Water	Time		dth of Pit (B)	0.50	m
(m)	(min)		ngth of Pit (L)	2.00	m
V 19	·····/		J (-)	:	_
1.320	0.00	Init	ial depth to Water =	1.32]m
1.320	1.00		al depth to water =	1.45	m
1.325	2.00		psed time (mins)=	90.00	1
1.327	3.00		, ,		-
1.330	4.00	To	o of permeable soil		lm .
1.332	5.00		se of permeable soil		m
1.335	6.00	7			-
1.337	7.00	7			
1.340	8.00	-			
1.340	9.00	┨			
1.345	10.00	Ras	se area=	1	lm2
1.350	12.00	*Av. side area of permeable st			m2
1.355	14.00		tal Exposed area =	5.075	m2
1.360	16.00	┨	tai Exposoa aroa	3.01 3	
1.365	18.00	┨			
1.370	20.00	Infiltration rate (f) = Vo	lume of water used/ur	nit exposed area / unit time	
1.380	25.00			ne expecte area, arme anno	1
1.390	30.00	f= 0.00028 m/	/min or	4.74366E-06	m/sec
1.400	40.00	┨			
1.410	50.00	-			
1.420	60.00	┨			
1.430	70.00	┨			
1.440	80.00	┨			
1.450	90.00				
		_			
		Depth of water v	vs Elapsed Time (mins)	
	100.00				
	100.00				
_	90.00			•	
<u>su</u>	80.00			•	
٤	80.00 70.00 60.00 50.00 40.00 30.00			*	\dashv
ä	60.00			+	_
Ē	50.00			•	
šed	40.00				
aps	70.00				
峃	30.00		•		
	20.00		•		_
	10.00				_

Depth to Water (m)

Appendix 5

Rotary Drillhole Logs & Core Photographs

SPT Calibration Sheet (Er)

Appendix 6

Geotechnical Laboratory Results (Soil)

IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

Report No. R152717 Contract No. 2500-1 Contract Name: NDFA Social Housing - Site 1 Stanley Street , Dublin 7

Customer MORCE

Samples Received: 03/01/24 Date Tested: 03/01/24

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description
BH01	AA198278	2.0	A23/5210	В	14	29	14	15	59	WS	4.4	CL	Black/grey sandy gravelly CLAY
BH01	AA198281	5.0	A23/5211	В	10	32	16	16	60	WS	4.4	CL	Grey/Black slightly sandy, gravelly, CLAY
BH02A	AA193267	3.0	A23/5212	В	14	31	18	13	55	WS	4.4	CL	Brown sandy gravelly CLAY
BH02A	AA193269	5.0	A23/5213	В	10	30	16	14	58	WS	4.4	CL	Grey/Brown slightly sandy, slightly gravelly, CLAY
BH02A	AA193272	8.0	A23/5214	В	12	28	NP	NP	12	WS	4.4		Grey/brown sandy very gravelly SILT
BH03	AA208552	4.0	A23/5216	В	14	29	16	13	59	WS	4.4	CL	Grey/brown sandy gravelly CLAY
BH03	AA208554	6.0	A23/5217	В	12	31	17	14	57	WS	4.4	CL	Grey/Brown slightly sandy, gravelly, CLAY
BH03	AA208556	8.0	A23/5218	В	11	29	17	12	54	WS	4.4	CL	Grey/brown sandy gravelly CLAY
BH04	AA208558	2.0	A23/5219	В	30	42	21	21	71	WS	4.4	СІ	Brown sandy gravelly CLAY
BH04	AA208560	4.0	A23/5220	В	11	25	15	10	52	WS	4.4	CL	Grey/Brown slightly sandy, gravelly, CLAY
BH04	AA208563	7.0	A23/5221	В	14	26	13	13	57	WS	4.4	CL	Grey/Brown slightly sandy, gravelly, CLAY
BH05	AA208543	3.0	A23/5222	В	10	63	12	51	60	WS	4.4	СН	Grey/brown sandy gravelly CLAY
BH05	AA208545	5.0	A23/5223	В	12	28	13	15	52	WS	4.4	CL	Black/grey slightly sandy, slightly gravelly, CLAY
BH05	AA208547	7.0	A23/5224	В	11	29	12	17	55	WS	4.4	CL	Black/grey slightly sandy, gravelly, CLAY
BH06	AA193275	3.0	A23/5225	В	11	24	15	9	41	WS	4.4	CL	Brown sandy gravelly CLAY

Preparation: WS - Wet sieved

Liquid Limit

Clause:

WO - WELSIEVEG

AR - As received

NP - Non plastic

4.3 Cone Penetrometer definitive method4.4 Cone Penetrometer one point method

Sample Type: B - Bulk Disturbed

U - Undisturbed

ırbed Remarks:

Results relate only to the specimen tested,in as received condition unless otherwise noted.

NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.

Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.

This report shall not be reproduced except in fullwithout written approval from the Laboratory.

IGSL Ltd Materials Laboratory

Persons authorized to approve reports

H Byrne (Laboratory Manager)

Approved by

Date 26/01/24 Page 1 of 1 IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

Report No. R152718 Contract No. 2500-1 Contract Name: NDFA Social Housing - Site 1 Stanley Street, Dublin 7

Customer MORCE

Samples Received: 03/01/24 Date Tested: 03/01/24

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description
BH06	AA193277	5.0	A23/5226	В	12	24	13	11	58	WS	4.4	C L	Brown/grey slightly sandy, slightly gravelly, CLAY
BH06	AA193279	7.0	A23/5227	В	12	29	15	14	63	WS	4.4	CL	Grey/brown slightly sandy, slightly gravelly, CLAY
BH07	AA193287	2.0	A23/5228	В	6.8	24	NP	NP	27	WS	4.4		Grey/brown sandy silty GRAVEL
BH07	AA193289	4.0	A23/5229	В	12	30	16	14	57	WS	4.4	CL	Grey/brown slightly sandy, slightly gravelly, CLAY
BH07	AA193292	7.0	A23/5230	В	14	36	16	20	63	WS	4.4	СІ	Grey/brown slightly sandy, slightly gravelly, CLAY
BH08	AA193282	2.0	A23/5231	В	12	24	15	9	43	WS	4.4	CL	Grey/brown sandy gravelly CLAY
BH08	AA193284	4.0	A23/5232	В	11	57	15	42	55	WS	4.4	СН	Grey/brown slightly sandy, slightly gravelly, CLAY
BH09	AA193297	5.0	A23/5233	В	9.7	34	17	17	49	WS	4.4	CL	Grey/brown sandy gravelly CLAY
BH09	AA193300	8.0	A23/5235	В	11	27	16	11	56	WS	4.4	CL	Grey/brown slightly sandy, gravelly, CLAY
BH10	AA191711	3.0	A23/5236	В	12	33	17	16	49	WS	4.4	CL	Brown sandy gravelly CLAY
BH10	AA191713	5.0	A23/5237	В	12	25	16	9	72	WS	4.4	CL	Grey/brown slightly sandy, slightly gravelly, CLAY
BH12	AA189258	2.0	A23/5238	В	11	31	17	14	55	WS	4.4	CL	Brown sandy gravelly CLAY
BH12	AA189260	4.0	A23/5239	В	13	28	15	13	57	WS	4.4	CL	Grey/brown sandy gravelly CLAY
BH12	AA189262	6.0	A23/5240	В	8.7	31	14	17	54	WS	4.4	CL	Grey/brown slightly sandy, gravelly, CLAY
BH13	AA198265	3.0	A23/5241	В	9.8	37	NP	NP	27	WS	4.4		Grey/brown sandy silty GRAVEL

Liquid Limit

Clause:

AR - As received

NP - Non plastic

4.3 Cone Penetrometer definitive method 4.4 Cone Penetrometer one point method

U - Undisturbed

Results relate only to the specimen tested, in as received condition unless otherwise noted.

NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.

Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.

This report shall not be reproduced except in fullwithout written approval from the Laboratory.

IGSL Ltd Materials Laboratory

Persons authorized to approve reports

H Byrne (Laboratory Manager)

Approved by A Byene

Date Page 26/01/24 1 of 1 IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

Report No. R152719 Contract No. 2500-1 Contract Name: NDFA Social Housing - Site 1 Stanley Street , Dublin 7

Customer MORCE

Samples Received: 03/01/24 Date Tested: 03/01/24

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample	Moisture	Liquid	Plastic	Plasticity	%	Preparation		Classification (BS5930)	Description
				Type*	Content %	Limit %	Limit %	Index	<425μm		Clause		
BH13	AA198267	5.0	A23/5241	В	12	29	14	15	53	WS	4.4	CL	Grey/brown sandy gravelly CLAY
BH13	AA198269	7.0	A23/5243	В	11	27	16	11	63	WS	4.4	CL	Grey/brown slightly sandy, gravelly, CLAY with many cobbles
BH14	AA198271	2.0	A23/5244	В	10	26	14	12	53	WS	4.4	CL	Brown sandy very clayey GRAVEL
BH14	AA198273	4.0	A23/5245	В	9.5	32	15	17	56	WS	4.4	CL	Brown sandy clayey GRAVEL
BH14	AA198275	6.0	A23/5246	В	11	35	15	20	60	WS	4.4	CL	Grey/brown slightly sandy, slightly gravelly, CLAY
TP03	AA204948	1.3	A23/5248	В	19	32	17	15	73	WS	4.4	CL	Brown slightly sandy, slightly gravelly, CLAY
TP04	AA204946	2.2	A23/5250	В	12	31	14	17	47	WS	4.4	CL	Brown slightly sandy, gravelly, CLAY
TP05	AA209904	1.6	A23/5251	В	26	46	23	23	60	WS	4.4	СІ	Brown sandy gravelly CLAY
TP11	AA209919	1.8	A23/5254	В	17	36	NP	NP	38	WS	4.4		Brown slightly sandy, gravelly, SILT

Preparation: WS - Wet sieved

Liquid Limit

AR - As received

NP - Non plastic

4.3 Cone Penetrometer definitive method

Clause: 4.4 Cone Penetrometer one point method

Sample Type: B - Bulk Disturbed Remarks:

U - Undisturbed Results re

Results relate only to the specimen tested,in as received condition unless otherwise noted.

NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.

Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.

This report shall not be reproduced except in fullwithout written approval from the Laboratory.

IGSL Ltd Materials Laboratory

Persons authorized to approve reports

H Byrne (Laboratory Manager)

Approved by

 Date
 Page

 26/01/24
 1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000-1 Report No.	R152692		
size	passing		Contract Name :	NDFA Social Housing - Sit	te 1 Stanley Street , Dublin 7	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	BH01		condition unless otherwise note	d. * denotes Customer
63	100	COBBLES	Sample No.*	AA198281 Lab. Samp	le No. A23/5211	supplied information. Opinions a	nd interpretations are
50	91		Sample Type:	В		outside the scope of accreditati	on.
37.5	91		Depth* (m)	5.00 Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	89		Date Received	03/01/2024 Date Testi	ng started 04/01/2024	the written approval of the Labo	oratory.
20	83		Description:	Grey/Black slightly sandy	, gravelly, CLAY		
14	80	GRAVEL					
10	76	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1	377:Part 2:1990 have been superseded by ISO17892-4:	2016.	
6.3	71				63 3 3 5 5 18	3 22	ı.
5	69		100		0.063 0.425 0.6	23.3.3.1	37.5 37.5 53 53
3.35	63		100				
2	57		90				
1.18	52		80				
0.6	47		8 70 H				
0.425	44	SAND	Dercentage passing (%) 70 40 40 40 40 40 40 40 40 40 40 40 40 40				
0.3	42		50			1	
0.15	39		de 40				
0.063	36		30				
0.038	32						
0.027	29		20				
0.017	27	SILT/CLAY	10				
0.010	23	SIL I / CLAI	0				
0.007	21		0.0001 0.0	0.01	0.1 1	10	100
0.005	18			CLAY SILT	Sieve size (mm) SAND	<i>GRAVEL</i>	
0.002	13						
		ICSI I	td Materials Laborator		Approved by:	Date:	Page no:
		IGSL L	td Materials Laborator	У	A Byen	23/01/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		(Contract No.	25000-1	Report No.	R152693	3	<u> </u>	
size	passing			Contract Name :	NDFA Social	•		Street , Dublin 7	Results relate only to the specia	men tested in as received
75	100	COBBLES]	BH/TP No.	BH02A				condition unless otherwise note	ed. * denotes Customer
63	100	CORRES		Sample No.*	AA193269	Lab. Sample	No.	A23/5213	supplied information. Opinions a	and interpretations are
50	100]	Sample Type:	В				outside the scope of accreditat	ion.
37.5	100			Depth* (m)	5.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	99			Date Received	03/01/2024	Date Testing	g started	03/01/2024	the written approval of the Lab	oratory.
20	92			Description:	Grey/Brown	slightly sandy	, slightly gr	avelly, CLAY		
14	89	GRAVEL								
10	86	GRAVEL		Remarks	Note: **Clause 9.2 an	d Clause 9.5 of BS137	7:Part 2:1990 hav	re been superseded by ISO17892-4:	2016.	
6.3	81						63	3 25 5 18	3 22	r.
5	78		100				0.063	0.15 0.3 0.425 0.6	2 3.3.3 6.3 10 10 20 20	37.5 37.5 63 63
3.35	72		100							
2	66		90 —							
1.18	62		<u> </u>							
0.6	57		%) 70 —							
0.425	55	SAND	·ig 60 —							
0.3	52		<u>8</u> 50 –							
0.15	47		Percentage 0 40 -					1		
0.063	41		30							
0.037	35									
0.027	31		20 —							
0.017	28	SILT/CLAY	10							
0.010	25	0.2.7, 0.2.11	0 -	0.00	1	0.01	0.1	1	10	100
0.007	22		0.000			0.01	0.1	I	10	100
0.005	19				CLAY	SILT	Sieve size ((mm) SAND	GRAVEL	
0.002	13						14	1.1.	In.	In.
		IGSL I	td Materia	als Laboratory	<i>(</i>		Approved		Date:	Page no:
		.00_ L					TIE	Jene-	23/01/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000-1	Report No.	R152694		•	
size	passing			Contract Name :	NDFA Social	Housing - Site	e 1 Stanley Stre	et , Dublin 7	Results relate only to the specia	men tested in as received
75	100	COBBLES]	BH/TP No.	BH03				condition unless otherwise note	ed. * denotes Customer
63	100	CODDLES		Sample No.*	AA208551	Lab. Sample	No.	A23/5215	supplied information. Opinions a	and interpretations are
50	100]	Sample Type:	В				outside the scope of accreditat	ion.
37.5	100			Depth* (m)	3.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	96			Date Received	03/01/2024	l Date Testing	g started	04/01/2024	the written approval of the Lab	oratory.
20	91			Description:	Grey/Brown	clayey/silty, v	ery sandy, GRA	VEL		
14	74	GRAVEL								
10	60	GRAVEL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	7:Part 2:1990 have beer	superseded by ISO17892-4:	2016.	
6.3	54						63	3 25 5 5 18	3 22	r¿.
5	52		100				0.063	0.3 0.425 0.6 1.18	2 3.3 3.3 6.3 6.3 7 7 7 7 7 7 7 7	37. 750 753 753
3.35	41		100							
2	28		90 —							
1.18	21		80 +						 	
0.6	15		8 70 -						+ + + + + + + + + + + + + + + + + + +	
0.425	13	SAND	.ig 60 -							
0.3	11		<u>8</u> 50 –							
0.15	10		tage +0 +							
0.063	8		Percentage passing (%)							
									1	
			20 —							
		SILT/CLAY	10 —							
		01217 027 (1	0 -	01 000		0.01	^ 1		10	100
			0.000	0.00	I	0.01	0.1	1	10	100
					CLAY	SILT	Sieve size (mm) SAND	GRAVEL	
							Approved by		Date:	Page no:
		IGSL L	_td Materia	als Laboratory			A Bypen		23/01/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000-1 Report No.	. R152695	•	
size	passing		Contract Name :	NDFA Social Housing - Si	te 1 Stanley Street , Dublin 7	Results relate only to the specin	men tested in as received
75	100	COBBLES	BH/TP No.	BH03		condition unless otherwise note	d. * denotes Customer
63	100	COBBLES	Sample No.*	AA208554 Lab. Samp	le No. A23/5217	supplied information. Opinions a	nd interpretations are
50	100		Sample Type:	В		outside the scope of accreditati	on.
37.5	100		Depth* (m)	6.00 Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	95		Date Received	03/01/2024 Date Testi	ng started 04/01/202	4 the written approval of the Labo	oratory.
20	86		Description:	Grey/Brown slightly sand	ly, gravelly, CLAY		
14	84	GRAVEL					
10	81	GIVAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1	377:Part 2:1990 have been superseded by ISO17892-4	1:2016 .	
6.3	76				.063 0.3 .425 0.6	3 2 3 2	ι.
5	73		100		0.063 0.15 0.3 0.425 0.6	2 3.3.3 6.3 6.3 20 20 20 20	37. 50. 75. 75. 75.
3.35	70		100				
2	65		90				
1.18	60		© 80 				
0.6	54		<u>\$</u> 70		 		
0.425	51	SAND	(%) 70			1	
0.3	48		50				
0.15	43		tage 40				
0.063	37		90				
0.037	31				T 		
0.027	28		20				
0.017	25	SILT/CLAY	10				
0.010	22		0 1 0001	001	0.1 1	10	100
0.007	20		0.0001 0.0			10	100
0.005	18			CLAY SILT	Sieve size (mm) SAND	<i>GRAVEL</i>	
0.002	13				A managed by a	IDatas	D
		IGSL I	td Materials Laborato	rv	Approved by:	Date:	Page no:
				A Byene	23/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

no autiol -	0/		C-	antroot No	25000 1	Danaut N-	1 5 3 6 0	C		
particle	%				25000-1	Report No.	15269			
size	passing					Housing - Site	e 1Stanley Street	:, Dublin /	Results relate only to the specin	men tested in as received
75	100	COBBLES			BH04				condition unless otherwise note	d. * denotes Customer
63	100		Sa	ample No.*	AA208560	Lab. Sample	e No.	A23/5220	supplied information. Opinions a	and interpretations are
50	100		Sa	ample Type:	В				outside the scope of accreditat	ion.
37.5	97		De	epth* (m)	4.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	96		Da		03/01/2024		•	03/01/2024	the written approval of the Lab	oratory.
20	92		De	escription:	Grey/Brown s	slightly sandy	, gravelly, CLAY			
14	88	GRAVEL								
10	85	GIVAVLL	Re	emarks	Note: **Clause 9.2 and	d Clause 9.5 of BS13	77:Part 2:1990 have been s	superseded by ISO17892-4:	2016.	
6.3	79						63	3 25 5 5 18	35	r.
5	76		100				0.063	0.3 0.425 0.6 1.18	2 3.3 6.3 10 10 20 20	37. 750 753 753
3.35	70		100							
2	63		90 —							
1.18	57		80							
0.6	49		70							
0.425	45	SAND	Percentage passing (%)						 	
0.3	41		8 50 —							
0.15	36		1436e							
0.063	28		cent							
0.038	24									
0.027	22		20 —							
0.017	20	SILT/CLAY	10		-					
0.010	18	SIL1/CLA1	0 —							
0.007	16		0.0001	0.001		0.01	0.1	1	10	100
0.005	14				CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
0.002	11									
		ICCL '	ad Massilel				Approved by:		Date:	Page no:
		IGSL L	ta material	s Laboratory	A Began		24/01/24	1 of 1		

Determination of Particle Size Distribution

particle	%		Contract No.	25000-1 Report No.	R152697		
size	passing		Contract Name :	NDFA Social Housing - Sit	e 1 Stanley Street , Dublin 7	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	BH04		condition unless otherwise noted	d. * denotes Customer
63	100	CODDLES	Sample No.*	AA208563 Lab. Sampl	e No. A23/5221	supplied information. Opinions a	nd interpretations are
50	100		Sample Type:	В		outside the scope of accreditation	on.
37.5	100		Depth* (m)	7.00 Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	97		Date Received	03/01/2024 Date Testir	ng started 03/01/2024	the written approval of the Labo	oratory.
20	90		Description:	Grey/Brown slightly sand	y, gravelly, CLAY		
14	83	GRAVEL					
10	79	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS13	377:Part 2:1990 have been superseded by ISO17892-4:	2016.	
6.3	73				63 15 15 22 5	3 22	·5.
5	71		100		0.063 0.3 0.425 0.6	23.3.3.1	37.5 37.5 53 53
3.35	68		100				
2	63		90			 	
1.18	58		80				
0.6	53		70				
0.425	50	SAND	Dercentage passing (%) 60 40 30				
0.3	47		8 50 				
0.15	41		tutage 40				
0.063	36		cent				
0.037	31						
0.027	27		20				
0.017	25	SILT/CLAY	10				
0.010	21	JIL I / CLAI	0				
0.007	17		0.0001 0.0	0.01	0.1 1	10	100
0.005	15			CLAY SILT	Sieve size (mm) SAND	GRAVEL	
0.002	10						
		ICCI I	td Materials Laborator		Approved by:	Date:	Page no:
		IGSL L	itu materiais Laborator	A Ryane	24/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000-1 Report No.	R152698		
size	passing		Contract Name :	NDFA Social Housing - Sit	e 1 Stanley Street , Dublin 7	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	BH05		condition unless otherwise note	d. * denotes Customer
63	100	CODDLES	Sample No.*	AA208545 Lab. Sample	e No. A23/5223	supplied information. Opinions a	nd interpretations are
50	100		Sample Type:	В		outside the scope of accreditati	on.
37.5	100		Depth* (m)	5.00 Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	100		Date Received	03/01/2024 Date Testir	ng started 04/01/2024	the written approval of the Labo	oratory.
20	98		Description:	Black/grey slightly sandy	, slightly gravelly, CLAY		
14	93	GRAVEL					
10	88	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS13	377:Part 2:1990 have been superseded by ISO17892-4:	2016 .	
6.3	82				63 3 3 5 5 18	3 22	·.
5	79		100		0.063 0.3 0.425 0.6	23.3.3.1 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	37.5 37.5 53 53
3.35	75		100				
2	68		90				
1.18	63		80				
0.6	57		70				
0.425	55	SAND	ig 60				
0.3	52		Dercentage passing (%) 60 40 30				
0.15	47		tutage 40				
0.063	40		cent				
0.038	36						
0.027	32		20				
0.017	28	SILT/CLAY	10				
0.010	25	SIL I / CLA I	0		<u> </u>	<u> </u>	
0.007	23		0.0001 0.0	0.01	0.1 1	10	100
0.005	20			CLAY SILT	Sieve size (mm) SAND	GRAVEL	
0.002	14						
		ורכו ו	td Materials Laborates		Approved by:	Date:	Page no:
		IGSL L	td Materials Laborator	A Byene	24/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No	. 25000-1	Report No.	R152699		•	
size	passing		Contract Na	me: NDFA Social	Housing - Site	1 Stanley Street	t , Dublin 7	Results relate only to the specia	men tested in as received
75	100	COBBLES	BH/TP No.	BH05				condition unless otherwise note	ed. * denotes Customer
63	100	CODDLES	Sample No.*	AA208547	Lab. Sample	No.	A23/5224	supplied information. Opinions a	and interpretations are
50	100		Sample Type	e: B				outside the scope of accreditat	ion.
37.5	95		Depth* (m)	7.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	95		Date Receiv	ed 03/01/2024	1 Date Testino	g started	04/01/2024	the written approval of the Lab	oratory.
20	91		Description:	Black/grey s	lightly sandy,	gravelly, CLAY			
14	87	GRAVEL							
10	83	GIVAVLL	Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	7:Part 2:1990 have been su	perseded by ISO17892-4:	2016 .	
6.3	77					63	0.3 .425 0.6 1.18	3 22	τĊ
5	74		100			0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 70 70 70 70	7 2 3 7 9 7 9 7 9 7 9 9 7 9 9 9 9 9 9 9 9 9
3.35	68		100						
2	62		90						
1.18	57		© 80						
0.6	51		° 70						
0.425	49	SAND	(%) 70				+ + + + + + + + + + + + + + + + + + +	 	
0.3	47		50						
0.15	42		Percentage 40 - 30						
0.063	37		30						
0.037	31		20						
0.027	28								
0.017	25	SILT/CLAY	10						
0.010	22		0.0001	0.001	0.01	0.1	1	10	100
0.007	20		0.0001				ı		100
0.005	18			CLAY	SILT	Sieve size (mm)	SAND	<i>GRAVEL</i>	
0.002	14					A manage and b		IData	ID
		IGSL I	td Materials Labor	atory		Approved by:		Date:	Page no:
						A Bypene		24/01/24	1 of 1

A Byene

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

Size passing	particle	%		Contract No.	25000-1 Report No.	R152700		
Sample No.* Sample No. Sample No. Sample No. A23/5226 Sample Information. Opinions and interpretations are outside the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced except in full without part of the scope of accreditation. This report shall not be reproduced to the sco	size	passing		Contract Name :	NDFA Social Housing - Si	te 1 Stanley Street , Dublin 7	Results relate only to the specin	nen tested in as received
Sample No.* AA193277 Lab. Sample No. A23/5226 supplied information. Opinions and interpretations are outside the acops of accreditation. Sample No.* AA193277 Lab. Sample No. A23/5226 supplied information. Opinions and interpretations are outside the acops of accreditation. The report shall not be reproduced except in full without between purposed of the Laboratory. Description: Brown/grey slightly sandy, slightly gravelly, CLAY Remarks Note: "Clause 9.2 and Clause 9.5 of 851377.Part 2:1990 have been supersided by 8017892-42016. Remarks Note: "Clause 9.2 and Clause 9.5 of 851377.Part 2:1990 have been supersided by 8017892-42016. Remarks SAND OGS OGS OGS OGS OGS OGS OGS OG	75	100	CORRI ES	BH/TP No.	BH06		condition unless otherwise note	d. * denotes Customer
37.5 100 28 99 20 99 14 94 10 92 6.3 88 5 85 3.35 82 2 77 1.18 71 0.6 65 0.425 63 0.3 59 0.15 53 0.063 46 0.038 38 0.027 33 0.007 28 0.010 22 0.007 20 0.005 17 0.002 10	63	100	CODDLLS	Sample No.*	AA193277 Lab. Samp	le No. A23/5226	supplied information. Opinions a	nd interpretations are
Date Received Description: Brown/grey slightly sandy, slightly gravelly, CLAY 14	50	100		Sample Type:	В		outside the scope of accreditati	on.
Description: Brown/grey slightly sandy, slightly gravelly, CLAY 14	37.5	100		Depth* (m)	5.00 Customer:	MORCE	This report shall not be reproduc	ced except in full without
14 94 10 92 GRAVEL Remarks Note: "Clause 9.3 of BS1377-Part 2:1990 have been superseded by ISD17892-4:2016. 6.3 88 5 85 85 85 85 8.7 9 90 90 90 90 90 90 90 90 90 90 90 90 9	28	99		Date Received			the written approval of the Labo	oratory.
Columbia	20	99		Description:	Brown/grey slightly sand	y, slightly gravelly, CLAY		
Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been superseded by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been supersed by \$5017892-4:2016. Note: "Clause 9.2 and Clause 9.5 of 851377.Fart 2:1990 have been supersed by \$5017892-	14	94	GRAV/FI					
5 85 3.35 82 2 77 1.18 71 0.6 65 0.425 63 SAND 0.15 53 0.063 46 0.038 38 0.027 33 0.017 28 0.010 22 0.007 20 0.0001 0.001 0.01 0.1 1 1 10 100 0.005 17 0.002 10 CLAY Silt Sieve size (mm) SAND GRAVEL Page no:	10	92	GIVAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1	377:Part 2:1990 have been superseded by ISO17892-4	:2016 .	
3.35 82 77	6.3	88				63 15 25 6	3 32	7. 0.2.
2 77 1.18 71 0.6 65 0.425 63 0.3 59 0.15 53 0.063 46 0.038 38 0.027 33 0.017 28 0.010 22 0.007 20 0.005 17 0.002 10 CLAY S/LT Sieve size (mm) SAND GRAVEL				100		0.0 0.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2500
1.18 71 0.6 65 0.425 63 0.3 59 0.15 53 0.063 46 0.038 38 0.027 33 0.017 28 0.010 22 0.007 20 0.005 17 0.002 10 CLAY S/LT Sieve size (mm) SAND GRAVEL	3.35							
0.6 65 0.425 63 0.3 59 0.15 53 0.063 46 0.038 38 0.027 33 0.017 28 0.010 22 0.007 20 0.0001 0.001 0.01 0.1 1 1 10 100 100 0.005 17 0.002 10 Approved by: Page no:								
0.027 33 0.017 28 0.010 22 0.0007 20 0.0001 0.001 0.01 0.1 1 10 100 100 0.005 17 0.002 10 Approved by: Approved by: Page no:				© 80 				
0.027 33 0.017 28 0.010 22 0.0007 20 0.0001 0.001 0.01 0.1 1 10 100 100 0.005 17 0.002 10 Approved by: Approved by: Page no:				° 70				
0.027 33 0.017 28 0.010 22 0.0007 20 0.0001 0.001 0.01 0.1 1 10 100 100 0.005 17 0.002 10 Approved by: Approved by: Page no:			SAND	iss 60 				
0.027 33 0.017 28 0.010 22 0.0007 20 0.0001 0.001 0.01 0.1 1 10 100 100 0.005 17 0.002 10 Approved by: Approved by: Page no:				ω 50				
0.027 33 0.017 28 0.010 22 0.0007 20 0.0001 0.001 0.01 0.1 1 10 100 100 0.005 17 0.002 10 Approved by: Approved by: Page no:				ta 40 + + + + + + + + + + + + + + + + + +				
0.027 33 0.017 28 0.010 22 0.0007 20 0.0001 0.001 0.01 0.1 1 10 100 100 0.005 17 0.002 10 Approved by: Approved by: Page no:				ğ 30 -				
0.017 28 0.010 22 0.0007 20 0.0001 0.001 0.01 0.1 1 10 100 100 100								
0.010 22 0.007 20 0.0001 0.001 0.01 0.1 1 10 100 100 100								
0.007 20 0.0001 0.001 0.01 0.1 1 10 100 0.005 17 0.002 10 S/LT Sieve size (mm) SAND GRAVEL Approved by: Date: Page no:			SILT/CLAY					
0.007 20 0.005 17 0.002 10 Approved by: Date: Page no:				ě i	001 0.01	0 1 1	10	100
0.002 10 Approved by: Date: Page no:				0.0001				100
Approved by: Date: Page no:					CLAY SILT	Sieve size (mm) SAND	GRAVEL	
ICCL Ltd Motorials Laboratom	0.002	10				Approved by:	Date	Page no:
			IGSL L	td Materials Laborato	ry			

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000-1 Report No.	R152701		
size	passing		Contract Name :	NDFA Social Housing - Site 1	Stanley Street , Dublin 7	Results relate only to the specim	nen tested in as received
75	100	COBBLES	BH/TP No.	BH06		condition unless otherwise noted	d. * denotes Customer
63	100	COBBLES	Sample No.*	AA193279 Lab. Sample N	lo. A23/5229	supplied information. Opinions a	nd interpretations are
50	100		Sample Type:	В		outside the scope of accreditation	on.
37.5	100		Depth* (m)	7.00 Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	98		Date Received	03/01/2024 Date Testing	started 03/01/2024	the written approval of the Labo	oratory.
20	94		Description:	Grey/brown slightly sandy, s	slightly gravelly, CLAY		
14	94	GRAVEL					
10	92	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1377:	Part 2:1990 have been superseded by ISO17892-4:	2016 .	
6.3	88				63 1 5 2 5 5 8	3 35	.5
5	85		100		0.063 0.425 0.6 1.18	2 3.3.3 10 10 20 20 20 20	37.5 50 53 75
3.35	80		100				
2	74		90				
1.18	69		80				
0.6	63		70			1	
0.425	60	SAND	ig 60				
0.3	58		Dercentage passing (%) 70 40 40 40 40 40 40 40 40 40 40 40 40 40				
0.15	53		tu do la de				
0.063	46		Ceni				
0.037	41						
0.027	36		20				
0.017	33	SILT/CLAY	10				
0.010	28	SIL1/CLA1	0				
0.007	25		0.0001 0.0	0.01	0.1 1	10	100
0.005	21			CLAY SILT Si	eve size (mm) SAND	<i>GRAVEL</i>	
0.002	13						
		ICSI I	td Materials Laborato		Approved by:	Date:	Page no:
		IGOL L	LU Materiais Laborator	A Byene	24/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		(Contract No.	25000-1	Report No.	R152702	2		
size	passing		(Contract Name :	NDFA Social	•	e 1 Stanley	Street , Dublin 7	Results relate only to the specia	men tested in as received
75	100	COBBLES	Ī	BH/TP No.	BH07				condition unless otherwise note	ed. * denotes Customer
63	100	COBBLES		Sample No.*	AA193289	Lab. Sample	No.	A23/5229	supplied information. Opinions a	and interpretations are
50	100			Sample Type:	В				outside the scope of accreditat	ion.
37.5	94		[Depth* (m)	4.00	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	91		Į (Date Received	03/01/2024	Date Testing	g started	03/01/2024	the written approval of the Lab	oratory.
20	90		Į (Description:	Grey/brown	slightly sandy	, slightly gr	avelly, CLAY		
14	88	GRAVEL								
10	84	GRAVEL	F	Remarks	Note: **Clause 9.2 ar	d Clause 9.5 of BS137	77:Part 2:1990 hav	ve been superseded by ISO17892-4:	2016.	
6.3	79						63	0.15 0.3 0.6 0.6	3 2	37.5 530 533 533
5	76		100				0.063	0.15 0.3 0.425 0.6	2 3.3.3 6.3 10 10 20 20	2 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×
3.35	71		100							
2	65		90							
1.18	60		© 80 							
0.6	54		<u>\$</u> 70 +							
0.425	52	SAND	%) 70 —						1	
0.3	49		<u>8</u> 50							
0.15	44		Percentage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.063	39		30 H							
0.037	34		<u>a</u> 20 —							
0.027	30									
0.017	27	SILT/CLAY	10							
0.010	23		0	0.00	1	0.01	0.1	1	10	100
0.007	20		0.000			0.01	0.1	I	10	100
0.005	18				CLAY	SILT	Sieve size ((mm) SAND	GRAVEL	
0.002	12						ΙΔ	d b	ID-t	ID
		IGSL I	_td Materia	als Laboratory	,		Approve		Date:	Page no:
						AR	ene	24/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		(Contract No.	25000-1	Report No.	R152703			
size	passing			Contract Name :		•		reet , Dublin 7	Results relate only to the specin	men tested in as received
75	100	0000150] .	BH/TP No.	BH07	· ·		,	condition unless otherwise note	
63	100	COBBLES	9	Sample No.*	AA193292	Lab. Sample	No.	A23/5230	supplied information. Opinions a	and interpretations are
50	100		1	Sample Type:	В	·			outside the scope of accreditat	ion.
37.5	97			Depth* (m)	7.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	95		[Date Received	03/01/2024	Date Testing	started	03/01/2024	the written approval of the Lab	oratory.
20	92		[Description:	Grey/brown	slightly sandy,	slightly gra			
14	89	GRAVEL								
10	86	GRAVEL	F	Remarks	Note: **Clause 9.2 an	d Clause 9.5 of BS137	7:Part 2:1990 have	been superseded by ISO17892-4:2	2016.	
6.3	82						63	225	35	r.
5	79		100				0.063	0.3 0.425 0.6 1.18	2 3.3.3.5 10 10 20 20 20	37.5 37.5 633 633
3.35	75		100							
2	69		90 —							
1.18	64		© 80 							
0.6	59		%) 70 —							
0.425	56	SAND	ig 60 —							
0.3	53		<u>8</u> 50 —							
0.15	48		Percentage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.063	42		30							
0.037	36		20							
0.027	32									
0.017	29	SILT/CLAY	10		1					
0.010	25		0.000	0.00	1	0.01	0.1	1	10	100
0.007	21		0.000					ı		100
0.005	17				CLAY	SILT	Sieve size (r	nm) SAND	GRAVEL	
0.002	11						Approved	by:	IData	Dago no:
		IGSL L	_td Materia	als Laboratory		Approved		Date:	Page no:	
						A Byen		24/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000-1 Report No.	R152704		
size	passing		Contract Name :	NDFA Social Housing - Sit	te 1 Stanley Street , Dublin 7	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	BH08		condition unless otherwise note	d. * denotes Customer
63	100	COBBLES	Sample No.*	AA193284 Lab. Samp	le No. A23/5232	supplied information. Opinions a	nd interpretations are
50	100		Sample Type:	В		outside the scope of accreditati	on.
37.5	100		Depth* (m)	4.00 Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	100		Date Received	03/01/2024 Date Testi	ng started 03/01/2024	the written approval of the Labo	oratory.
20	97		Description:	Grey/brown slightly sand	y, slightly gravelly, CLAY		
14	97	GRAVEL					
10	94	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1	377:Part 2:1990 have been superseded by ISO17892-4:	2016.	
6.3	88				63 3 3 5 5 18	3 2	ī.
5	86		100		0.063 0.425 0.6	23.3.3.1 6.3 78 78 78 78 78 78 78	37.5 37.5 53 53 53
3.35	82		100				
2	77		90				
1.18	73		80				
0.6	66		8 70 				
0.425	64	SAND	· · · · · · · · · · · · · · · · · · ·				
0.3	60		70				
0.15	54		96 40				
0.063	46		30				
0.038	38						
0.027	33		20				
0.017	28	SILT/CLAY	10				
0.010	24	SILT/ CLAT	0				100
0.007	20		0.0001 0.0	0.01	0.1 1	10	100
0.005	17			CLAY SILT	Sieve size (mm) SAND	GRA VEL	
0.002	12						
		ICSI I	td Materials Laborator	~	Approved by:	Date:	Page no:
		IUSL L	Lu Materiais Laburatur	A Byene	24/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000-1	Report No.	R152705			
size				Contract No.		•	e 1 Stanley Street	Dublin 7	Describe and the surface of the state of the	
75	passing 100		1	BH/TP No.		nousing - Site	e i Stanley Street	, Dublin 7	Results relate only to the specin	
63		COBBLES			BH09	Lab Camala	. N.	A 22 /F 222	condition unless otherwise note	
	100			Sample No.*	AA193295	Lab. Sample	NO.	A23/5233	supplied information. Opinions a	
50	100			Sample Type:	В	_			outside the scope of accreditat	
37.5	100			Depth* (m)	3.00	Customer:	MORCE		This report shall not be reprodu	·
28	99			Date Received		Date Testing	-		the written approval of the Lab	oratory.
20	95			Description:	Grey/brown	clayey/silty, v	ery sandy, GRAVI	EL		
14	81	GRAVEL								
10	69	0.0		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 have been su	perseded by ISO17892-4:	2016 .	
6.3	63						0.15	0.3 1.425 0.6 1.18	3 3 2	5.
5	60		100				0.063	0.3 0.425 0.6 1.18	2 3.3.3 6.3 10 10 20 20	37. 37. 50 53 75
3.35	52		100 -							
2	39		90 -						 	
1.18	31		80						 	
0.6	23		§ 70 ·							
0.425	21	SAND	(%) bassing (%) 60 -							
0.3	18		6 50 -							
0.15	15		Percentage 08							
0.063	10		Sent 40						1	
			<u>5</u> 30 -							
			20 -							
			10 -							
		SILT/CLAY	0 -							
			0.0	0.00	1	0.01	0.1	1	10	100
					CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
							,			
		100: :					Approved by:		Date:	Page no:
		IGSL L	_td Mater	ials Laboratory		A Ryane		24/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contrac	t No. 25000-1	Report No.	R152706		•	
size	passing		Contrac	t Name: NDFA So	cial Housing - Site	e 1 Stanley Street	, Dublin 7	Results relate only to the specia	men tested in as received
75	100	COBBLES	BH/TP N	No. BH09				condition unless otherwise note	ed. * denotes Customer
63	100	CODDLES	Sample	No.* AA19330	00 Lab. Sample	e No.	A23/5235	supplied information. Opinions a	and interpretations are
50	100		Sample	Type: B				outside the scope of accreditat	ion.
37.5	97		Depth*	(m) 8.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	92		Date Re	ceived 03/01/2	024 Date Testin	g started	03/01/2024	the written approval of the Lab	oratory.
20	85		Descript	tion: Grey/bro	wn slightly sandy	, gravelly, CLAY			
14	79	GRAVEL							
10	75	GRAVEL	Remarks	Note: **Clause	9.2 and Clause 9.5 of BS13	77:Part 2:1990 have been su	perseded by ISO17892-4:	2016.	
6.3	70					63	25 5 1 8	3 22	r.
5	68		100			0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	37. 750. 753.
3.35	65		100						
2	61		90						
1.18	57		80						
0.6	52		× 70						
0.425	50	SAND	(%) 70						
0.3	48		50						
0.15	43		10 Ltage				T		
0.063	36		Percentage 40						
0.037	31								
0.027	27		20						
0.017	25	SILT/CLAY	10				 		
0.010	21	OIL I / OLA I	0						
0.007	19		0.0001	0.001	0.01	0.1	1	10	100
0.005	16			CLAY	SILT	Sieve size (mm)	SAND	<i>GRAVEL</i>	
0.002	11							1_	
		ICSI I	td Materials La	horatory		Approved by:		Date:	Page no:
		IGSL L	Lu Materiais La	DOI atoly	A Rypine		24/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		(Contract No.	25000-1	Report No.	R152707	,			
size	passing			Contract Name :	NDFA Social	•		Street , Dublin 7	Results relate only to the specia	men tested in as received	
75	100	CORRUEC]	BH/TP No.	BH10				condition unless otherwise note	ed. * denotes Customer	
63	100	COBBLES		Sample No.*	AA191713	Lab. Sample	No.	A23/5237	supplied information. Opinions a	and interpretations are	
50	100]	Sample Type:	В				outside the scope of accreditat	ion.	
37.5	100			Depth* (m)	5.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without	
28	98			Date Received	03/01/2024	Date Testing	g started	03/01/2024	the written approval of the Lab	oratory.	
20	91			Description:	Grey/brown	Grey/brown slightly sandy, slightly gravelly, CLAY					
14	89	GRAVEL									
10	84	GRAVEL		Remarks	Note: **Clause 9.2 an	d Clause 9.5 of BS137	77:Part 2:1990 hav	e been superseded by ISO17892-4:2	2016.		
6.3	79						63	0.15 0.3 1.425 0.6	3 22	2 2 2 3 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	
5	76		100				0.063	0.15 0.3 0.425 0.6	2 3.3.3.5 6.3 20 20 20	2 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×	
3.35	71		100								
2	65		90 —								
1.18	60		<u> </u>								
0.6	55		<u>\$</u> 70 —								
0.425	53	SAND	%) 70 —						1		
0.3	50			<u>8</u> 50 –							
0.15	45		Percentage 0 40 -								
0.063	38		30								
0.037	33										
0.027	29		20 —								
0.017	26	SILT/CLAY	10								
0.010	23		0 -	0.00	1	0.01	0.1	1	10	100	
0.007	20		0.000	0.00		0.01	0.1	I	10	100	
0.005	19				CLAY	SILT	Sieve size (mm) SAND	GRAVEL		
0.002	13						10	1.1.	In	In.	
		IGSL I	td Materia	als Laboratory	<i>(</i>		Approved		Date:	Page no:	
		.00_ L			41 K	gue_	24/01/24	1 of 1			

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000-1	Report No.	R152708					
size	passing		_	Contract Name:	NDFA Social	Housing - Site	1Stanley St	reet , Dublin 7	Results relate only to the speci	men tested in as received		
75	100	COBBLES		BH/TP No.	BH12				condition unless otherwise not	ed. * denotes Customer		
63	100	CODDLLO		Sample No.*	AA189262	Lab. Sample	No.	A23/5240	supplied information. Opinions	and interpretations are		
50	81			Sample Type:	В				outside the scope of accreditat	cion.		
37.5	72			Depth* (m)	6.00	Customer:	MORCE		This report shall not be reprodu	uced except in full without		
28	62			Date Received		4 Date Testinզ	-		the written approval of the Lab	oratory.		
20	57			Description:	Grey/brown	slightly sandy	, gravelly, CL	AY				
14	53	GRAVEL										
10	49	GIVIVEE		Remarks	peen superseded by ISO17892-4:2	-4:2 Sample size did not meet the requirements of BS1377						
6.3	46						0.063	0.3 0.425 0.6	35.04.0	2.020		
5	45		100 -				0.063	0.4.0	2 3.3.3 6.3 10 10 20	37.000		
3.35	42											
2	40		90 -									
1.18	37		€ 80									
0.6	34		<u>\$</u> 70 -									
0.425	32	SAND	SAND	90 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -						+ + + + + + + + + + + + + + + + + + +	1 	
0.3	31			<u>ω</u> 50 -								
0.15	28		g 40 +									
0.063	24		Percentage 0 40 -									
0.037	20		20 -									
0.027	18		10 -									
0.017	16	SILT/CLAY										
0.010	14		0.00	0.00	\1	0.01	0.1	1	10	100		
0.007	13		0.00	0.00						100		
0.005	11				CLAY	SILT	Sieve size (m	nm) <i>SAND</i>	<i>GRAVEL</i>			
0.002	9						Approved	by:	Date:	Page no:		
		IGSL L	_td Materi	ials Laboratory	/		Approved		24/01/24	1 of 1		
				AT Day	ene-	24/01/24	1 01 1					

Determination of Particle Size Distribution

particle	%			Contract No.	25000-1	Report No.	R152709				
size	passing		•	Contract Name:	NDFA Social	Housing - Site	e 1 Stanley S	Street , Dublin 7	Results relate only to the spec	imen tested in as received	
75	83	COBBLES		BH/TP No.	BH13				condition unless otherwise not	ed. * denotes Customer	
63	70	COBBLEG		Sample No.*	AA198269	Lab. Sample	e No.	A23/5243	supplied information. Opinions	and interpretations are	
50	70			Sample Type:	В				outside the scope of accredita	tion.	
37.5	67			Depth* (m)	7.00	Customer:	MORCE		This report shall not be reprod	uced except in full without	
28	65			Date Received		4 Date Testin	•		the written approval of the Lak	ooratory.	
20	63			Description:	Grey/brown	slightly sandy	, gravelly, CL	_AY with many cobbl	es		
14	61	GRAVEL									
10	59	GIVIVEE		Remarks	2 Sample size did not meet the requirements of BS1377						
6.3	55						63	0.15 0.3 0.425 0.6	35	7. 0.2.	
5	53		100 -				0.063	0.15 0.3 0.425 0.6 1.18	2 3.33 6.3 10 10 10 20	28 37. 530. 7530.	
3.35	51										
2	47		90 -								
1.18	45		© 80 -							 	
0.6	41	SAND	<u>ම</u> 70 -								
0.425	40		iss 60 -							<u> </u>	
0.3	38				<u>α</u> 50 -						
0.15	34		tag 40 -						1		
0.063	29		Percentage passing (%) 00 00 00 00 00 00 00 00 00 00 00 00 00								
0.038	26		20 -								
0.027	23										
0.017	20	SILT/CLAY	10 -								
0.010	18		0.0	001 0.00	1	0.01	0.1	1	10	100	
0.007	16		0.0	0.00				ı	_	100	
0.005	14				CLAY	SILT	Sieve size (r	mm) SAND	GRAVEL		
0.002	11						App. 10. 15 -1	by	IData	IDaga na:	
		IGSL I	_td Mater	ials Laborator	/		Approved		Date:	Page no:	
				=	4 By	pur-	24/01/24	1 of 1			

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No	o. 25000-1	Report No.	R152710		•	
size	passing		Contract Na	ame: NDFA Social	Housing - Site	e 1 Stanley Street	, Dublin 7	Results relate only to the specir	men tested in as received
75	100	COBBLES	BH/TP No.	BH14				condition unless otherwise note	d. * denotes Customer
63	100	COBBLES	Sample No.	* AA198275	Lab. Sample	No.	A23/5246	supplied information. Opinions a	nd interpretations are
50	100		Sample Typ	e: B				outside the scope of accreditati	on.
37.5	100		Depth* (m)	6.00	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	97		Date Receiv	ved 03/01/2024	1 Date Testing	g started	03/01/2024	the written approval of the Lab	oratory.
20	92		Description	: Grey/brown	slightly sandy,	, slightly gravelly,	CLAY		
14	87	GRAVEL							
10	84	GIVAVLL	Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	7:Part 2:1990 have been sup	erseded by ISO17892-4:	2016.	
6.3	79					63	0.3 1.425 0.6 1.18	Ω	r.
5	76		100			0.063	0.425 0.6 0.6	2 3.33 6.3 6.3 7 8 7 8 7 8 7 8 7	37. 50. 53. 75. 75.
3.35	72		100						
2	68		90						
1.18	63		© 80						
0.6	58		∞ 70 						
0.425	56	SAND	(%) 70						
0.3	53			<u>8</u> 50					
0.15	47		40 Ltage						
0.063	40		90 Hercentage						
0.037	36								
0.027	33		20						
0.017	29	SILT/CLAY	10						
0.010	24		0 1	0.001	0.01	0.1	1	10	100
0.007	22		0.0001	0.001	0.01	0.1	ı	10	100
0.005	20			CLAY	SILT	Sieve size (mm)	SAND	<i>GRAVEL</i>	
0.002	14					7		In .	In.
		IGSL I	td Materials Labo	ratory		Approved by:		Date:	Page no:
		IOOL L	La Placollaio Labo	A Byone	=	24/01/24	1 of 1		

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000-1 Report No.	R152711		
size	passing		Contract Name :	NDFA Social Housing - Site 1	1 Stanley Street , Dublin 7	Results relate only to the specim	nen tested in as received
75	100	COBBLES	BH/TP No.	TP01		condition unless otherwise noted	d. * denotes Customer
63	100	CODDLES	Sample No.*	AA209908 Lab. Sample N	No. A23/5247	supplied information. Opinions ar	nd interpretations are
50	100		Sample Type:	В		outside the scope of accreditation	on.
37.5	100		Depth* (m)	2.30 Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	90		Date Received	03/01/2024 Date Testing	started 03/01/2024	the written approval of the Labo	ratory.
20	82		Description:	Grey/brown slightly sandy, o	gravelly, SILT/CLAY		
14	75	GRAVEL					
10	69	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1377:F	Part 2:1990 have been superseded by ISO17892-4:	2016.	
6.3	63				63 15 25 5	35	ιċ
5	60		400		0.063 0.3 0.425 0.6 1.18	2 3.3.3 6.3 10 14 14 20 20 20	37.5 50 53 75
3.35	56		100				
2	52		90				
1.18	48		80			+ + + + + + + + + + + + + + + + + + +	
0.6	44		× 70				
0.425	42	SAND	9i 90 H				
0.3	40		Nercentage passing (%) 60 40 40 40 40 40 40 40 40 40 40 40 40 40				
0.15	36		40				
0.063	28		cent				
0.037	24						
0.027	21		20				
0.017	19	SILT/CLAY	10				
0.010	17	SIL I / CLAI	0				
0.007	14		0.0001 0.0	0.01	0.1 1	10	100
0.005	13			CLAY SILT SI	ieve size (mm) SAND	<i>GRAVEL</i>	
0.002	9						
		ICSL I	td Materials Laborator		Approved by:	Date:	Page no:
		IGSL L	td Materials Laborator	у	A Regare	25/01/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000-1 Rep	ort No. R15271	2		
size	passing		Contract Name	: NDFA Social Hous	ing - Site 1 Stanley	Street , Dublin 7	Results relate only to the specin	men tested in as received
75	100	COBBLES	BH/TP No.	TP03			condition unless otherwise note	ed. * denotes Customer
63	100	CODDLLS	Sample No.*	AA204949 Lak	. Sample No.	A23/5249	supplied information. Opinions a	and interpretations are
50	100		Sample Type:	В			outside the scope of accreditat	ion.
37.5	100		Depth* (m)	2.00 Cus	stomer: MORCE		This report shall not be reprodu	iced except in full without
28	96		Date Received		e Testing started		the written approval of the Lab	oratory.
20	92		Description:	Brown slightly sar	ndy, slightly gravelly	, CLAY		
14	90	GRAVEL						
10	88	UIVAVLL	Remarks	Note: **Clause 9.2 and Claus	e 9.5 of BS1377:Part 2:1990 h	ave been superseded by ISO17892-4:	2016.	
6.3	84				63	0.15 0.3 0.425 0.6	3 32	7.
5	82		100		0.063	0.15 0.3 0.425 0.6	2 3.33 6.3 6.3 70 70 70 70	250 . 20 530 . 37 .
3.35	79		100					
2	76		90					
1.18	73		© 80 					
0.6	70		© 70 					
0.425	68	SAND	(%) 70					
0.3	66		<u>8</u> 50					
0.15	62		90					
0.063	57		30					
0.038	50							
0.027	46		20					
0.017	42	SILT/CLAY	10					
0.010	37		0.0001	0.001 0.0	1 0 1	1	10	100
0.007	33		0.0001					100
0.005	30			CLAY	S/LT Sieve size	(mm) SAND	<i>GRAVEL</i>	
0.002	16					11.	In.	In.
		IGSL I	td Materials Laborat	orv	Approve	-	Date:	Page no:
				3	47/2	Jene-	25/01/24	1 of 1

Determination of Particle Size Distribution

particle	%		Co	ontract No.	25000-1	Report No.	R152713			
size	passing		Co	ontract Name :	NDFA Social I	Housing - Site	e 1 Stanley Str	eet , Dublin 7	Results relate only to the specir	men tested in as received
75	100	COBBLES	ВІ	H/TP No.	TP04				condition unless otherwise note	d. * denotes Customer
63	100	CODDLLS	Sa	ample No.*	AA204946	Lab. Sample	No.	A23/5250	supplied information. Opinions a	nd interpretations are
50	100		Sa	ample Type:	В				outside the scope of accreditati	on.
37.5	95		De	epth* (m)	2.20	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	90		Da			Date Testing	•	03/01/2024	the written approval of the Labo	oratory.
20	84		De	escription:	Brown slightly	y sandy, grav	elly, CLAY			
14	76	GRAVEL								
10	71	GIVAVEE	Re	emarks	Note: **Clause 9.2 an	d Clause 9.5 of BS137	7:Part 2:1990 have be	en superseded by ISO17892-4:2	2016 .	
6.3	64						0.15	0.3 .425 0.6 1.18	355	ν. Ω
5	62		100				0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 10 20 20 20	37. 530 530 531
3.35	56		l I							
2	50		90							
1.18	45		© 80 					 	 	
0.6	39		° 70 —							
0.425	36	SAND	Percentage passing (%) 20 40 30							
0.3	34		<u>α</u> 50 —							
0.15	29		149 H							
0.063	23		30							
0.038	20		20							
0.027	18		l I							
0.017	16	SILT/CLAY	10							
0.010	15		0.0001	1 0.001		0.01	0.1	1	10	100
0.007	14		0.000					1		100
0.005	12			(CLAY	SILT	Sieve size (mr	m) SAND	<i>GRAVEL</i>	
0.002	9						Approved la	\ <u></u>	Data	Daga nai
		IGSL L	td Material	s Laboratory			Approved b		Date:	Page no:
				= =====================================			A Bejer		25/01/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000-1 Report No.	R152714	•	
size	passing		Contract Name :	NDFA Social Housing - Sit	te 1 Stanley Street , Dublin 7	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	TP05		condition unless otherwise noted	d. * denotes Customer
63	100	CODDLES	Sample No.*	AA209905 Lab. Samp	le No. A23/5252	supplied information. Opinions a	nd interpretations are
50	89		Sample Type:	В		outside the scope of accreditation	on.
37.5	87		Depth* (m)	2.40 Customer:	MORCE	This report shall not be reproduc	ed except in full without
28	84		Date Received	03/01/2024 Date Testi	ng started 03/01/2024	the written approval of the Labo	ratory.
20	76		Description:	Brown slightly sandy, gra	velly, SILT/CLAY		
14	72	GRAVEL					
10	67	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1	377:Part 2:1990 have been superseded by ISO17892-4:	2 Sample size did not meet the requirements of BS1377	
6.3	61				63 3 3 5 5 18	3 35	ιċ
5	58		400		0.063 0.425 0.6	2 3.3.3 10 10 20 20 20 20	37.5 50 63 63
3.35	52		100				
2	46		90				
1.18	42		80			 	
0.6	38		8 70 H				
0.425	36	SAND	70				
0.3	34		<u>8</u> 50				
0.15	30		de 40			<u> </u>	
0.063	25		30				
0.038	21						
0.027	19		20				
0.017	17	SILT/CLAY	10				
0.010	14	SIL1/CLA1	0				
0.007	12		0.0001 0.0	0.01	0.1 1	10	100
0.005	11			CLAY SILT	Sieve size (mm) SAND	<i>GRAVEL</i>	
0.002	7						
		ICSI I	td Materials Laborato		Approved by:	Date:	Page no:
		IGSL L	tu materiais raporator	У	A Begane	25/01/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000-1 Report No.	R152715		
size	passing		Contract Name :	NDFA Social Housing - Sit	e 1 Stanley Street , Dublin 7	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	TP07		condition unless otherwise note	d. * denotes Customer
63	100	CODDLES	Sample No.*	AA209911 Lab. Sampl	e No. A23/5253	supplied information. Opinions a	nd interpretations are
50	96		Sample Type:	В		outside the scope of accreditati	on.
37.5	96		Depth* (m)	2.40 Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	90		Date Received	03/01/2024 Date Testir	ng started 03/01/2024	the written approval of the Labo	oratory.
20	87		Description:	Brown slightly sandy, slig	htly gravelly, SILT/CLAY		
14	84	GRAVEL					
10	81	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS13	377:Part 2:1990 have been superseded by ISO17892-4:	2016.	
6.3	76				63 3 3 5 5 18	3 2	ī.
5	74		100		0.063 0.425 0.6	23.3.3.1 6.3 78 78 78 78 78 78 78	37.5 37.5 53 53
3.35	70		100				
2	66		90				
1.18	62		80				
0.6	57		8 70 				
0.425	55	SAND	· ig 60 +			1	
0.3	53		70				
0.15	48		de 40				
0.063	42		30				
0.037	36						
0.027	32		20				
0.017	29	SILT/CLAY	10	- 1 			
0.010	25	OIL I / OL/AI	0			10	1.00
0.007	22		0.0001 0.0	0.01	0.1 1	10	100
0.005	18			CLAY SILT	Sieve size (mm) SAND	GRA VEL	
0.002	10						
		ופטו ו	td Materials Laborator	~	Approved by:	Date:	Page no:
		IOSE E	Lu materiais Laborator	A Begane	25/01/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000-1	Report No.	R15271	6		
size	passing		•	Contract Name :	NDFA Social	Housing - Sit	e 1 Stanley	Street , Dublin 7	Results relate only to the specir	men tested in as received
75	100	COBBLES		BH/TP No.	TP11				condition unless otherwise note	d. * denotes Customer
63	100	CODDLLO		Sample No.*	AA209919	Lab. Sampl	e No.	A23/5254	supplied information. Opinions a	and interpretations are
50	100			Sample Type:	В				outside the scope of accreditati	ion.
37.5	94			Depth* (m)	1.80	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	88			Date Received	03/01/2024	4 Date Testir	ng started	03/01/2024	the written approval of the Labo	oratory.
20	79			Description:	Brown slight	ly sandy, gra	velly, SILT			
14	74	GRAVEL								
10	70	GRAVEL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS13	377:Part 2:1990 ha	ve been superseded by ISO17892-4:	2016.	
6.3	65						93	15 22 5 18	3 35	r.
5	62						0.063	0.15 0.3 0.425 0.6	2 3.35 5.3 6.3 10 14 20	37. 750 753 750
3.35	58		100 -							
2	52		90 -						 	
1.18	48		80 -						+ + + + + + + + + + + + + + + + + + +	
0.6	43		§ 70 -							
0.425	40	SAND	%) bassing (%) 60 -							
0.3	38		8 50 -							
0.15	32		eget 40 -							
0.063	25		er							
0.037	20									
0.027	18		20 -							
0.017	16	SILT/CLAY	10 -							
0.010	15	SIL I / CLAT	0 -							
0.007	13		0.0	0.00)1	0.01	0.1	1	10	100
0.005	12				CLAY	SILT	Sieve size	(mm) SAND	GRAVEL	
0.002	9									
		ICCL I	td Motor	iolo I oborotor			Approve		Date:	Page no:
		IGSL L	Lu mater	ials Laboratory	/		AR	18cm	25/01/24	1 of 1

Appendix 7

Geo-Environmental & Chemical Laboratory Results (Soils)

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 24-00484-1

Initial Date of Issue: 17-Jan-2024

Re-Issue Details:

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): Darren Keogh

Project 25000-1 Site 1 NDFA Social Housing

Quotation No.: Q20-21693 Date Received: 09-Jan-2024

Order No.: Date Instructed: 09-Jan-2024

No. of Samples: 42

Turnaround (Wkdays): 7 Results Due: 17-Jan-2024

Date Approved: 17-Jan-2024

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Leachate

Client: IGSL			Che	mtest Jo	b No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ole ID.:	1751890	1751892	1751894	1751895	1751896	1751898	1751900	1751903	1751905	1751907	1751908
Order No.:			Clie	nt Samp	le Ref.:	AA198277	AA193265	AA208550	AA208551	AA208557	AA208542	AA193273	AA193287	AA193281	AA193293	AA191710
		Sample Location:				BH01	BH02A	BH03	BH03	BH04	BH05	BH06	BH07	BH08	BH09	BH10
		Sample Type:				SOIL										
		Top Depth (m):				1.00	1.00	2.00	3.00	1.00	2.00	1.00	2.00	1.00	1.00	2.00
Determinand	Accred.															
Ammonium	U 1220 10:1 mg/l 0.050			0.059	< 0.050	< 0.050	0.052	0.065	0.064	0.14	0.068	0.090	0.070	0.070		
Ammonium	N 1220 10:1 mg/kg 0.10			0.59	0.47	0.66	0.53	0.66	0.68	1.5	0.71	0.98	0.74	0.73		

Results - Leachate

Client: IGSL			Che	mtest Jo	b No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ole ID.:	1751909	1751910	1751912	1751914	1751916	1751917	1751918	1751919	1751920	1751922	1751924
Order No.:			Clie	nt Samp	le Ref.:	AA198276	AA189257	AA198263	AA198270	AA209906	AA209907	AA209908	AA204950	AA204947	AA204944	AA209902
		Sample Location:				BH11	BH12	BH13	BH14	TP01	TP01	TP01	TP02	TP03	TP04	TP05
		Sample Type:				SOIL										
		Top Depth (m):			1.00	1.00	1.00	1.00	0.70	1.50	2.30	0.70	0.50	0.70	0.40	
Determinand	Accred.															
Ammonium	U 1220 10:1 mg/l 0.050			< 0.050	0.051	< 0.050	0.056	0.080	< 0.050	0.12	< 0.050	< 0.050	< 0.050	< 0.050		
Ammonium	N	N 1220 10:1 mg/kg 0.10			0.45	0.98	0.52	0.69	1.1	0.37	1.2	0.23	0.60	0.59	0.15	

Results - Leachate

Client: IGSL		Chemtest Job No.: Chemtest Sample ID.					24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751925	1751926	1751927	1751929	1751930	1751931
Order No.:			Clie	nt Samp	le Ref.:	AA209904	AA209913	AA209909	AA209921	AA209915	AA209918
			Sa	ample Lo	ocation:	TP05	TP06	TP07	TP08	TP10	TP11
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	pth (m):	1.60	1.80	0.60	1.40	1.60	1.30
Determinand	Accred.	SOP	Type	Units	LOD						
Ammonium	U	1220	10:1	mg/l	0.050	0.053	0.076	0.11	0.086	0.081	3.4
Ammonium	N	1220	10:1	mg/kg	0.10	0.60	0.83	1.1	0.94	0.94	36

Project: 25000-1 Site 1 NDFA Social Ho	<u>Jusing</u>												
Client: IGSL			Chei	mtest Jo	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751890	1751891	1751892	1751893	1751894	1751895	1751896	1751897
Order No.:			Clie	nt Samp	le Ref.:	AA198277	AA198278	AA193265	AA193267	AA208550	AA208551	AA208557	AA208558
				ample Lo		BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		1.00	2.00	1.00	3.00	2.00	3.00	1.00	2.00
				Asbest	, ,	DURHAM	2.00	DURHAM	0.00	DURHAM	DURHAM	DURHAM	2.00
Determinand	HWOL Code	Accred.	SOP	Units		DOTATI AVI		DOTALIJ IIVI		DOI (II) (IVI	DOTAL IJ ANI	DOTALIJ AM	
ACM Type	IIIVOL GOGC	U	2192	Omto	N/A	-		-		-	_	-	
						No Asbestos		No Asbestos		No Asbestos	No Asbestos	No Asbestos	
Asbestos Identification		U	2192		N/A	Detected		Detected		Detected	Detected	Detected	
Moisture		N	2030	%	0.020	5.7	16	16	9.8	19	11	19	24
Soil Colour		N	2040	70	N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Soil Coloui		IN	2040		IN/A	DIOWII	DIOWII	DIOWII	DIOWII	DIOWII	DIOWII		DIOWII
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones and Roots	Stones
Soil Texture		N	2040		N/A	Loam	Clay	Loam	Sand	Sand	Sand	Sand	Sand
pH at 20C		М	2010		4.0	[A] 8.2		[A] 9.2		[A] 8.3	[A] 8.1	[A] 8.1	
pH (2.5:1) at 20C		N	2010		4.0		[A] 8.4		[A] 8.9				[A] 8.4
Boron (Hot Water Soluble)		M	2120	mg/kg	0.40	[A] < 0.40		[A] 2.4		[A] 2.7	[A] 0.80	[A] 8.2	
Magnesium (Water Soluble)		N	2120	g/l	0.010		[A] 0.010		[A] < 0.010				[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		[A] 0.095		[A] 0.023				[A] 0.073
Total Sulphur		U	2175	%	0.010		[A] 0.061		[A] < 0.010				[A] 0.073
Sulphur (Elemental)		М	2180	mg/kg	1.0	[A] 4.2	1	[A] 11		[A] 2.4	[A] 150	[A] 31	
Chloride (Water Soluble)		М	2220	g/l	0.010		[A] < 0.010		[A] < 0.010				[A] 0.013
Nitrate (Water Soluble)		N	2220	g/I	0.010		0.067		< 0.010				0.021
Cyanide (Total)		М	2300	mg/kg	0.50	[A] < 0.50		[A] < 0.50		[A] < 0.50	[A] 2.5	[A] < 0.50	
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	[A] 7.5		[A] 7.8		[A] 6.1	[A] 22	[A] 5.1	
Ammonium (Water Soluble)		М	2220	g/I	0.01	p q · · · ·	< 0.01	į ų · · ·	< 0.01	p q avi	F 1	[] J	< 0.01
Sulphate (Total)		U	2430	%	0.010	[A] 1.3		[A] 0.16		[A] 0.57	[A] 3.9	[A] 0.89	
Sulphate (Acid Soluble)		U	2430	%	0.010	[·] · · ·	[A] 0.11	p q arre	[A] 0.027	F 4 0.0.	[]	p q axes	[A] 0.14
Arsenic		M	2455	mg/kg	0.5	84	p (j 0.11)	15	[/1] 0.02/	43	4.9	49	[/1] 0.11
Barium		M	2455	mg/kg	0	650		130		310	85	330	
Cadmium	1	M	2455	mg/kg	0.10	1.8	-	2.2		1.0	3.8	1.3	
Chromium		M	2455	mg/kg	0.10	12		23		27	18	28	
Molybdenum		M	2455	mg/kg	0.5	1.2		3.9		9.5	11	12	
Antimony		N	2455	mg/kg	2.0	19		2.2		7.9	< 2.0	24	
Copper		M	2455	mg/kg	0.50	370		62		210	42	380	
Mercury		M	2455	mg/kg	0.05	0.20		0.22		1.2	0.13	0.50	
Nickel	+	M	2455	mg/kg	0.50	26	 	50		75	54	100	
Lead	+	M	2455		0.50	470	-	89		540	31	1500	
	+	M		mg/kg		1.1		1.2		1.3	1.9	2.0	
Selenium	+	!	2455	mg/kg	0.25								
Zinc		M	2455	mg/kg	0.50	300		140		230	120	390	
Chromium (Trivalent)		N	2490	mg/kg	1.0	12		23		27	18	28	
Chromium (Hexavalent)	110.05.11	N	2490	mg/kg	0.50	< 0.50	ļ	< 0.50		< 0.50	< 0.50	< 0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	

Project: 25000-1 Site 1 NDFA Social	nousing												
Client: IGSL			Che	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	est Sam	ple ID.:	1751890	1751891	1751892	1751893	1751894	1751895	1751896	1751897
Order No.:			Clie	nt Samp	le Ref.:	AA198277	AA198278	AA193265	AA193267	AA208550	AA208551	AA208557	AA208558
			S	ample L	ocation:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		1.00	2.00	1.00	3.00	2.00	3.00	1.00	2.00
					os Lab:	DURHAM	2.00	DURHAM	0.00	DURHAM	DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units		DOT WITH		BOTH IS UVI		BOTH IJ HVI	BOI ti ii tivi	Bortana	
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.25	[A] < 0.05	[A] < 0.05	+
Aliphatic EPH >C10-C12	EH 2D AL #1	M	2690	mg/kg	2.00	[A] < 2.0		[A] < 2.0		[A] < 2.0	[A] < 2.0	[A] < 2.0	+
Aliphatic EPH >C12-C16	EH 2D AL #1	M	2690	mg/kg	1.00	[A] 4.2		[A] \ 2.0	1	[A] < 1.0	[A] 4.3	[A] < 1.0	+
Aliphatic EPH >C12-C16 Aliphatic EPH >C16-C21	EH 2D AL #1	M	2690		2.00	[A] 4.2 [A] < 2.0		[A] < 2.0	1				+
				mg/kg						[A] < 2.0	[A] 3.6	[A] < 2.0	
Aliphatic EPH >C21-C35	EH_2D_AL_#1	M	2690	mg/kg	3.00	[A] 7.1		[A] 15		[A] 7.8	[A] 5.1	[A] 5.7	
Aliphatic EPH >C35-C40	EH_2D_AL_#1	N	2690	mg/kg	10.00	[A] < 10	-	[A] < 10	-	[A] 11	[A] < 10	[A] < 10	
Total Aliphatic EPH >C10-C35	EH_2D_AL_#1	М	2690	mg/kg	5.00	[A] 14		[A] 19		[A] 7.8	[A] 13	[A] 5.7	
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25		[A] < 0.25	[A] < 0.25	[A] < 0.25	
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	
Aromatic EPH >C12-C16	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	
Aromatic EPH >C16-C21	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 5.2		[A] 7.6		[A] 7.3	[A] 6.1	[A] 7.6	
Aromatic EPH >C21-C35	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 5.4		[A] 6.7		[A] 5.6	[A] 4.4	[A] 6.2	
Aromatic EPH >C35-C40	EH 2D AR #1	N	2690	mg/kg	1.00	[A] 3.0		[A] 4.2		[A] 3.0	[A] 2.8	[A] 2.3	
Total Aromatic EPH >C10-C35	EH 2D AR #1	U	2690	mg/kg	5.00	[A] 11		[A] 14		[A] 13	[A] 11	[A] 14	
Total VPH >C5-C10	HS 2D Total	U	2780	mg/kg	0.50	[A] < 0.50		[A] < 0.50		[A] < 0.50	[A] < 0.50	[A] < 0.50	
Total EPH >C10-C35	EH_2D_Total_#	U	2690	mg/kg	10.00	[A] 24		[A] 34		[A] 21	[A] 24	[A] 20	
Total Organic Carbon		М	2625	%	0.20	[A] 4.9		[A] 6.8		[A] 2.5	[A] 1.6	[A] 13	†
Mineral Oil EPH	EH 2D AL #1	N	2670	mg/kg	10	14		19		19	13	< 10	†
Benzene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	
Toluene		M	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0	 	[A] < 1.0	[A] < 1.0	[A] < 1.0	
Ethylbenzene		M	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	 	[A] < 1.0	[A] < 1.0	[A] < 1.0	
m & p-Xylene		M	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	+
o-Xylene		M	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	+
Methyl Tert-Butyl Ether		M	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	+
Naphthalene		M	2800	mg/kg	0.10	< 0.10		< 0.10	1	< 0.10	< 0.10	0.22	+
Acenaphthylene	+	N	2800	mg/kg	0.10	< 0.10	+	< 0.10	 	< 0.10	< 0.10	< 0.10	+
Acenaphthene		M	2800	mg/kg	0.10	< 0.10	+	< 0.10	-	< 0.10	< 0.10	< 0.10	+
Fluorene	_	M	2800		0.10	< 0.10	1	< 0.10	-	< 0.10	< 0.10	< 0.10	+
				mg/kg	_	0.40	1				< 0.10		
Phenanthrene		M	2800	mg/kg	0.10			0.26		0.54		1.4	+
Anthracene		M	2800	mg/kg	0.10	< 0.10	-	< 0.10	-	0.14	< 0.10	0.26	
Fluoranthene		М	2800	mg/kg	0.10	0.58		0.35		0.84	< 0.10	2.2	
Pyrene		М	2800	mg/kg	0.10	0.51		0.35		0.69	< 0.10	1.8	<u> </u>
Benzo[a]anthracene		М	2800	mg/kg	0.10	0.31		0.26		0.46	< 0.10	0.90	
Chrysene		М	2800	mg/kg	0.10	0.25		0.26		0.34	< 0.10	0.94	

r rojooti zoooo r oito r mar / occiur i													
Client: IGSL			Che	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751890	1751891	1751892	1751893	1751894	1751895	1751896	1751897
Order No.:			Clie	nt Samp	le Ref.:	AA198277	AA198278	AA193265	AA193267	AA208550	AA208551	AA208557	AA208558
			Sa	ample L	ocation:	BH01	BH01	BH02A	BH02A	BH03	BH03	BH04	BH04
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	1.00	2.00	1.00	3.00	2.00	3.00	1.00	2.00
				Asbest	os Lab:	DURHAM		DURHAM		DURHAM	DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10		0.44		0.49	< 0.10	1.4	
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10		< 0.10		0.16	< 0.10	0.51	
Benzo[a]pyrene		М		mg/kg		< 0.10		0.28		0.39	< 0.10	1.1	
Indeno(1,2,3-c,d)Pyrene		М		mg/kg		< 0.10		< 0.10		0.24	< 0.10	0.75	
Dibenz(a,h)Anthracene		N		mg/kg		< 0.10		< 0.10		< 0.10	< 0.10	< 0.10	
Benzo[g,h,i]perylene		М		mg/kg		< 0.10		0.24		0.21	< 0.10	0.96	
Coronene		N		mg/kg		< 0.10		< 0.10		< 0.10	< 0.10	< 0.10	
Total Of 17 PAH's Lower		N		mg/kg		2.1		2.4		4.5	< 1.0	12	
PCB 28		U		mg/kg		[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 52		U		mg/kg		[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 101		U		mg/kg		[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 118		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 153		U		mg/kg		[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 138		U		mg/kg		[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 180		U		mg/kg		[A] < 0.010		[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	[A] < 0.05		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	
Total Phenols		M	2920	mg/kg	0.10	< 0.10		< 0.10		< 0.10	< 0.10	< 0.10	

Project: 25000-1 Site 1 NDFA Social He	<u>ousing</u>												
Client: IGSL			Che	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751898	1751899	1751900	1751901	1751902	1751903	1751904	1751905
Order No.:			Clie	nt Samp	le Ref.:	AA208542	AA208543	AA193273	AA193274	AA193277	AA193287	AA193288	AA193281
				ample Lo		BH05	BH05	BH06	BH06	BH06	BH07	BH07	BH08
				Sampl	е Туре:	SOIL							
	1			Top De		2.00	3.00	1.00	2.00	5.00	2.00	3.00	1.00
				Asbest		DURHAM		DURHAM			DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units									
ACM Type		U	2192		N/A	-		-			-		-
Asbestos Identification		U	2192		N/A	No Asbestos		No Asbestos			No Asbestos		No Asbestos
NA : 4				0/	0.000	Detected	44	Detected	40	0.0	Detected	44	Detected
Moisture		N	2030	%	0.020	18	11	25	18	8.8	5.7	11	5.8
Soil Colour		N	2040		N/A	Brown							
Other Material		N	2040		N/A	Stones							
Soil Texture		N	2040		N/A	Sand							
pH at 20C		М	2010		4.0	[A] 8.3		[A] 8.4			[A] 8.2		[A] 8.6
pH (2.5:1) at 20C		N	2010		4.0		[A] 8.2		[A] 8.5	[A] 9.3		[A] 8.0	
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	[A] 2.0		[A] 5.3			[A] < 0.40		[A] < 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010		[A] 0.022		[A] 0.011	[A] < 0.010		[A] 0.019	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		[A] 0.77		[A] 0.13	[A] 0.30		[A] 0.67	
Total Sulphur		U	2175	%	0.010		[A] 0.71		[A] 0.077	[A] 0.37		[A] 0.52	
Sulphur (Elemental)		М	2180	mg/kg	1.0	[A] 20	1 1	[A] 17	1	1 1	[A] 4.4	1 1	[A] 6.6
Chloride (Water Soluble)		М	2220	g/l	0.010		[A] < 0.010		[A] < 0.010	[A] 0.057		[A] < 0.010	
Nitrate (Water Soluble)		N	2220	g/l	0.010		< 0.010		0.043	< 0.010		< 0.010	
Cyanide (Total)		М	2300	mg/kg	0.50	[A] < 0.50		[A] 2.4			[A] < 0.50		[A] < 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	[A] 4.5		[A] 11			[A] 5.3		[A] 5.5
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01		< 0.01	< 0.01		< 0.01	
Sulphate (Total)		U	2430	%	0.010	[A] 0.15		[A] 0.30			[A] 1.2		[A] 1.7
Sulphate (Acid Soluble)		U	2430	%	0.010		[A] 0.19		[A] 0.15	[A] 0.26		[A] 0.58	
Arsenic		М	2455	mg/kg	0.5	13		40			57		73
Barium		М	2455	mg/kg	0	110		220			750		580
Cadmium		М	2455	mg/kg	0.10	2.1		0.75			1.1		1.6
Chromium		М	2455	mg/kg	0.5	20		20			9.7		10
Molybdenum		М	2455	mg/kg	0.5	3.9		9.8			1.2		1.3
Antimony		N	2455	mg/kg	2.0	2.0		5.4			14		18
Copper		М	2455	mg/kg	0.50	33		180			75		170
Mercury		M	2455	mg/kg	0.05	0.11		3.0			0.16		0.25
Nickel		M	2455	mg/kg	0.50	39	İ	78	i	İ	24	i	31
Lead		M	2455	mg/kg	0.50	55		1100			390		460
Selenium		М	2455	mg/kg	0.25	0.95		1.5			0.91		1.0
Zinc		M	2455	mg/kg	0.50	100	i	260	i	i	230	i	400
Chromium (Trivalent)		N	2490	mg/kg	1.0	20	i	20		i	9.7	i	10
Chromium (Hexavalent)	1	N	2490	mg/kg	0.50	< 0.50		< 0.50			< 0.50		< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg	0.05	[A] < 0.05	1	[A] < 0.05		i	[A] < 0.05		[A] < 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05			[A] < 0.05		[A] < 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05		1	[A] < 0.05		[A] < 0.05
mphano vi iir or-ou	TIO_ZD_AL		2100	my/kg	0.00	[7] - 0.00	<u> </u>	[7] - 0.00		<u> </u>	[/-] - 0.00	<u> </u>	[7] \ 0.03

Project: 25000-1 Site 1 NDFA Social	Housing												
Client: IGSL			Che	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(hemte	est Sam	ple ID.:	1751898	1751899	1751900	1751901	1751902	1751903	1751904	1751905
Order No.:			Clie	nt Samp	le Ref.:	AA208542	AA208543	AA193273	AA193274	AA193277	AA193287	AA193288	AA193281
			Sa	ample L	ocation:	BH05	BH05	BH06	BH06	BH06	BH07	BH07	BH08
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		2.00	3.00	1.00	2.00	5.00	2.00	3.00	1.00
				Asbest		DURHAM		DURHAM			DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units		2011111111		201111			201111111		20.00
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05			[A] < 0.05		[A] < 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25			[A] < 0.25		[A] < 0.25
Aliphatic EPH >C10-C12	EH 2D AL #1	M	2690	mg/kg	2.00	[A] < 2.0		[A] < 2.0	 		[A] < 2.0		[A] < 2.0
Aliphatic EPH >C12-C16	EH_2D_AL_#1	M	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0	-		[A] 4.6		[A] < 1.0
Aliphatic EPH >C16-C21	EH 2D AL #1	M	2690	mg/kg	2.00	[A] < 1.0		[A] < 2.0	1		[A] 3.7		[A] < 2.0
Aliphatic EPH >C21-C35	EH_2D_AL_#1	M	2690	mg/kg	3.00	[A] < 2.0 [A] 4.5		[A] 6.3	-		[A] 9.5		[A] 3.2
Aliphatic EPH >C35-C40	EH_2D_AL_#1				_	[A] 4.5 [A] < 10		[A] 0.3	-				
		N	2690	mg/kg	10.00				-		[A] < 10		[A] < 10
Total Aliphatic EPH >C10-C35	EH_2D_AL_#1 HS 2D AR	M	2690	mg/kg	5.00	[A] < 5.0		[A] 6.3	 		[A] 19		[A] < 5.0
Aromatic VPH >C5-C7		U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05			[A] < 0.05		[A] < 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05			[A] < 0.05		[A] < 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05			[A] < 0.05		[A] < 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25			[A] < 0.25		[A] < 0.25
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0			[A] < 1.0		[A] < 1.0
Aromatic EPH >C12-C16	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] 6.7			[A] < 1.0		[A] < 1.0
Aromatic EPH >C16-C21	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 6.7		[A] 82			[A] 6.2		[A] 6.8
Aromatic EPH >C21-C35	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] < 2.0		[A] 160			[A] 5.5		[A] < 2.0
Aromatic EPH >C35-C40	EH_2D_AR_#1	N	2690	mg/kg	1.00	[A] 1.9		[A] 11			[A] 4.2		[A] 3.1
Total Aromatic EPH >C10-C35	EH_2D_AR_#1	U	2690	mg/kg	5.00	[A] 8.4		[A] 250			[A] 12		[A] 8.5
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	[A] < 0.50		[A] < 0.50			[A] < 0.50		[A] < 0.50
Total EPH >C10-C35	EH_2D_Total_# 1	U	2690	mg/kg	10.00	[A] 13		[A] 260			[A] 30		[A] 12
Total Organic Carbon		М	2625	%	0.20	[A] 1.2		[A] 9.8			[A] 4.2		[A] 3.2
Mineral Oil EPH	EH 2D AL #1	N	2670	mg/kg	10	< 10		18			19		< 10
Benzene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0		[A] < 1.0
Toluene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0	1		[A] < 1.0		[A] < 1.0
Ethylbenzene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0		[A] < 1.0
m & p-Xylene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0		[A] < 1.0
o-Xylene		M	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0	 		[A] < 1.0		[A] < 1.0
Methyl Tert-Butyl Ether		M	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0			[A] < 1.0		[A] < 1.0
Naphthalene		M	2800	mg/kg	0.10	< 0.10		1.2			< 0.10		< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10		< 0.10	 		< 0.10		< 0.10
Acenaphthene		M	2800	mg/kg	0.10	< 0.10		2.8	 		< 0.10		< 0.10
Fluorene		M	2800	mg/kg	0.10	< 0.10		2.3			< 0.10		< 0.10
Phenanthrene		M	2800	mg/kg	0.10	< 0.10	 	19	 		< 0.10		< 0.10
Anthracene		M	2800	mg/kg	0.10	< 0.10	 	2.4	 	 	< 0.10		< 0.10
Fluoranthene		M	2800	mg/kg	0.10	< 0.10	 	2.4	 	-	< 0.10		< 0.10
		M	2800	0 0	0.10	< 0.10		18	-		< 0.10		< 0.10
Pyrene			-	mg/kg			 		 				
Benzo[a]anthracene		M	2800	mg/kg	0.10	< 0.10	<u> </u>	7.5	 		< 0.10		< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10		10			< 0.10		< 0.10

Client: IGSL			Che	mtest Jo	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(hemte	st Sam	ple ID.:	1751898	1751899	1751900	1751901	1751902	1751903	1751904	1751905
Order No.:			Clie	nt Samp	le Ref.:	AA208542	AA208543	AA193273	AA193274	AA193277	AA193287	AA193288	AA193281
			Sa	ample Lo	ocation:	BH05	BH05	BH06	BH06	BH06	BH07	BH07	BH08
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	2.00	3.00	1.00	2.00	5.00	2.00	3.00	1.00
				Asbest	os Lab:	DURHAM		DURHAM			DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10		10			< 0.10		< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10		4.5			< 0.10		< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10		9.8			< 0.10		< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10		5.3			< 0.10		< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10		1.1			< 0.10		< 0.10
Benzo[g,h,i]perylene		M	2800	mg/kg	0.10	< 0.10		5.1			< 0.10		< 0.10
Coronene		N	2800	mg/kg	0.10	< 0.10		< 0.10			< 0.10		< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	< 1.0		120			< 1.0		< 1.0
PCB 28		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010			[A] < 0.010		[A] < 0.010
PCB 52		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010			[A] < 0.010		[A] < 0.010
PCB 101		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010			[A] < 0.010		[A] < 0.010
PCB 118		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010			[A] < 0.010		[A] < 0.010
PCB 153		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010			[A] < 0.010		[A] < 0.010
PCB 138		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010			[A] < 0.010		[A] < 0.010
PCB 180		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010			[A] < 0.010		[A] < 0.010
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	[A] < 0.05		[A] < 0.05			[A] < 0.05		[A] < 0.05
Total Phenols		М	2920	mg/kg	0.10	< 0.10		< 0.10			< 0.10		< 0.10

PTOJECT. 25000-1 SITE I NDFA SOCIAL II	<u>ousnig</u>												
Client: IGSL			Che	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751906	1751907	1751908	1751909	1751910	1751911	1751912	1751913
Order No.:			Clie	nt Samp	le Ref.:	AA193282	AA193293	AA191710	AA198276	AA189257	AA189258	AA198263	AA198265
			Sa	ample Lo	ocation:	BH08	BH09	BH10	BH11	BH12	BH12	BH13	BH13
					е Туре:		SOIL						
	+			Top De		2.00	1.00	2.00	1.00	1.00	2.00	1.00	3.00
				Asbest	. ,	2.00	DURHAM	DURHAM	DURHAM	DURHAM	2.00	DURHAM	0.00
Determinand	HWOL Code	Accred.	SOP	Units	LOD		DOMINI	DOMINI	DOMINI	DOMINI		DOMINI	
ACM Type	IIIVOL Oode	U	2192	Office	N/A		-						
ACM Type	+	1	2192		IN/A		No Asbestos	No Asbestos	No Asbestos	No Asbestos		No Asbestos	
Asbestos Identification		U	2192		N/A		Detected	Detected	Detected	Detected		Detected	İ
Moiatura	+	N	2030	%	0.020	9.7		10			9.2	7.0	10
Moisture			2040	70			6.3		7.9	11			
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
pH at 20C		М	2010		4.0		[A] 8.5	[A] 8.4	[A] 8.7	[A] 8.8		[A] 8.6	
pH (2.5:1) at 20C		N	2010		4.0	[A] 9.0					[A] 9.1		[A] 8.2
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40		[A] < 0.40	[A] 1.1	[A] < 0.40	[A] < 0.40		[A] < 0.40	
Magnesium (Water Soluble)		N	2120	g/l	0.010	[A] < 0.010					[A] < 0.010		[A] 0.020
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010						[A] < 0.010		[A] 0.65
Total Sulphur	†	U	2175	%	0.010						[A] 0.024		[A] 0.45
Sulphur (Elemental)		M	2180	mg/kg	1.0	[-1]	[A] 7.7	[A] 37	[A] 3.3	[A] 1.5	[1]	[A] 5.4	[] q o o
Chloride (Water Soluble)		M	2220	g/l	0.010	[A] < 0.010	[·] · · ·	[1] 0.	[, ,] 0.0	[,,]	[A] 0.061	[1,1] 0	[A] 0.020
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010					0.011		< 0.010
Cyanide (Total)		M	2300	mg/kg	0.50	0.0.0	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	0.0	[A] < 0.50	0.0.0
Sulphide (Easily Liberatable)	+	N	2325	mg/kg	0.50		[A] 7.8	[A] 5.7	[A] 5.1	[A] 6.6		[A] 4.2	
Ammonium (Water Soluble)		M	2220	g/l	0.01	< 0.01	[/] / .0	[/] 0./	[/ (] 0.1	[/1] 0.0	< 0.01	[/] +.2	< 0.01
Sulphate (Total)		U	2430	%	0.010	1 0.01	[A] 1.6	[A] 0.30	[A] 0.97	[A] 0.30	1 0.01	[A] 1.1	1 0.01
Sulphate (Acid Soluble)	+	U	2430	%	0.010	[A] 0.12	[A] 1.0	[A] 0.50	[A] 0.51	[A] 0.50	[A] 0.072	[//] 1.1	[A] 0.53
Arsenic		M	2455	mg/kg	0.010	[A] 0.12	90	11	48	35	[A] 0.072	64	[A] 0.00
Barium	+	M	2455	mg/kg	0.5		490	71	340	370		740	
	+	M	2455	0 0	0.10	-	2.5	2.0	1.4	3.6		1.5	
Cadmium Chromium	+	M	2455	mg/kg mg/kg	0.10	 	13	13	9.0	20	-	9.8	
	+	M		0 0		-	1.5	4.7	1.2	5.4		1.1	
Molybdenum	+		2455	mg/kg	0.5	 	20	2.1		9.4	-	1.1	
Antimony		N	2455	mg/kg	2.0				12				
Copper	+	M	2455	mg/kg	0.50	 	110	29 0.05	290	85		260	
Mercury	+	M	2455	mg/kg	0.05	 	0.20		0.10	0.18		0.17	
Nickel	+	M	2455	mg/kg	0.50	 	34	40	23	60		24	
Lead		M	2455	mg/kg	0.50		460	24	300	160		310	
Selenium		M	2455	mg/kg	0.25		1.1	1.0	1.0	1.7		0.87	
Zinc		М	2455	mg/kg	0.50	ļ	410	73	240	310		330	
Chromium (Trivalent)		N	2490	mg/kg	1.0		13	13	9.0	20		9.8	
Chromium (Hexavalent)		N	2490	mg/kg	0.50		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05	<u></u>
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05	1

Project: 25000-1 Site 1 NDFA Social Ho	<u>ousing</u>												
Client: IGSL			Che	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693			Chemte	st Sam	ple ID.:	1751906	1751907	1751908	1751909	1751910	1751911	1751912	1751913
Order No.:	1		Clie	nt Samp	le Ref.:	AA193282	AA193293	AA191710	AA198276	AA189257	AA189258	AA198263	AA198265
			Sa	ample Lo	ocation:	BH08	BH09	BH10	BH11	BH12	BH12	BH13	BH13
					е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		2.00	1.00	2.00	1.00	1.00	2.00	1.00	3.00
					os Lab:	2.00	DURHAM	DURHAM	DURHAM	DURHAM	2.00	DURHAM	0.00
Determinand	HWOL Code	Accred.	SOP	Units			DOMINI	DOMINI	DOMINI	DOMINI		DOMINI	
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05	
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.03		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05	
Aliphatic EPH >C10-C12	EH 2D AL #1	M	2690	mg/kg	2.00		[A] < 0.23	[A] < 0.23	[A] < 0.23	[A] < 0.23		[A] < 0.23	
Aliphatic EPH >C10-C12	EH 2D AL #1	M	2690	mg/kg	1.00		[A] < 2.0 [A] < 1.0	[A] < 2.0 [A] 5.9	[A] 2.1 [A] 4.5	[A] < 2.0 [A] 2.5	-	[A] < 2.0 [A] < 1.0	
Aliphatic EPH >C16-C21	EH_2D_AL_#1	M	2690	mg/kg	2.00		[A] < 2.0	[A] 170	[A] 3.4	[A] < 2.0		[A] < 2.0	1
Aliphatic EPH >C21-C35	EH_2D_AL_#1	M	2690	mg/kg	3.00		[A] < 3.0	[A] 3200	[A] 6.8	[A] < 3.0		[A] < 3.0	ļ
Aliphatic EPH >C35-C40	EH_2D_AL_#1	N	2690	mg/kg	10.00		[A] < 10	[A] 290	[A] < 10	[A] < 10		[A] < 10	
Total Aliphatic EPH >C10-C35	EH_2D_AL_#1	M	2690	mg/kg	5.00		[A] < 5.0	[A] 3400	[A] 17	[A] 5.8		[A] < 5.0	_
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05	
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05	
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05	
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25		[A] < 0.25	[A] < 0.25	[A] < 0.25	[A] < 0.25		[A] < 0.25	
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0	
Aromatic EPH >C12-C16	EH_2D_AR_#1	U	2690	mg/kg	1.00		[A] < 1.0	[A] 8.7	[A] < 1.0	[A] < 1.0		[A] < 1.0	
Aromatic EPH >C16-C21	EH 2D AR #1	U	2690	mg/kg	2.00		[A] 6.7	[A] 150	[A] 2.5	[A] 2.4		[A] 2.7	
Aromatic EPH >C21-C35	EH 2D AR #1	U	2690	mg/kg	2.00		[A] < 2.0	[A] 430	[A] 4.9	[A] 2.8		[A] 2.4	
Aromatic EPH >C35-C40	EH 2D AR #1	N	2690	mg/kg	1.00		[A] 2.5	[A] 11	[A] 3.5	[A] 2.7		[A] 2.6	
Total Aromatic EPH >C10-C35	EH_2D_AR_#1	U	2690	mg/kg	5.00		[A] 8.2	[A] 590	[A] 7.4	[A] 5.2		[A] 5.0	1
Total VPH >C5-C10	HS 2D Total	U	2780	mg/kg	0.50		[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50		[A] < 0.50	
	EH 2D Total #												
Total EPH >C10-C35	1	U	2690	mg/kg	10.00		[A] 10	[A] 4000	[A] 24	[A] 11		[A] < 10	
Total Organic Carbon	<u> </u>	М	2625	%	0.20		[A] 3.0	[A] 3.9	[A] 3.3	[A] 0.97		[A] 4.0	1
Mineral Oil EPH	EH 2D AL #1	N	2670	mg/kg	10		< 10	3700	17	< 10	1	< 10	†
Benzene	LII_ZD_AL_#I	M	2760	µg/kg	1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0	
Toluene		M	2760	μg/kg	1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0	
		M	2760		1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0	
Ethylbenzene		M		μg/kg	1.0			[A] < 1.0					+
m & p-Xylene			2760	μg/kg			[A] < 1.0		[A] < 1.0	[A] < 1.0		[A] < 1.0	
o-Xylene		M	2760	μg/kg	1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0	1
Methyl Tert-Butyl Ether	1	M	2760	μg/kg	1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0	
Naphthalene	+	M	2800	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		0.18	
Acenaphthylene		N	2800	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	
Acenaphthene		M	2800	mg/kg	0.10		< 0.10	2.0	< 0.10	< 0.10		< 0.10	_
Fluorene		М	2800	mg/kg	0.10		< 0.10	1.5	< 0.10	< 0.10		< 0.10	_
Phenanthrene		М	2800	mg/kg	0.10		< 0.10	0.22	< 0.10	< 0.10		0.90	ļ
Anthracene		M	2800	mg/kg	0.10		< 0.10	0.33	< 0.10	< 0.10		0.21	
Fluoranthene		М	2800	mg/kg	0.10		< 0.10	1.4	< 0.10	< 0.10		1.1	
Pyrene		М	2800	mg/kg	0.10		< 0.10	1.2	< 0.10	< 0.10		0.96	
Benzo[a]anthracene		М	2800	mg/kg	0.10		< 0.10	1.5	< 0.10	< 0.10		0.42	
Chrysene		М	2800	mg/kg	0.10		< 0.10	1.7	< 0.10	< 0.10		0.58	
•													

Client: IGSL			Che	ntest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751906	1751907	1751908	1751909	1751910	1751911	1751912	1751913
Order No.:			Clie	nt Samp	le Ref.:	AA193282	AA193293	AA191710	AA198276	AA189257	AA189258	AA198263	AA198265
			Sa	mple Lo	ocation:	BH08	BH09	BH10	BH11	BH12	BH12	BH13	BH13
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	2.00	1.00	2.00	1.00	1.00	2.00	1.00	3.00
				Asbest	os Lab:		DURHAM	DURHAM	DURHAM	DURHAM		DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Benzo[b]fluoranthene		М	2800	mg/kg	0.10		< 0.10	1.8	< 0.10	< 0.10		0.51	
Benzo[k]fluoranthene		М	2800	mg/kg	0.10		< 0.10	1.4	< 0.10	< 0.10		0.22	
Benzo[a]pyrene		М	2800	mg/kg	0.10		< 0.10	1.2	< 0.10	< 0.10		0.30	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10		< 0.10	5.3	< 0.10	< 0.10		0.23	
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10		< 0.10	6.8	< 0.10	< 0.10		0.18	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10		< 0.10	4.4	< 0.10	< 0.10		0.19	
Coronene		N	2800	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0		< 1.0	31	< 1.0	< 1.0		6.0	
PCB 28		U	2815	mg/kg	0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010	
PCB 52		U	2815	mg/kg	0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010	
PCB 101		U	2815	mg/kg	0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010	
PCB 118		U	2815	mg/kg	0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010	
PCB 153		U	2815	mg/kg	0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010	
PCB 138		U	2815	mg/kg	0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010	
PCB 180		U	2815	mg/kg	0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010	
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05	
Total Phenols		М	2920	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	

Project: 25000-1 Site 1 NDFA Social He	<u>Jusing</u>												
Client: IGSL			Che	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	est Sam	ple ID.:	1751914	1751915	1751916	1751917	1751918	1751919	1751920	1751921
Order No.:			Clie	nt Samp	ole Ref.:	AA198270	AA198271	AA209906	AA209907	AA209908	AA204950	AA204947	AA204948
			S	ample L	ocation:	BH14	BH14	TP01	TP01	TP01	TP02	TP03	TP03
					le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					pth (m):	1.00	2.00	0.70	1.50	2.30	0.70	0.50	1.30
	+	 			tos Lab:	DURHAM	2.00	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	1.00
Determinand	HWOL Code	Accred.	SOP			DOMINI		DOMINAN	DOMINI	DOMINI	DOMINAN	DOMINI	
ACM Type	TIVVOL COUE	U Accieu.	2192	Units	N/A								
ACIVI Type		0		1	IN/A	No Asbestos		No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	
Asbestos Identification		U	2192		N/A								
M-:		N.	0000	0/	0.000	Detected	0.7	Detected	Detected	Detected	Detected	Detected	4.4
Moisture		N	2030	%	0.020	8.4	9.7	9.1	20	12	9.1	7.8	14
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones and Roots
Soil Texture		N	2040		N/A	Sand	Sand	Loam	Clay	Clay	Loam	Loam	Clay
pH at 20C		М	2010		4.0	[A] 8.2		[A] 8.8	[A] 8.1	[A] 8.7	[A] 9.2	[A] 11.0	1
pH (2.5:1) at 20C		N	2010		4.0		[A] 8.7	Ī	[A] 8.1	Ī			[A] 8.9
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	[A] 0.47		[A] 1.6	[A] 2.0	[A] 1.3	[A] 1.1	[A] 1.6	
Magnesium (Water Soluble)		N	2120	g/l	0.010		[A] < 0.010		[A] < 0.010				[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		[A] 0.37	1	[A] 0.26		<u> </u>		[A] 0.096
Total Sulphur		U	2175	%	0.010		[A] 0.59	1	[A] 0.14		 		[A] 0.010
Sulphur (Elemental)	 	M	2180	mg/kg	1.0	[A] 36	[/ 1] 0.00	[A] 5.9	[A] 320	[A] 63	[A] 190	[A] 190	[/ 1] 0.010
Chloride (Water Soluble)	+	M	2220	g/l	0.010	[/1]00	[A] 0.021	[/ 1] 0.0	[A] < 0.010	[/ 1] 00	[/1] 100	[/1] 100	[A] < 0.010
Nitrate (Water Soluble)		N	2220	g/l	0.010		< 0.010		< 0.010		 		< 0.010
Cyanide (Total)		M	2300	mg/kg	0.50	[A] < 0.50	V 0.010	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	V 0.010
Sulphide (Easily Liberatable)		N	2325	mg/kg		[A] 64		[A] < 0.30	[A] 8.0	[A] 8.9	[A] \ 0.30	[A] 79	-
Ammonium (Water Soluble)		M	2220		0.01	[/] 04	< 0.01	[/]	< 0.01	[A] 0.9	[/]	[A] 73	< 0.01
,	-	U	2430	g/l %	0.01	CO O [A]	< 0.01	141 0 22		00.010	[0] 4 4	[A] 0 04	< 0.01
Sulphate (Total)					_	[A] 0.93	FA1 0 40	[A] 0.32	[A] 0.36	[A] 0.20	[A] 1.1	[A] 0.91	5410047
Sulphate (Acid Soluble)		U	2430	%	0.010	27	[A] 0.18	22	[A] 0.17	22	40		[A] 0.047
Arsenic		М	2455		0.5	27		20	13	20	48	38	
Barium		М	2455	mg/kg	0	360		160	100	210	730	670	
Cadmium		М	2455			0.71		0.65	1.9	3.1	0.45	0.21	
Chromium		М	2455	mg/kg	0.5	11		16	20	26	41	42	
Molybdenum		М	2455			1.4		4.1	3.4	6.6	16	14	
Antimony		N	2455	mg/kg		22		4.1	2.3	4.0	15	18	
Copper		М	2455			54	<u> </u>	210	43	80	550	460	<u> </u>
Mercury		М	2455	mg/kg	0.05	0.11		0.46	0.15	0.57	0.22	0.06	
Nickel		М	2455	mg/kg	0.50	17		40	40	74	96	88	
Lead		М	2455	mg/kg	0.50	920		390	68	160	700	730	
Selenium		М	2455	mg/kg	0.25	0.83		0.82	0.99	1.3	1.4	1.2	
Zinc		М	2455	mg/kg	0.50	110		150	120	210	220	200	
Chromium (Trivalent)		N	2490	mg/kg	1.0	11		16	20	26	41	42	
Chromium (Hexavalent)		N	2490	mg/kg		< 0.50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	
Aliphatic VPH >C6-C7	HS 2D AL	Ü	2780	mg/kg	0.05	[A] < 0.05	i	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	i
Aliphatic VPH >C7-C8	HS 2D AL	Ü	2780			[A] < 0.05	 	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	

Project: 25000-1 Site 1 NDFA Social Ho	Jusing												
Client: IGSL			Che	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751914	1751915	1751916	1751917	1751918	1751919	1751920	1751921
Order No.:			Clie	nt Samp	le Ref.:	AA198270	AA198271	AA209906	AA209907	AA209908	AA204950	AA204947	AA204948
			Sa	ample Lo	ocation:	BH14	BH14	TP01	TP01	TP01	TP02	TP03	TP03
					е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	,.	1.00	2.00	0.70	1.50	2.30	0.70	0.50	1.30
					os Lab:	DURHAM	2.00	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	_	DOI (II) (IVI		DOTALD AND	BOTATI WI	BOTH II W	Bortinan	DOT UT IN UNIT	
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] 0.30	[A] 0.29	[A] < 0.05	[A] < 0.05	
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25	[A] 0.30	[A] 0.29	[A] < 0.25	[A] < 0.25	
Aliphatic EPH >C10-C12	EH 2D AL #1	M	2690	mg/kg	2.00	[A] < 2.0		[A] 2.1	[A] 91	[A] 50	[A] < 2.0	[A] < 2.0	
Aliphatic EPH >C12-C16	EH 2D AL #1	M	2690	mg/kg	1.00	[A] < 1.0		[A] 13	[A] 610	[A] 210	[A] 1.9	[A] 3.8	
Aliphatic EPH >C16-C21	EH 2D AL #1	M	2690	mg/kg	2.00	[A] < 1.0		[A] 19	[A] 840	[A] 270	[A] 1.9 [A] 2.7	[A] 3.0	1
Aliphatic EPH >C10-C21	EH_2D_AL_#1	M	2690	mg/kg	3.00	[A] < 2.0 [A] < 3.0		[A] 19 [A] 15	[A] 420	[A] 270 [A] 120	[A] 2.7 [A] 3.2	[A] 5.1	-
				0 0									
Aliphatic EPH > C35-C40	EH_2D_AL_#1	N	2690	mg/kg	10.00	[A] < 10		[A] < 10	[A] 34	[A] 15	[A] < 10	[A] < 10	-
Total Aliphatic EPH >C10-C35	EH_2D_AL_#1	M	2690	mg/kg	5.00	[A] < 5.0		[A] 49	[A] 2000	[A] 650	[A] 8.9	[A] 13	-
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	-
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05	_	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	-
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25	[A] < 0.25	[A] < 0.25	[A] < 0.25	[A] < 0.25	
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0	[A] 29	[A] 11	[A] < 1.0	[A] < 1.0	
Aromatic EPH >C12-C16	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0	[A] 340	[A] 130	[A] < 1.0	[A] < 1.0	
Aromatic EPH >C16-C21	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 2.5		[A] 4.8	[A] 440	[A] 130	[A] 11	[A] 2.2	
Aromatic EPH >C21-C35	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] < 2.0		[A] 16	[A] 120	[A] 33	[A] 10	[A] 5.1	
Aromatic EPH >C35-C40	EH_2D_AR_#1	N	2690	mg/kg	1.00	[A] 2.8		[A] 7.4	[A] 10	[A] 6.1	[A] 2.9	[A] 4.1	
Total Aromatic EPH >C10-C35	EH_2D_AR_#1	U	2690	mg/kg	5.00	[A] < 5.0		[A] 21	[A] 930	[A] 300	[A] 22	[A] 7.3	
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	[A] < 0.50		[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	
Total EPH >C10-C35	EH_2D_Total_# 1	U	2690	mg/kg	10.00	[A] < 10		[A] 70	[A] 2900	[A] 950	[A] 30	[A] 21	
Total Organic Carbon		М	2625	%	0.20	[A] 4.9		[A] 9.6	[A] 2.4	[A] 1.9	[A] 4.0	[A] 5.5	
Mineral Oil EPH	EH 2D AL #1	N	2670	mg/kg	10	< 10		49	2000	970	< 10	13	
Benzene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	
Toluene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	
Ethylbenzene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	
m & p-Xylene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	
o-Xylene	Ì	М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	
Methyl Tert-Butyl Ether	İ	М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	
Naphthalene		М	2800	mg/kg	0.10	0.18		0.17	< 0.10	0.14	0.73	0.56	
Acenaphthylene	1	N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	i
Acenaphthene	1	М	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	1.2	0.90	0.91	i
Fluorene	1	M	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	1.1	0.58	0.59	1
Phenanthrene	1	M	2800	mg/kg	0.10	0.38		1.2	0.70	2.1	4.8	5.5	1
Anthracene		M	2800	mg/kg	0.10	< 0.10		0.21	< 0.10	< 0.10	0.44	0.54	
Fluoranthene	1	M	2800	mg/kg	0.10	0.34		1.5	0.53	< 0.10	3.3	4.4	
Pyrene		M	2800	mg/kg	0.10	0.32	 	1.3	0.50	< 0.10	2.6	3.5	1
Benzo[a]anthracene	1	M	2800	mg/kg	0.10	0.32	 	0.74	0.30	< 0.10	1.2	1.7	
		M	2800		0.10	< 0.10		0.74	0.23	< 0.10	1.3	1.7	
Chrysene		IVI	2000	mg/kg	0.10	< 0.10		0.54	0.10	< U. IU	1.3	1.4	

Client: IGSL			Chei	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693			Chemte	st Sam	ple ID.:	1751914	1751915	1751916	1751917	1751918	1751919	1751920	1751921
Order No.:			Clie	nt Samp	le Ref.:	AA198270	AA198271	AA209906	AA209907	AA209908	AA204950	AA204947	AA204948
			Sa	ample L	ocation:	BH14	BH14	TP01	TP01	TP01	TP02	TP03	TP03
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	1.00	2.00	0.70	1.50	2.30	0.70	0.50	1.30
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10		0.92	0.24	< 0.10	1.6	2.3	
Benzo[k]fluoranthene		M	2800	mg/kg	0.10	< 0.10		0.21	< 0.10	< 0.10	0.42	0.53	
Benzo[a]pyrene		M	2800	mg/kg	0.10	< 0.10		0.59	< 0.10	< 0.10	1.0	1.6	
Indeno(1,2,3-c,d)Pyrene		M	2800	mg/kg	0.10	< 0.10		0.51	< 0.10	< 0.10	0.62	0.82	
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo[g,h,i]perylene		M	2800	mg/kg	0.10	< 0.10		0.45	< 0.10	< 0.10	0.60	0.79	
Coronene		N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	1.4		8.3	2.4	4.5	20	25	
PCB 28		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 52		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 101		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 118		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 153		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 138		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	
PCB 180		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	
Total Phenols		M	2920	mg/kg	0.10	< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	

Project: 25000-1 Site 1 NDFA Social H	ousing												
Client: IGSL			Che	mtest Jo	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751922	1751923	1751924	1751925	1751926	1751927	1751928	1751929
Order No.:			Clie	nt Samp	le Ref.:	AA204944	AA204946	AA209902	AA209904	AA209913	AA209909	AA209911	AA209921
			S	ample Lo	cation:	TP04	TP04	TP05	TP05	TP06	TP07	TP07	TP08
	1			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	1			Top Dep		0.70	2.20	0.40	1.60	1.80	0.60	2.40	1.40
	 			Asbest	. ,	DURHAM		DURHAM	DURHAM	DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units									
ACM Type		U	2192		N/A	-		-	-	-	-	1	-
7'						No Asbestos		No Asbestos	No Asbestos	No Asbestos	No Asbestos		No Asbestos
Asbestos Identification		U	2192		N/A	Detected		Detected	Detected	Detected	Detected		Detected
Moisture		N	2030	%	0.020	13	8.3	8.4	15	2.3	12	7.8	8.1
Soil Colour	+	N	2040	,,,	N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Con Colour	+	- 11	2040		14// (Brown	Brown	Blown	Diowii	Brown	Blown	Blown	Brown
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Loam	Clay	Loam	Clay	Loam	Clay	Clay	Clay
pH at 20C		М	2010		4.0	[A] 9.8		[A] 9.0	[A] 8.6	[A] 8.6	[A] 8.6		[A] 8.4
pH (2.5:1) at 20C		N	2010		4.0		[A] 9.2					[A] 8.8	
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	[A] 1.2		[A] 1.7	[A] 1.0	[A] < 0.40	[A] 0.83		[A] < 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010		[A] < 0.010					[A] < 0.010	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		[A] < 0.010					[A] 0.21	
Total Sulphur		U	2175	%	0.010		[A] 0.015					[A] 0.21	
Sulphur (Elemental)		М	2180	mg/kg	1.0	[A] 7.5		[A] 88	[A] 1.4	[A] 3.6	[A] 3.3	1	[A] 1.0
Chloride (Water Soluble)		М	2220	g/l	0.010		[A] < 0.010					[A] < 0.010	
Nitrate (Water Soluble)		N	2220	g/l	0.010		< 0.010					< 0.010	
Cyanide (Total)		М	2300	mg/kg	0.50	[A] < 0.50		[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50		[A] < 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	[A] 6.8		[A] 15	[A] 43	[A] 6.7	[A] 9.7		[A] 6.3
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01					< 0.01	
Sulphate (Total)		U	2430	%	0.010	[A] 0.22		[A] 0.85	[A] 0.087	[A] 0.71	[A] 0.36		[A] 0.10
Sulphate (Acid Soluble)	1	U	2430	%	0.010		[A] 0.027					[A] 0.19	
Arsenic	1	М	2455	mg/kg	0.5	21	1 1	40	17	54	12	1 1	16
Barium	1	М	2455	mg/kg	0	100	1	630	110	340	84		76
Cadmium	1	М	2455	mg/kg	0.10	1.2	1	0.29	2.8	0.99	0.55	†	2.8
Chromium		М	2455	mg/kg	0.5	14		37	25	9.4	5.3		20
Molybdenum		М	2455	mg/kg	0.5	2.9		14	4.4	1.1	1.0		5.4
Antimony		N	2455	mg/kg	2.0	2.2		16	2.1	8.7	2.4		2.4
Copper		М	2455		0.50	75		540	44	110	38		41
Mercury		М	2455	mg/kg	0.05	1.0		1.3	0.14	0.12	0.35		0.08
Nickel		М	2455	mg/kg	0.50	34		110	54	21	11		59
Lead		М	2455	mg/kg	0.50	290		630	52	220	110	i	34
Selenium	1	М	2455	mg/kg	0.25	0.75	1	1.6	1.1	1.1	0.70	i	1.9
Zinc	1	M	2455	mg/kg	0.50	130	i	250	160	190	61	i	130
Chromium (Trivalent)	1	N	2490	mg/kg	1.0	14	<u> </u>	37	25	9.4	5.3	 	20
Chromium (Hexavalent)	 	N	2490	mg/kg	0.50	< 0.50	<u> </u>	< 0.50	< 0.50	< 0.50	< 0.50	 	< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg	0.05	[A] < 0.05	 	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	 	[A] < 0.05
Aliphatic VPH >C6-C7	HS 2D AL	Ü	2780	mg/kg	0.05	[A] < 0.05	<u> </u>	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	 	[A] < 0.05
Aliphatic VPH >C7-C8	HS 2D AL	U	2780	mg/kg	0.05	[A] < 0.05	 	[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05	 	[A] < 0.05
inplicatio vi i i r O i = O O	TIO_ZD_AL		2700	mg/kg	0.00	[/-] \ 0.00		[7] \ 0.00	[7] - 0.00	[/-] \ 0.00	[/-] \ 0.00	I	[7] - 0.00

Project: 25000-1 Site 1 NDFA Social	Housing												
Client: IGSL			Che	mtest Jo	:.oN do	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751922	1751923	1751924	1751925	1751926	1751927	1751928	1751929
Order No.:			Clie	nt Samp	le Ref.:	AA204944	AA204946	AA209902	AA209904	AA209913	AA209909	AA209911	AA209921
			S	ample Lo	ocation:	TP04	TP04	TP05	TP05	TP06	TP07	TP07	TP08
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	0.70	2.20	0.40	1.60	1.80	0.60	2.40	1.40
	+			Asbest	` '	DURHAM		DURHAM	DURHAM	DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units		2 0 1 (1 1) (11)		201412411	2011111111	2011111111	2011111111		201112111
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25	[A] < 0.25	[A] < 0.25	[A] < 0.25		[A] < 0.25
Aliphatic EPH >C10-C12	EH 2D AL #1	M	2690	mg/kg	2.00	[A] < 2.0	 	[A] 20	[A] 2.3	[A] < 2.0	[A] < 2.0		[A] < 2.0
Aliphatic EPH >C12-C16	EH 2D AL #1	M	2690	mg/kg	1.00	[A] 1.9	1	[A] 240	[A] 5.5	[A] 2.4	[A] 2.9		[A] 4.0
Aliphatic EPH >C16-C21	EH 2D AL #1	M	2690	mg/kg	2.00	[A] 1.3		[A] 340	[A] 4.9	[A] < 2.0	[A] 3.1		[A] 4.0
Aliphatic EPH >C21-C35	EH_2D_AL_#1	M	2690	mg/kg	3.00	[A] 4.7		[A] 170	[A] 4.9 [A] 8.3	[A] < 2.0 [A] < 3.0	[A] 4.5		[A] < 3.0
Aliphatic EPH >C35-C40	EH_2D_AL_#1	N	2690		10.00	[A] 4.7 [A] < 10	-	[A] 170		[A] < 3.0 [A] < 10	[A] 4.5 [A] < 10		[A] < 3.0 [A] < 10
Total Aliphatic EPH >C10-C35				mg/kg		[A] < 10	+	[A] 760	[A] < 10 [A] 21		[A] < 10 [A] 12		[A] < 10 [A] 11
	EH_2D_AL_#1	M	2690	mg/kg	5.00					[A] 7.3			
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	[A] < 0.25		[A] < 0.25	[A] < 0.25	[A] < 0.25	[A] < 0.25		[A] < 0.25
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic EPH >C12-C16	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0		[A] 46	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Aromatic EPH >C16-C21	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 14		[A] 96	[A] < 2.0	[A] 2.6	[A] 2.9		[A] 2.4
Aromatic EPH >C21-C35	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 19		[A] 140	[A] 8.0	[A] 2.9	[A] 6.0		[A] 3.8
Aromatic EPH >C35-C40	EH_2D_AR_#1	N	2690	mg/kg	1.00	[A] 3.3		[A] 28	[A] 3.2	[A] 2.4	[A] 2.9		[A] 2.1
Total Aromatic EPH >C10-C35	EH_2D_AR_#1	U	2690	mg/kg	5.00	[A] 33		[A] 280	[A] 9.9	[A] 5.4	[A] 8.9		[A] 6.2
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	[A] < 0.50		[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50		[A] < 0.50
Total EPH >C10-C35	EH_2D_Total_# 1	U	2690	mg/kg	10.00	[A] 43		[A] 1000	[A] 31	[A] 13	[A] 21		[A] 17
Total Organic Carbon		М	2625	%	0.20	[A] 3.2		[A] 13	[A] 0.92	[A] 3.2	[A] 3.1		[A] 0.41
Mineral Oil EPH	EH 2D AL #1	N	2670	mg/kg	10	10		770	21	< 10	12		11
Benzene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Toluene		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Ethylbenzene		М	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
m & p-Xylene		М	2760	μg/kg	1.0	[A] < 1.0	1	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
o-Xylene		М	2760	μg/kg	1.0	[A] < 1.0	1	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0		[A] < 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	1	[A] < 1.0
Naphthalene	1	М	2800	mg/kg	0.10	0.28		0.48	< 0.10	< 0.10	< 0.10	†	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	1	0.19	< 0.10	< 0.10	< 0.10		< 0.10
Acenaphthene		M	2800	mg/kg	0.10	1.1	1	1.0	< 0.10	< 0.10	< 0.10		< 0.10
Fluorene	1	M	2800	mg/kg	0.10	0.87	1	0.98	< 0.10	< 0.10	< 0.10		< 0.10
Phenanthrene		M	2800	mg/kg	0.10	9.4	1	7.9	< 0.10	< 0.10	0.28	1	< 0.10
Anthracene		M	2800	mg/kg	0.10	1.3	 	1.2	< 0.10	< 0.10	< 0.10		< 0.10
Fluoranthene	+	M	2800	mg/kg	0.10	8.9		14	< 0.10	< 0.10	0.19	1	< 0.10
Pyrene	+	M	2800	mg/kg	0.10	7.2	1	11	< 0.10	< 0.10	0.19	1	< 0.10
Benzo[a]anthracene	+	M	2800	mg/kg	0.10	3.3	 	7.2	< 0.10	< 0.10	< 0.12	1	< 0.10
		M	2800		0.10	3.3	 	5.4	< 0.10	< 0.10	< 0.10	1	< 0.10
Chrysene		IVI	2800	mg/kg	0.10	ა.ა		5.4	< U.1U	< U.1U	< 0.10		< U. IU

-													
Client: IGSL			Che	mtest J	ob No.:	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484	24-00484
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1751922	1751923	1751924	1751925	1751926	1751927	1751928	1751929
Order No.:			Clie	nt Samp	le Ref.:	AA204944	AA204946	AA209902	AA209904	AA209913	AA209909	AA209911	AA209921
			Sa	ample L	ocation:	TP04	TP04	TP05	TP05	TP06	TP07	TP07	TP08
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	0.70	2.20	0.40	1.60	1.80	0.60	2.40	1.40
				Asbest	os Lab:	DURHAM		DURHAM	DURHAM	DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	3.7		11	< 0.10	< 0.10	< 0.10		< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	0.92		3.2	< 0.10	< 0.10	< 0.10		< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	2.7		8.4	< 0.10	< 0.10	< 0.10		< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	1.6		5.0	< 0.10	< 0.10	< 0.10		< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	0.29		0.94	< 0.10	< 0.10	< 0.10		< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	1.7		4.9	< 0.10	< 0.10	< 0.10		< 0.10
Coronene		N	2800	mg/kg	0.10	< 0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	47		83	< 1.0	< 1.0	< 1.0		< 1.0
PCB 28		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 52		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 101		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 118		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 153		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 138		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
PCB 180		U	2815	mg/kg	0.010	[A] < 0.010		[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010		[A] < 0.010
Tot PCBs Low (7 Congeners)		N		mg/kg		[A] < 0.05		[A] < 0.05	[A] < 0.05	[A] < 0.05	[A] < 0.05		[A] < 0.05
Total Phenols		M	2920	mg/kg	0.10	< 0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10

Project: 25000-1 Site 1 NDFA Social H	ousing						
Client: IGSL		Chemtest Job No.:				24-00484	24-00484
Quotation No.: Q20-21693		(st Sam	_	1751930	1751931
Order No.:				nt Samp		AA209915	AA209918
			Sa	ample Lo		TP10	TP11
				Sampl	е Туре:	SOIL	SOIL
				Top Dep	oth (m):	1.60	1.30
				Asbest	os Lab:	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
ACM Type		U	2192		N/A	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Moisture		N	2030	%	0.020	14	11
Soil Colour		N	2040		N/A	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones
Soil Texture		N	2040		N/A	Clay	Loam
pH at 20C		М	2010		4.0	[A] 9.1	[A] 8.6
pH (2.5:1) at 20C		N	2010		4.0		
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	[A] 0.64	[A] 2.2
Magnesium (Water Soluble)		N	2120	g/l	0.010		
Sulphate (2:1 Water Soluble) as SO4	1	М	2120	g/l	0.010		
Total Sulphur	1	U	2175	%	0.010		
Sulphur (Elemental)		М	2180	mg/kg	1.0	[A] 11	[A] 59
Chloride (Water Soluble)	1	М	2220	g/l	0.010		` '
Nitrate (Water Soluble)	1	N	2220	g/l	0.010		
Cyanide (Total)	1	М	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	[A] 6.0	[A] 4.6
Ammonium (Water Soluble)		М	2220	g/l	0.01		
Sulphate (Total)		U	2430	%	0.010	[A] 0.18	[A] 0.44
Sulphate (Acid Soluble)		U	2430	%	0.010		
Arsenic		М	2455	mg/kg	0.5	21	16
Barium		М	2455	mg/kg	0	160	66
Cadmium		М	2455	mg/kg	0.10	1.8	1.1
Chromium		М	2455	mg/kg	0.5	16	11
Molybdenum		М	2455	mg/kg	0.5	5.0	3.6
Antimony		N	2455	mg/kg	2.0	3.9	2.4
Copper		М	2455	mg/kg	0.50	100	66
Mercury		М	2455	mg/kg	0.05	0.23	0.47
Nickel		М	2455	mg/kg	0.50	53	31
Lead		М	2455	mg/kg	0.50	130	260
Selenium		М	2455	mg/kg	0.25	1.1	1.8
Zinc		М	2455	mg/kg	0.50	140	110
Chromium (Trivalent)		N	2490	mg/kg	1.0	16	11
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05
Aliphatic VPH >C7-C8	HS 2D AL	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05

Project: 25000-1 Site 1 NDFA Social Ho	using						
Client: IGSL				mtest Jo		24-00484	24-00484
Quotation No.: Q20-21693		(st Sam		1751930	1751931
Order No.:				nt Samp	AA209915	AA209918	
			Sa	ample Lo		TP10	TP11
				Sample	е Туре:	SOIL	SOIL
				Top Dep	` '	1.60	1.30
				Asbest	os Lab:	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	[A] < 0.25	[A] < 0.25
Aliphatic EPH >C10-C12	EH_2D_AL_#1	M	2690	mg/kg	2.00	[A] 2.3	[A] < 2.0
Aliphatic EPH >C12-C16	EH_2D_AL_#1	M	2690	mg/kg	1.00	[A] 4.6	[A] 3.4
Aliphatic EPH >C16-C21	EH_2D_AL_#1	M	2690	mg/kg	2.00	[A] 3.7	[A] 2.4
Aliphatic EPH >C21-C35	EH_2D_AL_#1	М	2690	mg/kg	3.00	[A] 5.6	[A] 4.8
Aliphatic EPH >C35-C40	EH_2D_AL_#1	N	2690	mg/kg	10.00	[A] < 10	[A] < 10
Total Aliphatic EPH >C10-C35	EH_2D_AL_#1	М	2690	mg/kg	5.00	[A] 16	[A] 12
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	[A] < 0.05	[A] < 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	[A] < 0.25	[A] < 0.25
Aromatic EPH >C10-C12	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0	[A] < 1.0
Aromatic EPH >C12-C16	EH_2D_AR_#1	U	2690	mg/kg	1.00	[A] < 1.0	[A] < 1.0
Aromatic EPH >C16-C21	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 2.4	[A] 7.0
Aromatic EPH >C21-C35	EH_2D_AR_#1	U	2690	mg/kg	2.00	[A] 6.2	[A] 22
Aromatic EPH >C35-C40	EH_2D_AR_#1	N	2690	mg/kg	1.00	[A] 3.9	[A] 5.0
Total Aromatic EPH >C10-C35	EH_2D_AR_#1	U	2690	mg/kg	5.00	[A] 8.6	[A] 29
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	[A] < 0.50	[A] < 0.50
Total EPH >C10-C35	EH_2D_Total_# 1	U	2690	mg/kg	10.00	[A] 25	[A] 41
Total Organic Carbon		М	2625	%	0.20	[A] 0.84	[A] 4.2
Mineral Oil EPH	EH_2D_AL_#1	N	2670	mg/kg	10	16	12
Benzene		М	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0
Toluene		М	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene		М	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene		М	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0
o-Xylene		М	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0
Naphthalene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	< 0.10
Acenaphthene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10	< 0.10

Client: IGSL			Chemtest Job No.:				24-00484
Quotation No.: Q20-21693		(Chemtest Sample ID.:				1751931
Order No.:			Clie	nt Samp	le Ref.:	AA209915	AA209918
			Sa	ample Lo	ocation:	TP10	TP11
				Sampl	е Туре:	SOIL	SOIL
				Top Dep	oth (m):	1.60	1.30
				Asbest	os Lab:	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10
Coronene		N	2800	mg/kg	0.10	< 0.10	< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	< 1.0	< 1.0
PCB 28		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010
PCB 52		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010
PCB 101		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010
PCB 118		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010
PCB 153		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010
PCB 138		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010
PCB 180		U	2815	mg/kg	0.010	[A] < 0.010	[A] < 0.010
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	[A] < 0.05	[A] < 0.05
Total Phenols		M	2920	mg/kg	0.10	< 0.10	< 0.10

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					l andfill V	Vaste Acceptanc	o Critoria
Chemtest Sample ID:	1751890					Landini	Limits	e Officeria
Sample Ref:	AA198277						Stable, Non-	
Sample ID:	AA130211						reactive	
Sample Location:	BH01						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.00					Landfill	hazardous	Landfill
Sampling Date:						Lanuilli	Landfill	Lanumi
Determinand	SOP	HWOL Code	Accred.	Units			Lanunn	
		HWOL Code			[41.4.0	0	-	0
Total Organic Carbon	2625		M	%	[A] 4.9	3	5	6
Loss On Ignition	2610		M	%	0.76			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate		for compliance	~
				mg/l	mg/kg		S EN 12457 at L/	
Arsenic	1455		U	0.0012	0.012	0.5	2	25
Barium	1455		U	0.021	0.21	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0035	0.035	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0019	0.019	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0013	0.013	0.06	0.7	5
Selenium	1455		U	0.0010	0.010	0.1	0.5	7
Zinc	1455		U	0.046	0.46	4	50	200
Chloride	1220		U	1.7	17	800	15000	25000
Fluoride	1220		U	0.13	1.3	10	150	500
Sulphate	1220		U	260	2600	1000	20000	50000
Total Dissolved Solids	1020	1	N	320	3200	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.4	< 50	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	5.7					

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Soc	iai riousing							
Chemtest Job No:	24-00484			Landfill \	Vaste Acceptanc	e Criteria		
Chemtest Sample ID:	1751892			Limits				
Sample Ref:	AA193265						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH02A						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 6.8	3	5	6
Loss On Ignition	2610		М	%	8.2			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH 1D Total CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		9.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
_				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.012	0.12	0.5	2	25
Barium	1455		U	0.005	0.051	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0009	0.0087	0.5	10	70
Copper	1455		U	0.0036	0.036	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0061	0.061	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0043	0.043	0.06	0.7	5
Selenium	1455		U	0.0011	0.011	0.1	0.5	7
Zinc	1455		U	0.014	0.14	4	50	200
Chloride	1220		U	3.2	32	800	15000	25000
Fluoride	1220		U	0.62	6.2	10	150	500
Sulphate	1220		U	41	410	1000	20000	50000
Total Dissolved Solids	1020		N	110	1100	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.9	59	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	16					

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social Ho	Juonig							
Chemtest Job No:	24-00484					Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751894						Limits	
Sample Ref:	AA208550						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH03						hazardous	Hazardous
Top Depth(m):	2.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	[A] 2.5	3	5	6
Loss On Ignition	2610		M	%	3.9			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.3		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0006	0.0061	0.5	2	25
Barium	1455		U	0.007	0.074	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0012	0.012	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0025	0.025	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	0.0007	0.0072	0.1	0.5	7
Zinc	1455		U	0.022	0.22	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.18	1.8	10	150	500
Sulphate	1220		U	17	170	1000	20000	50000
Total Dissolved Solids	1020		N	65	650	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	6.5	65	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	19					

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social Ho	Juonig								
Chemtest Job No:	24-00484	<u> </u>				Landfill Waste Acceptance Criteria			
Chemtest Sample ID:	1751895						Limits		
Sample Ref:	AA208551						Stable, Non-		
Sample ID:							reactive		
Sample Location:	BH03						hazardous	Hazardous	
Top Depth(m):	3.00					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:							Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		М	%	[A] 1.6	3	5	6	
Loss On Ignition	2610		М	%	1.6			10	
Total BTEX	2760		М	mg/kg	[A] < 0.010	6			
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500			
Total (of 17) PAHs						100			
pH at 20C	2010		М		8.1		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.013		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg	
Arsenic	1455		U	0.0003	0.0026	0.5	2	25	
Barium	1455		U	0.032	0.32	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	< 0.0005	< 0.0050	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.014	0.14	0.5	10	30	
Nickel	1455		U	0.0070	0.070	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	0.0007	0.0071	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.010	0.10	4	50	200	
Chloride	1220		U	1.2	12	800	15000	25000	
Fluoride	1220		U	0.38	3.8	10	150	500	
Sulphate	1220		U	190	1900	1000	20000	50000	
Total Dissolved Solids	1020		N	290	2800	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	4.1	< 50	500	800	1000	

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	11					

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					L andfill V	Vaste Acceptanc	e Criteria		
Chemtest Sample ID:	1751896					Landini	Limits	0 011101114		
Sample Ref:	AA208557						Stable, Non-			
Sample ID:	7.0.120000.						reactive			
Sample Location:	BH04						hazardous	Hazardous		
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste		
Bottom Depth(m):						Landfill	hazardous	Landfill		
Sampling Date:							Landfill			
Determinand	SOP	HWOL Code	Accred.	Units						
Total Organic Carbon	2625		М	%	[A] 13	3	5	6		
Loss On Ignition	2610	1	М	%	12			10		
Total BTEX	2760		M	mg/kg	[A] < 0.010	6				
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1				
TPH Total WAC	2670	EH 1D Total CU	M	mg/kg	[A] < 10	500				
Total (of 17) PAHs						100				
pH at 20C	2010		M		8.1		>6			
Acid Neutralisation Capacity	2015		N	mol/kg	0.015		To evaluate	To evaluate		
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	nce leaching test		
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg		
Arsenic	1455		U	0.0007	0.0070	0.5	2	25		
Barium	1455		U	0.023	0.23	20	100	300		
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5		
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70		
Copper	1455		U	0.0022	0.022	2	50	100		
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2		
Molybdenum	1455		U	0.013	0.13	0.5	10	30		
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40		
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50		
Antimony	1455		U	0.0034	0.034	0.06	0.7	5		
Selenium	1455		U	0.0017	0.017	0.1	0.5	7		
Zinc	1455		U	0.017	0.17	4	50	200		
Chloride	1220		U	2.6	26	800	15000	25000		
Fluoride	1220		U	0.26	2.6	10	150	500		
Sulphate	1220		U	340	3400	1000	20000	50000		
Total Dissolved Solids	1020		N	440	4400	4000	60000	100000		
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-		
Dissolved Organic Carbon	1610		U	4.3	< 50	500	800	1000		

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	19				

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social Ho								
Chemtest Job No:	24-00484					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751898						Limits	
Sample Ref:	AA208542						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH05						hazardous	Hazardous
Top Depth(m):	2.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	[A] 1.2	3	5	6
Loss On Ignition	2610		M	%	3.6			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH 1D Total CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.3		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.014		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
	mg/l			mg/kg	using B	S 10 I/kg		
Arsenic	1455		U	0.0005	0.0052	0.5	2	25
Barium	1455		U	0.006	0.062	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0012	0.012	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0051	0.051	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	0.0009	0.0086	0.1	0.5	7
Zinc	1455		U	0.022	0.22	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.27	2.7	10	150	500
Sulphate	1220		U	26	260	1000	20000	50000
Total Dissolved Solids	1020		N	100	990	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	6.6	66	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	18					

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751900						Limits	
Sample Ref:	AA193273						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH06						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	[A] 9.8	3	5	6
Loss On Ignition	2610		M	%	21			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] 200	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0070		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0048	0.047	0.5	2	25
Barium	1455		U	0.019	0.19	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0008	0.0080	0.5	10	70
Copper	1455		U	0.0048	0.048	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0089	0.089	0.5	10	30
Nickel	1455		U	0.0026	0.026	0.4	10	40
Lead	1455		U	0.0093	0.092	0.5	10	50
Antimony	1455		U	0.0024	0.024	0.06	0.7	5
Selenium	1455		U	0.0010	0.010	0.1	0.5	7
Zinc	1455		U	0.034	0.34	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.33	3.3	10	150	500
Sulphate	1220		U	18	180	1000	20000	50000
Total Dissolved Solids	1020		N	86	850	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.8	98	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	25				

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social Ho	Juoning							
Chemtest Job No:	24-00484					Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751903						Limits	
Sample Ref:	AA193287						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH07						hazardous	Hazardous
Top Depth(m):	2.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		М	%	[A] 4.2	3	5	6
Loss On Ignition	2610		M	%	0.92			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0090		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.0003	0.0032	0.5	2	25
Barium	1455		U	0.023	0.23	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0006	0.0063	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0016	0.016	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.013	0.13	4	50	200
Chloride	1220		U	7.2	72	800	15000	25000
Fluoride	1220		U	0.19	1.9	10	150	500
Sulphate	1220		U	240	2400	1000	20000	50000
Total Dissolved Solids	1020		N	310	3100	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.9	< 50	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	5.7						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social He								
Chemtest Job No:	24-00484					Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751905						Limits	
Sample Ref:	AA193281						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH08						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	[A] 3.2	3	5	6
Loss On Ignition	2610		M	%	0.84			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.6		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.0027	0.027	0.5	2	25
Barium	1455		U	0.024	0.24	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0011	0.011	0.5	10	70
Copper	1455		U	0.0018	0.018	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0011	0.011	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0014	0.014	0.06	0.7	5
Selenium	1455		U	0.0014	0.014	0.1	0.5	7
Zinc	1455		U	0.014	0.14	4	50	200
Chloride	1220		U	1.1	11	800	15000	25000
Fluoride	1220		U	0.095	< 1.0	10	150	500
Sulphate	1220		U	240	2400	1000	20000	50000
Total Dissolved Solids	1020		N	300	3000	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.7	< 50	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	5.8						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social Ho	, a.o <u>s</u>							
Chemtest Job No:	24-00484					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751907						Limits	
Sample Ref:	AA193293						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH09						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	[A] 3.0	3	5	6
Loss On Ignition	2610		M	%	1.4			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.5		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.013		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
		1		mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.0003	0.0029	0.5	2	25
Barium	1455		U	0.018	0.18	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	< 0.0005	< 0.0050	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0013	0.013	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0006	0.0064	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.013	0.13	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.12	1.2	10	150	500
Sulphate	1220		U	350	3500	1000	20000	50000
Total Dissolved Solids	1020		N	410	4000	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.0	< 50	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	6.3						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social He	Juonig							
Chemtest Job No:	24-00484					Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751908						Limits	
Sample Ref:	AA191710						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH10						hazardous	Hazardous
Top Depth(m):	2.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	[A] 3.9	3	5	6
Loss On Ignition	2610		М	%	1.3			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH 1D Total CU	M	mg/kg	[A] 8100	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.013		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.0004	0.0040	0.5	2	25
Barium	1455		U	0.031	0.31	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0009	0.0091	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.024	0.24	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0037	0.037	0.06	0.7	5
Selenium	1455		U	0.0012	0.012	0.1	0.5	7
Zinc	1455		U	0.010	0.10	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.24	2.4	10	150	500
Sulphate	1220		U	47	470	1000	20000	50000
Total Dissolved Solids	1020		N	140	1400	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	8.0	80	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	10						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Soc	**							
Chemtest Job No:	24-00484					Landfill V	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751909						Limits	
Sample Ref:	AA198276						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH11						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 3.3	3	5	6
Loss On Ignition	2610		M	%	0.59		-	10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500	-	
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.7		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.015		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0012	0.012	0.5	2	25
Barium	1455		U	0.021	0.21	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0015	0.015	0.5	10	70
Copper	1455		U	0.023	0.23	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0065	0.065	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0009	0.0093	0.06	0.7	5
Selenium	1455		U	0.0009	0.0085	0.1	0.5	7
Zinc	1455		U	< 0.003	< 0.025	4	50	200
Chloride	1220		U	2.4	24	800	15000	25000
Fluoride	1220		U	0.14	1.4	10	150	500
Sulphate	1220		U	290	2900	1000	20000	50000
Total Dissolved Solids	1020		N	410	4100	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		IJ	4.8	< 50	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	7.9						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751910						Limits	
Sample Ref:	AA189257						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH12						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 0.97	3	5	6
Loss On Ignition	2610		M	%	1.7			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.8		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.014		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0008	0.0083	0.5	2	25
Barium	1455		U	0.018	0.18	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0015	0.015	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.010	0.10	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0008	0.0080	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.011	0.11	4	50	200
Chloride	1220		U	1.2	12	800	15000	25000
Fluoride	1220		U	0.31	3.1	10	150	500
Sulphate	1220		U	19	190	1000	20000	50000
Total Dissolved Solids	1020		N	83	830	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.4	94	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	11						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1751912						Limits	
Sample Ref:	AA198263						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH13						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 4.0	3	5	6
Loss On Ignition	2610		M	%	0.87			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.6		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		S 10 I/kg
Arsenic	1455		U	0.0006	0.0055	0.5	2	25
Barium	1455		U	0.021	0.21	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0028	0.028	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0018	0.018	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0011	0.011	0.06	0.7	5
Selenium	1455		U	0.0006	0.0060	0.1	0.5	7
Zinc	1455		U	0.014	0.14	4	50	200
Chloride	1220		U	1.2	12	800	15000	25000
Fluoride	1220		U	0.12	1.2	10	150	500
Sulphate	1220		U	230	2300	1000	20000	50000
Total Dissolved Solids	1020		N	300	3000	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.2	< 50	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	7.0						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social He	odomg							
Chemtest Job No:	24-00484					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751914						Limits	
Sample Ref:	AA198270						Stable, Non-	
Sample ID:							reactive	
Sample Location:	BH14						hazardous	Hazardous
Top Depth(m):	1.00					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	[A] 4.9	3	5	6
Loss On Ignition	2610		M	%	2.8			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH 1D Total CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0080		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.0021	0.021	0.5	2	25
Barium	1455		U	0.032	0.32	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0017	0.017	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0029	0.029	0.5	10	30
Nickel	1455		U	0.0006	0.0057	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0018	0.018	0.06	0.7	5
Selenium	1455		U	0.0025	0.025	0.1	0.5	7
Zinc	1455		U	0.012	0.12	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.12	1.2	10	150	500
Sulphate	1220		U	52	520	1000	20000	50000
Total Dissolved Solids	1020		N	110	1100	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.1	51	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	8.4						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751916						Limits	
Sample Ref:	AA209906						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP01						hazardous	Hazardous
Top Depth(m):	0.70					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 9.6	3	5	6
Loss On Ignition	2610		M	%	11			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.8		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.016		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0078	0.078	0.5	2	25
Barium	1455		U	0.007	0.067	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0089	0.089	0.5	10	70
Copper	1455		U	0.0074	0.074	2	50	100
Mercury	1455		U	0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0094	0.094	0.5	10	30
Nickel	1455		U	0.0008	0.0082	0.4	10	40
Lead	1455		U	0.0041	0.041	0.5	10	50
Antimony	1455		U	0.0047	0.047	0.06	0.7	5
Selenium	1455		U	0.0019	0.019	0.1	0.5	7
Zinc	1455		U	0.013	0.13	4	50	200
Chloride	1220		U	2.7	27	800	15000	25000
Fluoride	1220		U	0.25	2.5	10	150	500
Sulphate	1220		U	34	340	1000	20000	50000
Total Dissolved Solids	1020		N	100	990	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.9	99	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	9.1						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Socia	ai riousing							
Chemtest Job No:	24-00484					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751917						Limits	
Sample Ref:	AA209907						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP01						hazardous	Hazardous
Top Depth(m):	1.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 2.4	3	5	6
Loss On Ignition	2610		М	%	5.8			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH 1D Total CU	М	mg/kg	[A] 1500	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.1		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.014		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg		S 10 I/kg	
Arsenic	1455		U	0.0014	0.014	0.5	2	25
Barium	1455		U	0.010	0.10	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0025	0.025	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0055	0.054	0.5	10	30
Nickel	1455		U	0.0023	0.023	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0023	0.023	0.06	0.7	5
Selenium	1455		U	0.0006	0.0060	0.1	0.5	7
Zinc	1455		U	0.034	0.34	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.10	1.0	10	150	500
Sulphate	1220		U	31	310	1000	20000	50000
Total Dissolved Solids	1020		N	73	730	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	
Dissolved Organic Carbon	1610		U	9.7	97	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	20						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751918						Limits	
Sample Ref:	AA209908						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP01						hazardous	Hazardous
Top Depth(m):	2.30					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	[A] 1.9	3	5	6
Loss On Ignition	2610		M	%	31			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] 360	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.7		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.013	-	To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0025	0.025	0.5	2	25
Barium	1455		U	0.043	0.43	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0033	0.033	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.024	0.24	0.5	10	30
Nickel	1455		U	0.0035	0.035	0.4	10	40
Lead	1455		U	0.0007	0.0067	0.5	10	50
Antimony	1455		U	0.0045	0.045	0.06	0.7	5
Selenium	1455		U	0.0009	0.0090	0.1	0.5	7
Zinc	1455		U	0.013	0.13	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.20	2.0	10	150	500
Sulphate	1220		U	11	110	1000	20000	50000
Total Dissolved Solids	1020		N	81	810	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.9	99	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	12						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social	riousing							
Chemtest Job No:	24-00484					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751919						Limits	
Sample Ref:	AA204950						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP02						hazardous	Hazardous
Top Depth(m):	0.70					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 4.0	3	5	6
Loss On Ignition	2610		M	%	35			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] 200	500	-	
Total (of 17) PAHs						100		
pH at 20C	2010		M		9.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0091	0.091	0.5	2	25
Barium	1455		U	0.010	0.10	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0020	0.020	0.5	10	70
Copper	1455		U	0.0033	0.034	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0077	0.077	0.5	10	30
Nickel	1455		U	0.0014	0.014	0.4	10	40
Lead	1455		U	0.0014	0.014	0.5	10	50
Antimony	1455		U	0.011	0.10	0.06	0.7	5
Selenium	1455		U	0.0018	0.018	0.1	0.5	7
Zinc	1455		U	0.014	0.14	4	50	200
Chloride	1220		U	2.5	25	800	15000	25000
Fluoride	1220		U	0.45	4.5	10	150	500
Sulphate	1220		U	45	450	1000	20000	50000
Total Dissolved Solids	1020		N	140	1400	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.4	54	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	9.1						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751920						Limits	
Sample Ref:	AA204947						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP03						hazardous	Hazardous
Top Depth(m):	0.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 5.5	3	5	6
Loss On Ignition	2610		M	%	5.8			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		11.0		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0090		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		S 10 I/kg
Arsenic	1455		U	0.028	0.28	0.5	2	25
Barium	1455		U	0.006	0.062	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0010	0.0096	0.5	10	70
Copper	1455		U	0.0060	0.060	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.010	0.10	0.5	10	30
Nickel	1455		U	0.0006	0.0065	0.4	10	40
Lead	1455		U	0.0040	0.040	0.5	10	50
Antimony	1455		U	0.011	0.10	0.06	0.7	5
Selenium	1455		U	0.0017	0.017	0.1	0.5	7
Zinc	1455		U	0.009	0.087	4	50	200
Chloride	1220		U	2.7	27	800	15000	25000
Fluoride	1220		U	0.44	4.4	10	150	500
Sulphate	1220		U	25	250	1000	20000	50000
Total Dissolved Solids	1020		N	87	870	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	7.0	70	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	7.8						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social He	odomy							
Chemtest Job No:	24-00484					Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751922						Limits	
Sample Ref:	AA204944						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP04						hazardous	Hazardous
Top Depth(m):	0.70					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	[A] 3.2	3	5	6
Loss On Ignition	2610		M	%	5.4			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815	1	M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH 1D Total CU	M	mg/kg	[A] 54	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		9.8		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.015		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0063	0.063	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0035	0.035	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0045	0.045	0.5	10	30
Nickel	1455		U	0.0010	0.010	0.4	10	40
Lead	1455		U	0.0041	0.041	0.5	10	50
Antimony	1455		U	0.0017	0.017	0.06	0.7	5
Selenium	1455		U	0.0013	0.013	0.1	0.5	7
Zinc	1455		U	0.012	0.12	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.12	1.2	10	150	500
Sulphate	1220		U	3.6	36	1000	20000	50000
Total Dissolved Solids	1020		N	55	550	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.3	93	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	13						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1751924						Limits	
Sample Ref:	AA209902						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP05						hazardous	Hazardous
Top Depth(m):	0.40					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 13	3	5	6
Loss On Ignition	2610		M	%	8.8			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] 1500	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		9.0		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0078	0.078	0.5	2	25
Barium	1455		U	0.027	0.27	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0008	0.0079	0.5	10	70
Copper	1455		U	0.0064	0.064	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.017	0.17	0.5	10	30
Nickel	1455		U	0.0024	0.024	0.4	10	40
Lead	1455		U	0.0028	0.028	0.5	10	50
Antimony	1455		U	0.024	0.23	0.06	0.7	5
Selenium	1455		U	0.0026	0.026	0.1	0.5	7
Zinc	1455		U	0.014	0.14	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.21	2.1	10	150	500
Sulphate	1220		U	45	450	1000	20000	50000
Total Dissolved Solids	1020		N	58	580	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	7.1	71	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	8.4						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

	ciai Housing				_			
Chemtest Job No:	24-00484					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1751925						Limits	
Sample Ref:	AA209904						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP05						hazardous	Hazardous
Top Depth(m):	1.60					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 0.92	3	5	6
Loss On Ignition	2610		M	%	2.8			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500	-	
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.6		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.012		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/k		
Arsenic	1455		U	0.0008	0.0081	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0010	0.011	0.5	10	70
Copper	1455		U	0.0017	0.017	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0051	0.051	0.5	10	30
Nickel	1455		U	0.0009	0.0088	0.4	10	40
Lead	1455		U	0.0005	0.0053	0.5	10	50
Antimony	1455		U	0.0006	0.0062	0.06	0.7	5
Selenium	1455		U	0.0010	0.0095	0.1	0.5	7
Zinc	1455		U	0.034	0.34	4	50	200
Chloride	1220		U	9.3	93	800	15000	25000
Fluoride	1220		U	0.23	2.3	10	150	500
Sulphate	1220		U	5.5	55	1000	20000	50000
Total Dissolved Solids	1020		N	64	640	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	7.5	75	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	15						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Project: 25000-1 Site 1 NDFA Social Ho	Juonig							
Chemtest Job No:	24-00484					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751926						Limits	
Sample Ref:	AA209913						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP06						hazardous	Hazardous
Top Depth(m):	1.80					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		М	%	[A] 3.2	3	5	6
Loss On Ignition	2610		М	%	0.69			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	М	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.6		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.017		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455		U	0.0016	0.016	0.5	2	25
Barium	1455		U	0.020	0.20	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0023	0.024	0.5	10	70
Copper	1455		U	0.0014	0.014	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0032	0.032	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0011	0.011	0.06	0.7	5
Selenium	1455		U	0.0011	0.011	0.1	0.5	7
Zinc	1455		U	0.015	0.15	4	50	200
Chloride	1220		U	1.2	12	800	15000	25000
Fluoride	1220		U	0.13	1.3	10	150	500
Sulphate	1220		U	240	2400	1000	20000	50000
Total Dissolved Solids	1020		N	300	3000	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.2	52	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	2.3						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					l andfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1751927					Lunami	Limits	c ontena
Sample Ref:	AA209909						Stable, Non-	
Sample ID:	701200000						reactive	
Sample Location:	TP07						hazardous	Hazardous
Top Depth(m):	0.60					Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.00					Landfill	hazardous	Landfill
Sampling Date:						Lunami	Landfill	Lanami
Determinand	SOP	HWOL Code	Accred.	Units			Lunum	
Total Organic Carbon	2625	HWOL Gode	M	%	[A] 3.1	3	5	6
Loss On Ignition	2610	1	M	%	2.0			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH 1D Total CU	M	mg/kg	[A] 30	500		
Total (of 17) PAHs	20.0	2.120		g/g	[, i, o o	100		
pH at 20C	2010		М		8.6		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.014		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	i i	U	0.0013	0.013	0.5	2	25
Barium	1455		U	0.022	0.22	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0030	0.030	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.010	0.10	0.5	10	30
Nickel	1455		U	0.0021	0.021	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0015	0.015	0.06	0.7	5
Selenium	1455		U	0.0017	0.017	0.1	0.5	7
Zinc	1455		U	0.017	0.17	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.19	1.9	10	150	500
Sulphate	1220		U	730	7300	1000	20000	50000
Total Dissolved Solids	1020		N	750	7500	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.2	52	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	12						

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1751929						Limits	
Sample Ref:	AA209921						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP08						hazardous	Hazardous
Top Depth(m):	1.40					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	[A] 0.41	3	5	6
Loss On Ignition	2610		M	%	1.6			10
Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] < 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0070		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0003	0.0028	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0006	0.0065	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0061	0.061	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.009	0.085	4	50	200
Chloride	1220		U	2.6	26	800	15000	25000
Fluoride	1220		U	0.14	1.4	10	150	500
Sulphate	1220		U	9.6	96	1000	20000	50000
Total Dissolved Solids	1020		N	53	530	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.9	59	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	8.1				

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemiest Job No: 24-00484	Project: 25000-1 Site 1 NDFA Soci	***							
Sample Nef:	Chemtest Job No:						Landfill \	Vaste Acceptanc	e Criteria
Sample ID:	· ·							Limits	
Sample Location: TP10 1.60	Sample Ref:	AA209915						Stable, Non-	
Top Depth(m): 1.60 Software	Sample ID:							reactive	
Bottom Depth(m): Sampling Date:	Sample Location:	TP10						hazardous	Hazardous
Sampling Date: Determinand SOP HWOL Code Accred. Units Carbon 2625 M M % [A] 0.84 3 5 6 6 Carbon Carbon 2625 M M % 4.4 10 Total Organic Carbon 2626 M M % 4.4 10 Total ETEX 2760 M mg/kg [A] < 0.010 6 10 Total PCBs (7 Congeners) 2815 EH 1D Total CU M mg/kg (A] < 10 500 10 Total PCBs (7 Congeners) 2815 EH 1D Total CU M mg/kg (A] < 10 500 10 Total (7 PM S) (A)	Top Depth(m):	1.60					Inert Waste	waste in non-	Waste
Determinand SOP	Bottom Depth(m):						Landfill	hazardous	Landfill
Total Organic Carbon 2625	Sampling Date:							Landfill	
Loss On Ignition 2610	Determinand	SOP	HWOL Code	Accred.	Units				
Total BTEX 2760	Total Organic Carbon	2625		M	%	[A] 0.84	3	5	6
Total PCBs (7 Congeners) 2815	Loss On Ignition	2610		M	%	4.4			10
TPH Total WAC	Total BTEX	2760		M	mg/kg	[A] < 0.010	6		
Total (of 17) PAHs	Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
PH at 20C 2010 M M M Mol/kg 0.0060 To evaluate To		2670	EH_1D_Total_CU	M		[A] < 10	500		
Acid Neutralisation Capacity 2015 N mol/kg 0.0060 To evaluate To evaluate	Total (of 17) PAHs						100		
Comparison	pH at 20C	2010		M		9.1		>6	
Arsenic 1455 U 0.0044 0.043 0.5 2 25 Barium 1455 U <0.005	Acid Neutralisation Capacity	2015		N	mol/kg	0.0060		To evaluate	To evaluate
Arsenic 1455 U 0.0044 0.043 0.5 2 25 Barium 1455 U < 0.005	Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
Barium					mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Cadmium 1455 U < 0.00011 < 0.0011 0.04 1 5 Chromium 1455 U 0.0008 0.0078 0.5 10 70 Copper 1455 U 0.0035 0.035 2 50 100 Mercury 1455 U < 0.00005	Arsenic	1455		U	0.0044	0.043	0.5	2	25
Chromium 1455 U 0.0008 0.0078 0.5 10 70 Copper 1455 U 0.0035 0.035 2 50 100 Mercury 1455 U <0.00005	Barium	1455		U	< 0.005	< 0.050	20	100	300
Copper 1455 U 0.0035 0.035 2 50 100 Mercury 1455 U <0.00005	Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Mercury 1455 U < 0.00005 < 0.00050 0.01 0.2 2 Molybdenum 1455 U 0.0061 0.061 0.5 10 30 Nickel 1455 U 0.0006 0.0056 0.4 10 40 Lead 1455 U 0.0011 0.011 0.5 10 50 Antimony 1455 U 0.0021 0.021 0.06 0.7 5 Selenium 1455 U 0.0006 0.0059 0.1 0.5 7 Zinc 1455 U 0.026 0.26 4 50 200 Chloride 1220 U < 1.0	Chromium	1455		U	0.0008	0.0078	0.5	10	70
Molybdenum	Copper	1455		U	0.0035	0.035	2	50	100
Nickel 1455 U 0.0006 0.0056 0.4 10 40 Lead 1455 U 0.0011 0.011 0.5 10 50 Antimony 1455 U 0.0021 0.021 0.06 0.7 5 Selenium 1455 U 0.0006 0.0059 0.1 0.5 7 Zinc 1455 U 0.026 0.26 4 50 200 Chloride 1220 U < 1.0	Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Lead 1455 U 0.0011 0.011 0.5 10 50 Antimony 1455 U 0.0021 0.021 0.06 0.7 5 Selenium 1455 U 0.0006 0.0059 0.1 0.5 7 Zinc 1455 U 0.026 0.26 4 50 200 Chloride 1220 U < 1.0	Molybdenum	1455		U	0.0061	0.061	0.5	10	30
Antimony 1455 U 0.0021 0.021 0.06 0.7 5 Selenium 1455 U 0.0006 0.0059 0.1 0.5 7 Zinc 1455 U 0.026 0.26 4 50 200 Chloride 1220 U < 1.0	Nickel	1455		U	0.0006	0.0056	0.4	10	40
Selenium 1455 U 0.0006 0.0059 0.1 0.5 7 Zinc 1455 U 0.026 0.26 4 50 200 Chloride 1220 U < 1.0	Lead	1455		U	0.0011	0.011	0.5	10	50
Company Comp	Antimony	1455		U	0.0021	0.021	0.06	0.7	
Chloride 1220 U < 1.0 < 10 800 15000 25000 Fluoride 1220 U 0.18 1.8 10 150 500 Sulphate 1220 U 12 120 1000 20000 50000 Total Dissolved Solids 1020 N 76 760 4000 60000 100000 Phenol Index 1920 U < 0.030	Selenium	1455		U	0.0006	0.0059	0.1	0.5	7
Fluoride 1220 U 0.18 1.8 10 150 500 Sulphate 1220 U 12 120 1000 20000 50000 Total Dissolved Solids 1020 N 76 760 4000 60000 100000 Phenol Index 1920 U < 0.030		1455			0.026	0.26			
Sulphate 1220 U 12 120 1000 20000 50000 Total Dissolved Solids 1020 N 76 760 4000 60000 100000 Phenol Index 1920 U < 0.030	Chloride	1220		U	< 1.0	< 10	800	15000	25000
Total Dissolved Solids 1020 N 76 760 4000 60000 100000 Phenol Index 1920 U < 0.030	Fluoride	1220		U			10	150	500
Phenol Index 1920 U < 0.030 < 0.30 1	Sulphate	1220		U			1000	20000	50000
	Total Dissolved Solids	1020		N	76	760	4000	60000	100000
Dissolved Organic Carbon 1610 U 9.4 94 500 800 1000	Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
	Dissolved Organic Carbon	1610		U	9.4	94	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	14				

Waste Acceptance Criteria

Project: 25000-1 Site 1 NDFA Social Housing

Chemtest Job No:	24-00484					Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1751931						Limits	
Sample Ref:	AA209918						Stable, Non-	
Sample ID:							reactive	
Sample Location:	TP11						hazardous	Hazardous
Top Depth(m):	1.30					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:							Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	[A] 4.2	3	5	6
Loss On Ignition	2610		М	%	6.8			10
Total BTEX	2760		М	mg/kg	[A] < 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_1D_Total_CU	M	mg/kg	[A] 61	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.6		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0070		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0043	0.043	0.5	2	25
Barium	1455		U	0.014	0.14	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0072	0.072	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.051	0.51	0.5	10	30
Nickel	1455		U	0.0046	0.046	0.4	10	40
Lead	1455		U	0.0005	0.0052	0.5	10	50
Antimony	1455		U	0.0056	0.056	0.06	0.7	5
Selenium	1455		U	0.0027	0.027	0.1	0.5	7
Zinc	1455		U	0.012	0.12	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.18	1.8	10	150	500
Sulphate	1220		U	73	730	1000	20000	50000
Total Dissolved Solids	1020		N	200	2000	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	9.1	91	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	11				

Waste Acceptance Criteria

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1751890	AA198277		BH01		А	Amber Glass 250ml
1751890	AA198277		BH01		А	Plastic Tub 500g
1751891	AA198278		BH01		А	Amber Glass 250ml
1751891	AA198278		BH01		А	Plastic Tub 500g
1751892	AA193265		BH02A		А	Amber Glass 250ml
1751892	AA193265		BH02A		А	Plastic Tub 500g
1751893	AA193267		BH02A		А	Amber Glass 250ml
1751893	AA193267		BH02A		А	Plastic Tub 500g
1751894	AA208550		BH03		А	Amber Glass 250ml
1751894	AA208550		BH03		А	Plastic Tub 500g
1751895	AA208551		BH03		А	Amber Glass 250ml
1751895	AA208551		BH03		А	Plastic Tub 500g
1751896	AA208557		BH04		А	Amber Glass 250ml
1751896	AA208557		BH04		А	Plastic Tub 500g
1751897	AA208558		BH04		А	Amber Glass 250ml
1751897	AA208558		BH04		А	Plastic Tub 500g
1751898	AA208542		BH05		А	Amber Glass 250ml
1751898	AA208542		BH05		А	Plastic Tub 500g
1751899	AA208543		BH05		А	Amber Glass 250ml
1751899	AA208543		BH05		А	Plastic Tub 500g
1751900	AA193273		BH06		А	Amber Glass 250ml
1751900	AA193273		BH06		А	Plastic Tub 500g

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1751901	AA193274		BH06		А	Amber Glass 250ml
1751901	AA193274		BH06		А	Plastic Tub 500g
1751902	AA193277		BH06		А	Amber Glass 250ml
1751902	AA193277		BH06		А	Plastic Tub 500g
1751903	AA193287		BH07		А	Amber Glass 250ml
1751903	AA193287		BH07		А	Plastic Tub 500g
1751904	AA193288		BH07		А	Amber Glass 250ml
1751904	AA193288		BH07		А	Plastic Tub 500g
1751905	AA193281		BH08		А	Amber Glass 250ml
1751905	AA193281		BH08		А	Plastic Tub 500g
1751906	AA193282		BH08		А	Amber Glass 250ml
1751906	AA193282		BH08		А	Plastic Tub 500g
1751907	AA193293		BH09		А	Amber Glass 250ml
1751907	AA193293		BH09		А	Plastic Tub 500g
1751908	AA191710		BH10		А	Amber Glass 250ml
1751908	AA191710		BH10		А	Plastic Tub 500g
1751909	AA198276		BH11		А	Amber Glass 250ml
1751909	AA198276		BH11		А	Plastic Tub 500g
1751910	AA189257		BH12		А	Amber Glass 250ml
1751910	AA189257		BH12		А	Plastic Tub 500g
1751911	AA189258		BH12		А	Amber Glass 250ml
1751911	AA189258		BH12		А	Plastic Tub 500g

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1751912	AA198263		BH13		А	Amber Glass 250ml
1751912	AA198263		BH13		А	Plastic Tub 500g
1751913	AA198265		BH13		А	Amber Glass 250ml
1751913	AA198265		BH13		А	Plastic Tub 500g
1751914	AA198270		BH14		А	Amber Glass 250ml
1751914	AA198270		BH14		А	Plastic Tub 500g
1751915	AA198271		BH14		А	Amber Glass 250ml
1751915	AA198271		BH14		А	Plastic Tub 500g
1751916	AA209906		TP01		А	Amber Glass 250ml
1751916	AA209906		TP01		А	Plastic Tub 500g
1751917	AA209907		TP01		А	Amber Glass 250ml
1751917	AA209907		TP01		А	Plastic Tub 500g
1751918	AA209908		TP01		А	Amber Glass 250ml
1751918	AA209908		TP01		А	Plastic Tub 500g
1751919	AA204950		TP02		А	Amber Glass 250ml
1751919	AA204950		TP02		А	Plastic Tub 500g
1751920	AA204947		TP03		А	Amber Glass 250ml
1751920	AA204947		TP03		А	Plastic Tub 500g
1751921	AA204948		TP03		А	Amber Glass 250ml
1751921	AA204948		TP03		А	Plastic Tub 500g
1751922	AA204944		TP04		А	Amber Glass 250ml
1751922	AA204944		TP04		А	Plastic Tub 500g

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1751923	AA204946		TP04		А	Amber Glass 250ml
1751923	AA204946		TP04		А	Plastic Tub 500g
1751924	AA209902		TP05		А	Amber Glass 250ml
1751924	AA209902		TP05		А	Plastic Tub 500g
1751925	AA209904		TP05		А	Amber Glass 250ml
1751925	AA209904		TP05		А	Plastic Tub 500g
1751926	AA209913		TP06		А	Amber Glass 250ml
1751926	AA209913		TP06		А	Plastic Tub 500g
1751927	AA209909		TP07		А	Amber Glass 250ml
1751927	AA209909		TP07		А	Plastic Tub 500g
1751928	AA209911		TP07		А	Amber Glass 250ml
1751928	AA209911		TP07		А	Plastic Tub 500g
1751929	AA209921		TP08		А	Amber Glass 250ml
1751929	AA209921		TP08		А	Plastic Tub 500g
1751930	AA209915		TP10		А	Amber Glass 250ml
1751930	AA209915		TP10		А	Plastic Tub 500g
1751931	AA209918		TP11		А	Amber Glass 250ml
1751931	AA209918		TP11		А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pH at 20°C	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pH at 20°C	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID

Test Methods

SOP	Title	Parameters included	Method summary
2690	EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21- C35, >C35-C40	Acetone/Heptane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	Water extraction / Headspace GCxGC FID detection
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of UKAS accreditation

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Appendix 8

Exploratory Hole Location Plan

