IGSL Ltd

NDFA Social Housing Bundles 4/5 Lot 3 — Croke Villas

Ground Investigation Report

Project No. 25000-3

February 2024

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176

E: info@igsl.ie W: www.igsl.ie

DOCUMENT ISSUE REGISTER

Distribution	Report Status	Revision	Date of Issue	Prepared By:	Approved By:
MORCE	Draft PDF by email	0	29-02-2024	J. Lawler BSc MSc PGeo EurGeol FGS	P. Quigley BEng CEng MICE MIEI FGS RoGEP Adviser

TABLE OF CONTENTS

Foreword

- 1. Introduction
- 2. Fieldworks
 - **2.1** General
 - 2.2 Trial Pits & Foundation Inspection Pits
 - 2.3 Cable Percussion Boreholes
 - 2.4 Rotary Drilling
 - 2.5 Slit Trenching
 - 2.6 Soakaway Tests (to BRE 365)
 - 2.7 Surveying of Exploratory Hole Locations
- 3. Laboratory Testing
- 4. Desk Study
 - 4.1 GSI / OSI Database Information
- 5. Ground Conditions & Groundwater
 - 5.1 Ground Profile Superficial Deposits
 - 5.2 Bedrock
 - 5.3 Groundwater
- 6. Ground Assessment & Engineering Recommendations
 - 6.1 General
 - **6.2** Foundations
 - 6.3 Groundwater / Infiltration
 - **6.4** Slopes / Batters
 - 6.5 Buried Concrete
 - **6.6** Waste Acceptance Criteria [WAC] & Environmental Testing Soils destined for Landfill

References

FIGURES

Figure 1 - Location Plan

Figure 2 - Tailte Éireann historic OSI and Cassini drawings with OSI 2013-2018 and

Google Earth imagery from 2018 showing the evolution of the site.

Figures 3A & 3B - Demolition underway at the Croke Villas Site
Figure 4 - Quaternary Soils Plot for the Croke Villas Site
Figure 5 - Bedrock Geological Map for the Croke Villas Site

Figure 6 - Trial Pit locations TP01-TP04
Figure 7 - Trial Pit locations TP05-TP07
Figure 8 - Trial Pit locations TP08-TP11

Figures 9A & 9B - Sidewall profiles photographed during trial pitting
Figure 10 - Cable Percussion and Trial Pit locations at Croke Villas

Figure 11 - SPT Plot versus Depth for Cable Percussion Boreholes and Rotary Drillholes

- Bedrock cores in RC02 from 20.40m bgl to 23.60m (-20.02m OD).

Figure 13 - Is(50) strengths obtained from diametrial Point Load Strength Index testing

TABLES

Table 1 - Water measurements in on-site exploratory holes

Table 2 - Measured infiltration rates (f) expressed as exposed area (metre) per unit time

(minute)

APPENDICES

Appendix 1 - Trial Pit Logs & Photographs

Appendix 2 - Foundation Pit Logs

Appendix 3 - Cable Percussion Borehole Logs / SPT Calibration Sheet (Er)

Appendix 4 - Rotary Drillhole Logs & Core Photographs / SPT Calibration Sheet (Er)

Appendix 5 - Slit Trench Logs Appendix 6 - Soakaway Records

Appendix 7 - Geotechnical Laboratory Results (Soil)

Appendix 8 - Geo-Environmental & Chemical Laboratory Results (Soils)

Appendix 9 - Geotechnical Laboratory Results (Rock)

Appendix 10 - Exploratory Hole Location Plans

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project (NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas) have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as Engineers Ireland Specification for Ground Investigation (2nd Ed, 2016), BS 5930 (2015+A1:2020) and BS 1377 (Parts 1 to 9) and the following European Norms:

- EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- EN ISO 14688-1:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- EN ISO 14688-2:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Principles for a classification
- EN ISO 14689-1:2017 Geotechnical Investigation and Testing Identification, description & classification of rock

The Eurocode 7, Part 2 – Ground Investigation and Testing GI specification shall be read in conjunction with the Specification and Related Documents for Ground Investigation in Ireland, 2nd Edition, published by Engineers Ireland in 2016.

Reporting

No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations. The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for MORCE and the information should not be used without their prior written permission. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

Boring Procedures

Where required, 'shell and auger' or cable percussive boring technique is employed as defined by Section 6.3 of IS EN ISO 22475-1:2006. The boring operations, sampling and in-situ testing meet with the recommendations set out in IS EN 1997-2:2007 and BS 1377:1990 and EN ISO 22476-3:2005. The shell and auger boring technique allows for continuous sampling in clay and silt above the water table and sand and gravel below the water table (Table 2 of IS EN ISO 22475-1:2006).

It is highlighted that some disturbance and variation is unavoidable in particular ground (e.g. blowing sands, gravel / cobble dominant glacial deposits etc). Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

In-Situ Testing

Where required, Standard Penetration Tests (SPT's) are conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is

available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Soil Sampling

Three categories of sampling methods are outlined in EN ISO 22475-1:2006. The categories are referenced A, B and C for any given ground conditions and are shown in Tables 1 and 2 of EN ISO 22475-1:2006. Reference should be made to EN 1997-2:2002 for guidelines on sample class and quality for strength and compressibility testing. Samples of quality classes 1 or 2 can only be obtained by using Category A sampling methods.

Class 1 thin wall undisturbed tube samples (UT100) were obtained in fine grained soils and strictly meet the requirements of EN 1997-2:2002 and EN ISO 22475-1:2006. Soil samples for laboratory tests are divided into five classes with respect to the soil properties that are assumed to remain unchanged during sampling, handling transport and storage. The minimum sample quality required for testing purposes to Eurocode 7 compatibility (EN 1997-2:2002) is shown in Table A.

Table A - Details of Sample Quality Requirements

EN 1997 Clause	Test	Minimum Sample Quality Class	
5.5.3	Water Content	3	
5.5.4	Bulk Density	2	
5.5.5	Particle Density	N/S	
5.5.6	Particle Size Analysis	N/S	
5.5.7	Consistency Limits	4	
5.5.8	Density Index	N/S	
5.5.9	Soil Dispersivity	N/S	
5.5.10	Frost Susceptibility	N/S	
5.6.2	Organic Content	4	
5.6.3	Carbonate Content	3	
5.6.4	Sulphate Content	3	
5.6.5	рН	3	
5.6.6	Chloride Content	3	
5.7	Strength Index	1	
5.8	Strength Tests	1	
5.9	Compressibility Tests 1		
5.10	Compaction Tests	N/S	
5.11	Permeability	2	

N/S – not stated. Presume a representative sample of appropriate size.

Samples recovered from trial pits or trenches meet the requirements of IS EN ISO 22475-1. It is highlighted that unforeseen circumstances such as variations in geological strata may lead to lower quality sample classes being obtained.

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible, drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are

subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2017 and IS EN ISO 14688-2:2017. Rock weathering classification conforms to IS EN ISO 14689-1:2017 along with discontinuities (bedding planes, joints, cleavages, faults etc) as classified in Section 6.4 of IS EN ISO 14689-1:2017 and Annex C of same. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Where peat has been encountered, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 and Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986.

Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material will be discarded. Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

1. INTRODUCTION

An investigation of subsoil conditions was undertaken by IGSL Limited at the site of a proposed social housing development at Croke Villas, Sackville Avenue, off the Ballybough Road, Dublin 3. The works were undertaken for Malone O'Regan Consulting Engineers [MORCE] on behalf of the National Development Finance Agency (the "NDFA"). The site formerly comprised four 5-storey local authority flat blocks (Figure 1). Croke Villas is one of the Strategic Development and Regeneration Areas identified in the Dublin City Development Plan 2016-2022. The intention is to provide new high quality residential / office development combined with enhancing the access to Sackville Avenue from Ballybough Road and re-develop Sackville Avenue as a high-quality public domain space (Dublin City Council, n.d.).

ST11-1.7

Eight ST10-1

EBH01

FRC01

FRC02

FRC02

FRC03

FRC01

FRC03

FRC03

FRC03

FRC03

FRC03

FRC04

FRC03

FRC03

FRC04

FRC03

FRC03

FRC04

FRC04

FRC05

Figure 1 - Location Plan (Site Investigation Points overlain)

Retrieved from Google Earth Professional (Dated 07/2022)

The investigations comprised cable percussion boreholes, rotary drilling, machine-dug trial pits, foundation inspection pits, slit trenching and soakaway tests (to BRE365). The investigations were executed in accordance with BS 5930, Code of Practice for Site Investigations (2015+A1:2020) and EN 1997-2 Eurocode 7 Part 2 Ground Investigation & Testing and supervised by an IGSL geotechnical engineer.

Geotechnical, chemical and environmental laboratory testing was scheduled on a range of soil samples. The geotechnical soil testing included moisture contents, Atterberg Limits and particle size distribution [PSD] testing in addition to hydrometer testing. Suites of both chemical testing and environmental testing were undertaken on soils. This report presents an interpretation of the data

and an assessment of the key geotechnical issues. The exploratory hole locations are plotted on the site plans in Appendix 10.

2. FIELDWORK

2.1 General

The fieldworks were undertaken during November and December 2023 and January and February 2024 and comprised the following:

- Trial Pit (11 No.) of which 2 no. are Foundation Inspection Pits
- o Cable Percussion Boring (13 No.)
- o Rotary Drilling (3 No.)
- O Slit Trenching (11 No.1) of which 1 no. incorporated a Foundation Inspection Pit
- Soakaway Tests (to BRE 365) (4 No.)
- Surveying of Exploratory Hole Locations

2.2 Trial Pits & Foundation Inspection Pits

Trial pitting was performed at eleven locations across the site. Two of the trial pits were undertaken adjacent to existing structures to examine the depth of wall footings on site (TP/FP06 & TP/FP11). All eleven trial pits were excavated, logged and sampled under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). Bulk disturbed samples (typically 20 to 30kg) were taken as the pits progressed.

The bulk samples were placed in heavy-duty polyethylene bags. The trial pits were backfilled with the as-dug arisings and reinstated to the satisfaction of IGSL's site geotechnical engineer. The trial pit logs and photos are presented in Appendix 1 and include descriptions of the soils encountered, groundwater conditions and stability of the pit sidewalls.

As mentioned, the excavation of two trial pits, TP/FP06 and TP/FP11, attempted to establish the depth and projection of existing buried foundations. The pits were sited at the last remaining multistorey flat complex (Croke Villas No.s 43-63) and at the now derelict two-storey former residence of No.30, Sackville Avenue. As with pits, the foundation inspection pits were excavated and logged under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). The pit logs and photos are presented in Appendix 2 and include descriptions of the soils encountered, the foundations exposed and any groundwater conditions noted during the excavation, if observed.

2.3 Cable Percussion Boreholes

Cable percussive boring (200mm diameter) was conducted at thirteen locations [BH_] using a Dando 2000 rig. The boreholes extended to depths of between 4.0m and 7.60m. At each location, boring commenced through hand-dug service inspection pits. Disturbed bulk samples were recovered at 1m intervals or change of strata during boring and these are denoted 'B' on the engineering logs. A water 'W' sample was bailed from BH11.

Standard Penetration Tests (SPT's) were performed in the boreholes and given the nature of the soils, a solid cone was used. It is noted that the SPT N-Values reported are the number of blows for 300mm increment penetration (e.g. BH01 at 2.0m where N=26). These exclude the seating blow values, which represent the initial 150mm depth of penetration. Where partial penetration was achieved during testing, the number of blows is shown for the actual penetration depth achieved (e.g. BH05 at 5.0m where N=50/150mm). It is highlighted that the SPT N-Values reported on the engineering logs are uncorrected for energy ratio. The SPT hammer energy ratio calibration certificate features in Appendix 3.

¹ No ST09 was undertaken. ST02 was subdivided into an 'A' section and a 'B' section given the presence of a separating palisade fence

Descriptions of the soils encountered, in-situ tests undertaken and samples recovered are presented on the borehole records in Appendix 3. Details of groundwater strikes and hard strata boring (i.e. chiselling) are also presented on the aforementioned records.

2.4 Rotary Drilling

Rotary drilling was carried out (holes denoted RC_) at three locations using a tracked Beretta T44. Symmetrex drilling was utilised within the overlying superficial deposits (accompanied by SPT testing) with coring techniques used in the underlying bedrock when encountered. In both RC01 and RC03, open hole drilling was used solely given rock was not encountered to their respective end depth of 25.0m bgl. The rotary drilling in bedrock at RC02 produced 78mm diameter cores. Bedrock was described generally as fresh to slightly weathered weak to strong, medium to thinly bedded, light to dark grey/black, fine-grained LIMESTONE. The limestone comprised interbedded argillaceous/muddy layers with calci-siltite / sandy layers with local pyrite formation.

The cores were placed in 3m capacity timber boxes and logged by an IGSL engineering geologist. This included photography of the cores with a digital camera. Where rock core was recovered, a graphic fracture log is also presented alongside the mechanical indices. This illustrates the fracture state of the rock cores and allows easy identification of highly fractured / non-intact zones and discontinuity spacings. It should be noted that no correction for dip of the joints has been made and that the spacings shown are successive joint / core intersections within the core.

Groundwater monitoring standpipes were installed in two of the RC_ drillholes on site (RC01 & RC02). The standpipes consisted of 50mm diameter HDPE pipework with proprietary 1mm slots and incorporated a pea gravel filter pack and cement / bentonite grout seal. Headwork covers were concreted in place.

The core log records are presented in Appendix 4 and this includes engineering geological descriptions, details of the bedding / discontinuities and mechanical indices (TCR, SCR and RQD's) for each core run. Core photographs are also presented in Appendix 4 and these illustrate the structure and fracture state of the bedrock. The SPT hammer energy ratio calibration certificate also features in Appendix 4.

2.5 Slit Trenching

Slit trenching was undertaken at eleven locations on the site (ST01 – ST11). No slit trench was conducted at ST09 as it was inaccessible, being sited in the yardspace of No. 30 Sackville Avenue. Two trenches were excavated at ST02 (A & B) as a palisade fence split the linear excavation. In all cases, the machine-assisted hand-dug trenches were opened to reveal the track of potential existing buried services.

Detailed records of the pit findings including depth, diameter and type of service (where found) are presented in Appendix 5. The soil profile provided on the slit trench logs describes the majority of the soils across the transverse trench. The location of trench extremities (X and Y) were surveyed to ITM using GPS techniques. Photographs taken during excavation are also presented on the logs in Appendix 5.

At the end of slit trench ST04 (ST04-1), an attempt was made to establish the depth and projection of the existing buried foundation at the last remaining multistorey flat complex (Croke Villas No.s 43-63) on Sackville Avenue. The foundation inspection pit was excavated and logged under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). The foundation pit log and photos for FP04 is presented in Appendix 2 and include descriptions of the soils encountered, the foundations exposed and any groundwater conditions noted during the excavation, if observed.

2.6 Soakaway Tests (to BRE 365)

Four number infiltration tests were performed to assess the suitability of the sub-soils for dispersion of storm water through a soakaway system. The infiltration tests were each performed in accordance with BRE Digest 365 'Soakaway Design'. To obtain a measure of the infiltration rate of the sub-soils, water was poured into each test pit, with records taken of the fall in water level against time. Following the first soak cycle, the procedure was repeated to ensure saturation of the sub-soils. The infiltration rate is the volume of water dispersed per unit of exposed area per unit of time, and is generally expressed as metres / minute or metres / second. Designs are based on the slowest infiltration rate, which is generally calculated from the final soak cycle. The soakaway design logs are presented in Appendix 6.

2.7 Surveying of Exploratory Hole Locations

Following completion of the exploratory works, surveying was carried out using GPS techniques. Co-ordinates (x, y) were measured to Irish Transverse Mercator and ground levels (z) established to Malin Head. The co-ordinates and ground levels are incorporated on the exploratory hole logs with locations shown on the exploratory hole plans in Appendix 10.

3. LABORATORY TESTING

Geotechnical laboratory testing was carried out at IGSL's INAB-accredited laboratory in accordance with the methods set out in BS1377; British Standard Methods of Test for Soils for Civil Engineering Purposes; British Standards Institute:1990. The laboratory applies best practice management systems as per International Standard IS EN ISO/IEC 17025. The geotechnical testing included moisture contents, Atterberg Limits, particle size distribution [PSD] and hydrometer testing. The results from geotechnical testing on selected trial pit and cable percussive borehole soil samples are presented in Appendix 7.

Chemical analysis incorporating BRE SD1 Suite B (Brownfield – Pyrite Present) was scheduled on recovered soils. The soil chemical results are presented in Appendix 8. A total of thirty soil samples were selected for Waste Acceptance Criteria (WAC) analysis as per the *Rilta* Suite of testing. The results can be used to classify the material with regard to its potential for disposal to landfill. The results are enclosed in the report in Appendix 8.

Rock strength testing on selected core specimens comprised Point Load Strength Index [PLSI] testing. The tests were performed in accordance ISRM Suggested Methods for Rock characterization, Testing and Monitoring. The results are presented in Appendix 9.

4. DESK STUDY

4.1 GSI / OSI Database Information

Reference to the OSI drawings shows buildings occupying the site as early as the mid-19th century ahead of the development of the railway which in later drawings, is seen to track parallel the Royal Canal.

No.s 1-6 Sackville Gardens, are clearly present in the earliest of featured maps. They are also noted in a Directory dated 1862 (Thom's Almanac, 1862). 'Love Lane' listed in the 1830's drawing is later re-named 'Sackville Avenue'.

It is known that Croke Villas were built in 1959 to a 'modular' design by the then Dublin City Architect, Dáithi Hanley. During his tenure in the office, he designed many four- and five-storey blocks of flats (styled corporation 'maisonettes') throughout the city; characteristically recurring features included a stairwell situated within a free-standing cylindrical tower from which footbridges extended to the upper storeys; and exterior access to the individual units (on upper storeys via roofed galleries); the design maximised the amount of interior space allocated to living quarters. (White, 2012)

The 2013-2018 orthophotograph shows the four blocks in place, three of which were demolished by Tinnelly Group in late 2017 / early 2018. (See Fig 3A & 3B - Tinnelly Group, 2018). The Google Earth Professional image dated 05/2018 shows the footings for the new GAA Hand Ball Centre.

Figure 2 – Tailte Éireann historic OSI and Cassini drawings with OSI 2013-2018 and Google Earth imagery from 2018 showing the evolution of the site.

Google Earth Professional image dated 05/2018

Images taken from Tailte Éireann 'Townland and Historical Map Viewer'

Figures 3A & 3B – Demolition underway at the Croke Villas Site (Tinnelly Group, 2018). **Fig 3A** 'Back Block' removed (foreground) with work underway on two other blocks (No.s 1-21 & No.s 22-42). **Fig 3B** Aerial view of works with Sackville Avenue to the top of the photo and Ardilaun Square to the left. The Ballybough Railline and Royal Canal run to the bottom of the photo.

The Quaternary Soils plot for the area (Figure 4 - retrieved from GSI website) reaffirms the findings of the investigation and highlights the underlying mixed clay and gravel tills derived from the ubiquitous Carboniferous Limestone of the area.

Figure 4 – Quaternary Soils Plot for the Croke Villas Site (Site investigation area outlined)

Reference to the GSI map for the area (Figure 5, 1:100,000 Solid Geology series) shows that the site is underlain by Lower Carboniferous, Lucan Formation. The Lucan Formation (Nolan 1986, 1989) forms the bulk of the basinal rocks throughout the geologically termed 'Dublin Basin', and is characterised by graded, intraclastic skeletal packstone/grainstone interbedded with anoxic calcareous mudstone / black shale, laminated calcisiltite and argillaceous micrite (i.e. impure limestone with clay minerals).

Its base is defined by the first appearance of thick graded beds of limestone, and a marked decrease in the proportion of interbedded shale, compared with the underlying Tober Colleen Formation. The Lucan Formation is widely known as the Calp Limestone (Marchant and Sevastopulo, 1980) but is also referred to as the Upper Dark Limestone and has long been a source of building materials and aggregate for Dublin. The Calp is largely undifferentiated geologically.

Key: LU = Lucan Formation

Figure 5 - Bedrock Geological Map for the Croke Villas Site (Site investigation area outlined)

5. GROUND CONDITIONS & GROUNDWATER

5.1 Ground Profile - Superficial Deposits

The following is a summary of the ground conditions encountered across the site.

MADE GROUND

- As shown in Section 4.1, there were a number of houses occupying the site before the construction of the four blocks of Croke Villas in 1959. However, in the area of what was termed locally as the "Back Block", the 4-storey block of flats closest to the railway and furthest west, there was little in the way of development prior to its construction in 1959. For this reason, this should lend to the ground in the immediate area being possibly less disturbed. However, there was little to suggest this as Made Ground did extend to depths similar to other areas on the site, to approx. 2.0m bgl. There did appear in both TP01 and TP03 to be less in the way of building rubble however.
- o In each of TP01-TP04, the Made Ground was encountered beneath an initial cover of placed Topsoil measuring 200mm thick. It is likely this was placed directly on the hardcore gravel which was draped across the area during demolition (See Figures 3A & 3B). This layer forms part of the initial Made Ground consisting largely of dark brown and grey sandy slightly gravelly CLAY with red bricks and plastic. At TP01, the Made Ground extended to a mere 1.30m bgl (2.56m OD). However, in the case of TP02, a base was not found to the Made Ground with a concrete slab exposed at 2.0m depth (2.12m OD). This may be a relict feature of the 'Back Block' foundations. Figure 6 suggests TP02 was positioned close to if not on the 'Back Block' footings. This would imply the Made Ground from 0.20-2.0m comprised trench backfill.

Figure 6 - Trial Pit locations TP01-TP04

Google Earth Professional Image dated 07/2013

Trial Pit TP03 was located in a shed area to the east of the former 'Back Block'. As with TP01, Made Ground was only logged to 1.30m (2.83m OD). The Made Ground was described as a dark grey clayey sandy Gravel with a low cobble content and boulder content and with red brick fragments. Similarly, at TP04, the Made Ground cover extended to 1.30m (2.62m OD). It was logged as a dark brown / black slightly clayey gravelly Sand with red brick fragments, plastic and concrete fragments.

Figure 7 – Trial Pit locations TP05-TP07

Google Earth Professional Image dated 07/2013

As with TP02, TP05 was sited apparently directly on an external wall of one of the blocks. It unearthed a thick accumulation of Made Ground to 3.0m depth (1.08m OD) underlying the uppermost thin cover of placed Topsoil (100mm thick). The Made Ground was described as a dark brown gravelly Sand with a low cobble content, red brick fragments, plastic and cobble -sized concrete fragments. In addition to it being on the foundation of one of the blocks, the location of TP05 places it in the area of the former Love Lane North

- and its line of terraced houses which made way for the Corke Villas development of the later 1950's (See Figure 2).
- Similar to TP05, TP06 was excavated near the foundation of one of the blocks. However, the block in this case still stands on the site, as yet not demolished. Pit TP06 served a dual purpose in that it was used to both determine the stratigraphy and to identify a possible shallow footing (See FP06). From a distance of 1.50m from the outer wall, the ground appeared more natural in composition. The Made Ground was thought to extend to 1.60m depth (2.51m OD) with red brick fragments found in the dark brown / black sandy slightly gravelly CLAY stratum.
- Trial pit TP07 was positioned in an area of grass cover in the shadow of the last remaining block of flats. The location places it close to the corner of the former Love Lane North roadway and its adjoining terraced houses (See Figure 2). The Made Ground content appeared compositionally finer with only cobble-sized fragments noted. It was determined through visual pitside examination, that the Made Ground extended to a depth of 1.60m (2.46m OD).

Figure 8 – Trial Pit locations TP08-TP11

Google Earth Professional Image dated 09/2008

- o The remaining trial pits were undertaken in relatively outlying areas of the site, in the back yard of No.4, Ballybough Road (TP08), to the rear of No.7, Ballybough Road (TP09), in the yard adjoining the derelict No.30, Sackville Avenue (TP/FP11) and in the area to the rear of the former single-storey terrace comprising No.s 20-27, Sackville Avenue (demolished contemporaneous to the two flat complexes, ca. 2018). With the exception of TP11, which intercepted a buried sewer at 1.60m (2.63m OD), the other three pits revealed a Made Ground depth of 1.10m to 1.30m bgl (2.26 2.78m OD). The Made Ground in both TP08 and TP09, both in yard spaces to the rear of houses fronting onto Ballybough Road contained sea shells as well as red brick fragments, plastic and concrete.
- Across all pits, the shallowest thickness of Made Ground was identified in TP10 where it
 was logged to 1.10m bgl (2.78m OD). The Clay Made Ground was described as dark
 brown sandy gravelly CLAY with red brick fragments, plastic and concrete.
- o The sewage main found in TP11 at 1.60m bgl (2.63m OD) prevented further excavation.

Figures 9A & 9B – Sidewall profiles photographed during trial pitting. Fig 9A TP03 Gravelly Made Ground to 1.30m (2.83m OD) meeting natural stiff black sandy gravelly CLAY with a low cobble content underlain by stiff grey mottled light brown sandy slightly gravelly CLAY from 2.0m to 2.90m bgl. Pit ended in stiff brown sandy gravelly CLAY at 3.10m (1.03m OD). Moderate water ingress at 2.80m. Fig 9B In TP05, Made Ground extended to the base of the pit at 3.0m (1.08m OD). It was described as a dark brown gravelly Sand with a low cobble content, red brick fragments, plastic and cobble-sized concrete fragments.

Fig 9A Fig 9B

Figure 10 – Cable Percussion and Trial Pit locations at Croke Villas

Google Earth Professional Image dated 09/2008

o Boreholes conducted across the site encountered a similar profile to that of th shallow machine-excavated trial pits. The Made Ground, described predominantly as 'CLAY with rubble', extended to depths ranging 1.0m to 2.40m, the shallowest cover of Made Gorund being recorded in BH12 in a borehole off Sackvill Street. This corroborate the findings made in the trial pits where the shallowest mantle of Made Ground was made in the nearby TP10 (1.10m thick).

Possible Glaciolacustrine / Weathered Till Sediments

- Shy of an underlying stratum of over-consolidated very stiff black sandy gravelly CLAY, there are variable sequences in the upper 3.0m to 4.50m comprising mixed grey brown very clayey GRAVEL and firm, occasionally initially soft (BH04) brown and grey brown CLAY. A very sandy GRAVEL was noted to be blowing back in a layer from 3.80m to 4.50m (BH08) such was the confined peizometric pressures on the deposits at depth.
- The natural GRAVEL deposit in BH11 from 2.0m to 3.20m, ahead of encountering the very stiff underlying till, was noted to bear a strong hydrocarbon odour.
- The gradational increase in strength of the upper soils is illustrated by the SPT plot in Figure 11 where SPT's from both cable percussion boreholes and rotary drillholes are depicted. The standard penetration test [SPT] allows for an appraisal of the ground stiffness. The first set of SPT tests were undertaken at 1.0m bgl in cable percussion boreholes and at 1.50m in rotary drillholes. The increase in soil strength as profiled in the plot can be seen to be approximately linear from 1.0m, through 1.50m and on to 4.0m depth before they flat-line somewhat in the very stiff basal till. Based on SPT results, the soft consistency deposits are seen to occur to a maximum depth of 2.0m depth. Therefore, it could be surmised that the occurrence of soft and soft to firm soil deposits (inclusive of Made Ground) is restricted to the upper 2.0m. 'Low strength' deposits are those where N values of <10 blows are present.

Figure 11 – SPT Plot versus Depth for Cable Percussion Boreholes and Rotary Drillholes

Cable Percussion SPT = Blue Rotary Drillhole SPT = Red

GLACIAL DEPOSITS (Glacial Lodgement Till)

- There is a clear colour change from the stiff brown CLAY to that of the underlying very stiff black sandy gravelly CLAY with cobbles. As mentioned, it occurs at depths ranging from approximately 3.0m to 4.50m bgl. It is notable that the black 'boulder CLAY' or overconsolidated till is shallower in depth progressing northeast and east. Here, in boreholes BH10-BH13, it was logged at depths ranging 3.10m to 3.60m corresponding to remarkably consistent elevations of between 0.23m OD to 0.42m OD.
- Further west, boreholes BH01-BH09 show the till at depths ranging 3.30m to 4.50m, the
 deepest in BH08 where a lower very sandy Gravel (800mm thick) likely scours the tills
 upper surface. The entry levels of the very stiff till ranged from 0.67m OD (BH09) to 0.38m (BH08).
- Rotary open hole drilling was deployed at three locations on the site. Very stiff CLAY was found to persist to significant depths, occasionally with intervening clayey sandy GRAVEL horizons (RC03 from 13.90-14.60m).
- In the case of RC01, a grey brown clayey sandy GRAVEL was found underlying the CLAY from 16.40m bgl (-12.36m OD). This continued to a drillhole termination depth of 25.0m bgl (-20.96m OD). No rock was intercepted to this depth.
- At RC02, to the east of the site, a similar underlying grey brown clayey sandy GRAVEL layer was intercepted below the fine grained till from 15.0m bgl (-11.42m OD). It extended to bedrock at 19.30m bgl (-15.72m OD). Coring of limestone bedrock commenced from 20.40m bgl (-16.82m OD) to an end depth of 23.60m bgl (-20.02m OD).
- Finally, at RC03, positioned in a central area of the site between RC01 to the west and RC02 to the east, the fine till passed to a clayey sandy GRAVEL at a depth of 17.80m bgl (-13.98m OD). Blowing sands and gravels were encountered to the eventual base of the hole at 25.0m bgl (-21.18m OD) without intercepting rockhead.

5.2 Bedrock

As referenced earlier in Section 4.1, the GSI rock map for the area (Figure 5, 1:100,000 Solid Geology series) shows that the Lucan Formation underlies the site. The formation is comprised of argillaceous bioclastic limestones and interbedded shales.

Rotary drilling was conducted at three locations on site. At one location, furthest east, drilling successfully penetrated the thick mantle of glacial till deposits and cored the underlying bedrock commencing at 20.40m (RC02). This corresponded to an elevation -16.82m OD. Figure 12 shows the core recovery in RC02. The rock was reported in the same corehole from 19.30m (-15.72m OD).

Recovered cores were logged as fresh to slightly weathered weak to strong, medium to thinly bedded, light to dark grey/black, fine-grained LIMESTONE. The limestone comprised interbedded argillaceous/muddy layers with calci-siltite / sandy layers with local pyrite formation.

Figure 12 – Bedrock cores in RC02 from 20.40m bgl to 23.60m (-20.02m OD).

Discontinuity spacings in the rotary cores generally ranged from medium (200 to 600mm) to closely spaced (60 to 200mm). The discontinuity surfaces are typically smooth to locally rough, planar to locally curviplanar. Apertures are tight to partly open, locally exhibiting clay smearing. Dips are subhorizontal and locally subvertical.

The point load strength index (PLSI) test data produced $I_s(50)$ values ranging from 1.61 to 5.62 MPa with a mean value of 3.71 MPa. The PLSI strengths form a scatter indicative of predominantly strong rock. The points plot towards the centre and right of Figure 13 implying a dearth of interbedded, generally weaker shale / mudrock.

Figure 13 – I_s(50) strengths obtained from diametrial Point Load Strength Index testing

VW = Very Weak, W = Weak, MW = Moderately Weak, MS = Medium Strong, S = Strong, VS = Very Strong (ISO 14689:2017 (E))

Using a correlation factor (K) of 20 to assess compressive strength, this suggests a characteristic strength envelope in the order of 32.2 to 112.4 MPa and categorizes the bedrock as medium strong (25 to 50MPa) to lower bound very strong (100 to 250MPa). The visual strength descriptors determined during engineering geological logging marry well with the overall plot scatter in Figure 13.

ISO 14689:2017 (E) rock strength parameters are drawn on Figure 13 to allow correlation between UCS and Point Load Strength tests. A correlation factor (K) of 20 was used to plot the ISO 14689:2017 (E) MPa strength divisions on the Point Load strength ($I_s(50)$) plot.

5.3 Groundwater

Water ingress was noted frequently in boreholes, marked absent in only four of the thirteen boreholes constructed on site. Isolated seepages were generally restricted to the upper mantle of Made Ground at ca. 1.50m bgl. More charged water ingress was apparent at greater depth, generally from 2.50m bgl. At this depth, slow water entry was reported in a number of boreholes with a modest rise in water levels registered once the strike was encountered (approx. 400mm). Borehole BH08 saw the greatest ingress with blowing sands observed up the casing string. The confined granular layer was met between 3.80m and 4.50m bgl being logged as a 'Medium dense grey very sandy GRAVEL'.

The observations in trial pits mirrored the findings in the cable percussion boreholes with a number of strikes recorded at ca. 2.50m bgl. In many cases, the water sitting at this depth prevented further excavation in the respective trial pit. Stability in the pit sidewalls remained good despite the water ingress at depth.

Water stirkes in rotary drillholes was generally reserved for the deep-seated strata, commonly at the interface between the thick accumulation of over-consolidated till and the underlying GRAVEL. Although deep-seated water strikes, the water in the drillholes post-works was observed in the region 4.0m (-0.18m OD) to 5.80m bgl (-1.76m OD).

Table 1 outlines where water was met in each of the exploratory holes. The potential does exist for there to be seasonal changes in groundwater level. The works were carried out during winter / spring 2023/24. Ongoing monitoring of standpipes at both RC01 and RC02 would permit a fuller understanding of the long term water re-equilibration on site.

Table 1 - Water measurements in on-site exploratory holes

	Exploratory Hole No.	Water Struck m bgl (m OD)	Stratum Description	Rate of Flow	Remarks / Stratum of water ingress (m OD)
Cable Percussion Boreholes	BH04	1.50 (2.73)	MADE GROUND comprising brown/black sandy gravelly Clay with rubble	Seepage	No reported rise in water during a 20minute observation period
	BH05	1.50 (2.65)	MADE GROUND comprising brown gravelly Clay with frequent rubble	Seepage	No reported rise in water during a 20minute observation period
	BH06	5.20 (-1.03)	Very stiff black sandy gravelly CLAY with occasional cobbles	Slow – water rose to 4.70m in 20min	Water rose to 4.70m during a 20minute observation period
	BH07	2.30 (1.57)	Medium dense grey/brown clayey GRAVEL	Seepage	No reported rise in water during a 20minute observation period
	BH08	3.90 (0.22)	Medium dense grey very sandy GRAVEL (Blowing noted)	Moderate - water rose to 2.80m in 20min	Water rose to 2.80m during a 20minute observation period. Sealed strike at 4.10m.

Cont.

Cable Percussion Boreholes	ВН08	4.20 (-0.08)	Medium dense grey very sandy GRAVEL (Blowing noted)	Rapid - water rose to 1.20m in 20min	Water rose to 1.20m during a 20minute observation period. Strike not sealed.
	BH09	3.40 (1.37)	Firm grey/brown slightlly sandy slightly gravelly SILT/CLAY	Slow - water rose to 3.0m in 20min	Water rose to 3.0m during a 20minute observation period. Sealed strike at 4.10m.
	BH10	2.90 (0.62)	Medium dense grey/brown silty sandy GRAVEL	Slow – water rose to 2.50m in 20min	Water rose to 2.50m during a 20minute observation period. Sealed strike at 3.10m.
	BH11	2.50 (1.0)	Medium dense grey/brown very clayey GRAVEL - Strong hydrocarbon odour noted	Slow - water rose to 2.0m in 20min	Water rose to 2.0m during a 20minute observation period. Strike not sealed.
	BH12	2.50 (1.33)	Medium dense grey/brown very clayey GRAVEL	Slow - water rose to 2.30m in 20min	Water rose to 2.30m during a 20minute observation period. Strike sealed at 3.0m.
Rotary Drillholes	RC01	2.90 (1.14)	Interface of upper CLAY and lower brown sandy GRAVEL	Seepage - sealed strike at 3.30m	Water was noted at 5.80m bgl (- 1.76m OD) in the drillhole upon removal of the drill casing. RC ended at 25.0m. (08-02-24) Water was noted at 4.60m bgl (- 1.02m OD) in the drillhole upon
		16.40 (-12.36)	Interface of upper grey black gravelly CLAY and lower grey brown clayey sandy GRAVEL	Slow – not sealed	
	RC02	15.0 (-11.42)	Interface of upper grey black sandy gravelly cobbly CLAY and lower grey brown clayey sandy GRAVEL	Seepage - sealed strike at 16.0m	
		17.90 (-14.32)	Lower grey brown clayey sandy GRAVEL	Slow – not sealed	removal of the drill casing. RC ended at 23.60m. (12-02-24)
	RC03	17.80 -13.98	Interface of upper grey brown gravelly CLAY and lower grey brown clayey sandy GRAVEL	-	Water was noted at 4.0m bgl (- 0.18m OD) in the drillhole upon removal of the drill casing. RC ended at 25.0m. (15-02-24)

Cont.

Trial Pits	TP01	2.0 (1.86)	(Medium dense) Grey slightly clayey sandy GRAVEL with a low cobble content	Moderate	Trial Pit ended due to water ingress. Stability remarked as good.
	TP03	2.80 (1.33)	Stiff grey mottled light brown sandy slightly gravelly CLAY	Moderate	Stability remarked as good.
	TP06	2.80 (1.31)	(Dense) Light brown clayey sandy GRAVEL with a low cobble content	Seepage	Stability remarked as good.
	TP07	2.50 (1.56)	Stiff light brown/grey very sandy gravelly CLAY	Moderate	Trial Pit ended due to water ingress. Stability remarked as good.
	TP08	2.10 (1.46)	Firm to stiff brown mottled grey sandy gravelly CLAY with a low cobble content	Moderate	Trial Pit ended due to water ingress. Stability remarked as good.
	TP09	2.0 (1.50)	Firm to stiff brown sandy gravelly CLAY with a medium cobble content	Moderate	Trial Pit ended due to water ingress. Stability remarked as good.
	TP10	2.30 (1.58)	(Medium dense to dense) Brown slightly clayey sandy GRAVEL with a medium cobble content	Moderate	Trial Pit ended due to water ingress. Stability remarked as good.

6. GROUND ASSESSMENT & ENGINEERING RECOMMENDATIONS

6.1 General

In light of the ground investigation findings, the following geotechnical issues are developed and discussed:

- Foundations
- Groundwater / Infiltration
- Slopes / Batters
- Buried Concrete
- Waste Acceptance Criteria [WAC] & Environmental Testing
 - Soils destined for Landfill

6.2 Foundations

The ground investigation findings demonstrate a variable sequence of soils mantling the site. The findings from the boreholes suggest a very stiff over-consolidated CLAY underlies a cover of initial MADE GROUND overlying natural firm and firm to stiff, rarely soft CLAY and medium dense waterbearing GRAVEL. The depth to the basal very stiff and stiff till is quite consistent in that it ranges from 3 to 4.50m below ground level. There is potential to intercept Made Ground to appreciable depths (up to 3.0m / 1.08m OD in TP05) suggesting there is a significant variability in soil composition on the site, most likely attributable to the construction history on site, with the development in 1959 of Croke Villas. Based on SPT N values, there are areas with soft deposits to depths of ca. 2.0m.

Given the prominence of Made Ground (varying from 1.0m to 3.0m) and presence of generally firm and firm to stiff, rarely soft / low strength soils, the selected foundation solution for heavy builds will have to be founded within deeper competent strata in order to support structural loads.

Piles are recommended to support the structural loads and negate the risk of unacceptable settlement in the Made Ground and underlying generally medium strength soils. The use of piles would also eliminate the need to form excavations in potentially water-bearing near-surface soils (refer to Section 6.3). The use of a bored displacement pile system would curb the volume of arisings which would otherwise be generated using bored / CFA piles. However, advice should be sought from the piling contractor (or their designer) with regard to the most suitable pile type for the ground conditions.

Given the depth of rockhead (ca. 20m bgl), it is expected that adequate embedment in the lower CLAY layer will mobilise skin friction and end bearing. Ahead of coring, pile safe working load capacity (compression) should not be dependent on achieving end-bearing on the bedrock given its deep-seated profile. Trial piling in advance of production piling is advised to confirm embedment or penetration depths and more importantly validate that settlements would be acceptable at design or safe working loads (SWL).

The pile designer should consider negative skin friction from the Made Ground and soft to firm CLAY (potentially the upper 2-3m) on the selected piling technique. Floor slab loadings for the building unit are unknown but a suspended floor slab is recommended in view of the presence of unconsolidated and therefore compressible Made Ground across the site. It may be possible, if the existing fill is rolled and capped with a layer of SR21 Annex E compliant granular material, an adequate support for floor slabs could be generated, unless unusually high pressures are envisaged. Given the concentrations of total organic carbon detected in shallow soils (See Appendix 8), ground gas may be present on site. Measures should be incorporated in the ground slab design for the inclusion of a barrier to any such subterranean gases should the cover of Made Ground remain on site.

An engineered fill platform or piling mat to support the piling plant should be designed in accordance with BRE 470. The thickness and granular fill type (most likely T0 to SR21) should be selected for the ground conditions and specific rig loadings. It is assumed that imported granular fill used will remain

in situ under the footprint of the building after piling works are completed, therefore it should meet the chemical and durability / soundness parameters listed in Annex E of SR21:2014+A1:2016. Drainage and maintenance are key factors or considerations in pile platform design and to ensure successful piling operations. It is noted that T0 will not permit free draining conditions, hence surface water management and maintenance of the piling is advised as set out in BRE 470.

Plate bearing tests could be undertaken across the site to assess the performance of the existing Made Ground layer and the results used design platform thickness. Assuming the Made Ground is to be left in place, compaction using a smooth drum roller without vibration with a mass per metre of roll of not less than 5400 kg should be used and achieve an improvement in the performance (stiffness) of the Made Ground before constructing a piling platform.

6.3 Groundwater / Infiltration

As noted in Section 5.3, shallow groundwater strikes were present in open excavations ranging from rare seepages at depths of ca. 1.50m, increasing in intensity with depth, becoming slow to moderate from 2.0m and 2.50m bgl. These shallow groundwater strikes were generally hosted in indigenous gravel-dominant strata.

It is anticipated that if shallow temporary excavation intercepts these natural gravel layers, at depths ranging 1.60m to 2.10m in a number of pits, then water ingress will occur. It is likely that groundwater will remain in the base of these excavations as it did in five of the seven pits on site. It should be noted that groundwater can also exist as perched waterbodies often hosted in mixed Made Ground.

Deep-seated water entry was observed in borehole BH08 between 3.80m and 4.50m bgl during its construction, the most intense reading at 4.20m bgl when rapid ingress was noted rising to a level of 1.20m bgl in 20minutes. Blowing sands were also a feature of this strike. Its occurrence in one of the thirteen boreholes suggests it is localised in nature however. The lack of permeability in the underlying cemented till implies where minor sand or gravel layers do exist, water will be encountered within these porous lenses, under a considerable piezometric head. This is likely to be the case with the aforementioned multiple strikes in BH08 at both 3.90m and 4.20m bgl, both of which were found confined between an upper firm CLAY and the lower cemented black till.

Should water be encountered during deeper digs / excavations it is likely that de-watering will be required through a combination of strategic sump pumping and / or perimeter drains. The lateral connectivity of the uppermost water-bearing Gravel layer will dictate how successfully the local groundwater level can be drawn down, should this be required. As mentioned in Section 5.3, the potential does exist for there to be seasonal changes in groundwater level. The works were carried out during winter 2023/24. It may be the case that the various waterbodies at depth are subject to seasonal variations.

Four soakaway tests were conducted on the site. The tests were carried out in the upper Made Ground clayey soils in addition to the uppermost natural cohesive overburden soils. The highly impermeable nature of the natural soils may account for the low infiltration rates obtained.

It is likely that such soils would not be suitable for conventional soakaways being classified as offering only low natural infiltration (Table 2).

Table 2 – Measured infiltration rates (f) expressed as exposed area (metre) per unit time (minute)

Soakaway Test No.	Depth of Test (m bgl)	f (m/min)	f (m/sec)
SA02 (Cycle 1)*	1.50	0.00103 m/min	1.71E -05 m/sec
SA02 (Cycle 2)*		0.00067 m/min	1.121E -05 m/sec
SA08 (Cycle 1)**	1.50	0.00275 m/min	4.58E -05 m/sec
SA08 (Cycle 2)**		0.00206 m/min	3.439E -05 m/sec
SA09 (Cycle 1)**	1.50	0.00169 m/min	2.811 -05 m/sec
SA09 (Cycle 2)**		0.00143 m/min	2.387 -05 m/sec
SA10 (Cycle 1)**	1.60	0.00141 m/min	2.343 -05 m/sec
SA10 (Cycle 2)**		0.00117 m/min	1.95E -05 m/sec

^{*}Conducted in MADE GROUND

6.4 Slopes / Batters

A maximum temporary slope angle of 1V to 1.5H (33°) is anticipated for batters constructed within the upper medium strength fine grained soils. A slope angle of 1V to 2H (26°) should be appropriate for long term batters in the same soils. Instability was generally absent during pitting with minor sidewall collapse reserved for lower water-saturated gravel layers. Where deep excavation works are required in the superficial deposits, the use of trench box support is advised. In addition, the uppermost fine subsoils will be susceptible to softening and degradation and surface water or groundwater ingress can lead to a significant reduction in shear strength. Perched water can exist locally and this should be considered in risk assessments for excavations. Presence of ground gas should also be a consideration given the drape of Made Ground on the site.

Site operatives or personnel should not enter unsupported excavations and should be informed of potential risks. Where site operatives or engineering staff work in close proximity to temporary slopes or batters, these should be inspected and approved by a suitably experienced civil engineer, preferably with geotechnical experience. Where there is a risk of spalling of battered slopes, the use of a geogrid is recommended. The geogrid should be anchored at the top and bottom of the ridge face to contain particles such as gravel, cobbles and / or boulders, anthropogenic materials that may become dislodged.

6.5 Buried Concrete

The chemical analysis tests on natural soil samples (BRE SD1 analysis suite) show pH (2.5:1) values ranging from 7.7 to 9.3. The sulphate aqueous extract (SO₄) results from borehole and trial pit samples determined values of <10 and 880mg/l. This would suggest the 'as-received' soil samples tested could be categorised as BRE Class DS-2.

Table C2 ACEC for brownfield sites in BRE SD 1 (2005) can be used in the selection and design of concrete. If mobile groundwater conditions prevail at the site and given the pH values obtained from the testing, then ACEC class AC-2 would be expected to be appropriate for buried concrete in the soils. In line with I.S. EN 206-1:2013, given the elevated acid soluble sulphate contents reported, concrete could be manufactured to Class XA2 where founded or positioned in the upper soils (Class XA2 being >3000 and \leq 12000 SO₄²⁻ mg/kg).

6.6 Waste Acceptance Criteria [WAC] & Environmental Testing – Soils destined for Landfill Thirty soil samples from boreholes and trial pits were analysed for their compliance to the criteria set out in the 2002 European Landfill Directive (2003/33/EC). The results from testing feature in Appendix 8.

^{**} Conducted partly in MADE GROUND

It would be prudent, given the volume of analysis, that a waste characterisation assessment of the results would be carried out in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015). We would recommend that a specialist environmental consultant (e.g. O'Callaghan Moran Consultants) be engaged to undertake this assessment.

Trace asbestos (<0.001%) levels in the form of Chrysotile were found in a sample from TP05 at 0.80m. Given trial pit TP05 contained the most significant thickness of Made Ground of all the trial pits opened on site, two further samples from the same pit were also screened for asbestos. Neither reported ACM. However, given the abundance of rubble noted in the Made Ground cover on site, the potential to intercept similar "fibres/clumps" cannot be discounted.

REFERENCES

- **1.0** BS 5930 (2015+A1:2020) Code of Practice for Site Investigation, British Standards Institution (BSI).
- 2.0 BS 1377 (1990) Methods of Testing of Soils for Civil Engineering Purposes, BSI.
- 3.0 Dublin City Council (n.d.). Section 15.1.1.17 SDRA 14 Croke Villas and Environs. In *Dublin City Council Development Plan 2016-2022*. Retrieved February 27, 2024 from the Dublin City Council website https://www.dublincity.ie/dublin-city-development-plan-2016-2022/15-strategic-development-and-regeneration-areas-guiding-principles-development/151-development-principles-17.
- 4.0 Eurocode 7, Part 2: Ground Investigation & Testing (EN 1997-2:2007)
- 5.0 Irish Standard IS 888:2016, NSAI (Published in March 2016)
- **6.0** Marchant T.R. and Sevastopulo G. D. (1980). The Calp of the Dublin District. Journal of Earth Sciences, 3(2), pp195-203
- **7.0** Nolan, S. C. (1986). The Carboniferous geology of the Dublin area. Unpublished Ph.D. Thesis, University of Dublin.
- **8.0** Site Investigation Practice: Assessing BS 5930 (1986), Geological Society Special Publication, No. 2.
- 9.0 Sowers, G.F. (1962) Shallow Foundations, Foundation Engineering, McGraw Hill
- 10.0SR21:2014+A1:2016 Guidance on the use of IS EN 13242+A1:2007
- **11.0**Terzaghi, K., Peck, R.B., & Mesri, G. (1996). Soil Mechanics in Engineering, 3rd Edition. New York, Wiley.
- **12.0**Thom's Almanac (1862). Sackville Garden from Thom's Almanac and Official Directory for the Year 1862. Retrieved February 28, 2024, from the Library Ireland website; https://www.libraryireland.com/Dublin-Street-Directory-1862/1220.php
- **13.0**Tinnelly Group (2018). Croke Villas, Dublin. Retrieved February 29th, 2024 from the Tinnelly Group website https://www.tinnelly.com/projects/croke-villas-dublin/
- **14.0**White, L.W. (December, 2012). Hanly, Dáithi. Retrieved February 28th, 2024 from the Dictionary of Irish Biographies website https://www.dib.ie/biography/hanly-daithi-a9501

Appendix 1

Trial Pit Logs & Photographs

REPORT NUMBER

							TRIAL PI SHEET	I NO.	TP0 Shee	t 1 of 1		
.OGG	ED BY	DM	CO-ORDINAT	ES		63.80 E 67.43 N		DATE ST			1/2023	
CLIEN		NDFA MORCE	GROUND LE	VEL (m)	3.86			EXCAVA METHOD	TION		ked Exc	 avatoi
									Samples	3		eter
		Geotechnical Descripti	on	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
	CLAY w	GROUND: Dark brown sandy sli ith red brick fragments and plas i. Gravel is fine to medium, suba	stic. Sand is fine to		0.20	3.66						
	brick fra Sand is	GROUND: Brown sandy gravelly gments and cobble-sized concr fine to medium. Gravel is fine to ular to subrounded	rete fragments.		0.60	3.26		AA198501	В	0.70-0.80		
	Stiff ligh CLAY. (subroun	it brown mottled dark brown slig Gravel is fine to medium, suban ided.	ihtly gravelly gular to		1.30	2.56		AA198502	В	1.30-1.40		
2.0	a low co	n dense) Grey slightly clayey sa obble content. Sand is fine to me ided fine to coarse. Cobbles are ided.	edium. Gravel is	2-4 9 K 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.90	1.96	(Moderate	AA198503	В	2.20-2.30		
3.0	End of 1	Γrial Pit at 3.00m			3.00	0.86						

REPORT NUMBER

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas TRIAL PIT NO.			
SHEET	TP0)2 et 1 of 1	
LOGGED BY DM CO-ORDINATES 716,580.00 E 735,762.96 N DATE STARTED DATE COMPLETI		1/2023 1/2023	
CLIENT NDFA ENGINEER MORCE GROUND LEVEL (m) 4.12 EXCAVATION METHOD	Tracked Excav		avator
Samples	3	a)	meter
Ceotechnical Description Elevation Sample Ref Per Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0 TOPSOIL 0.20 3.92			
MADE GROUND: Dark brown/grey very sandy gravelly CLAY with a low cobble content and red brick fragments, plastic and cobble-sized concrete fragments. Sand is fine			
to medium. Gravel is subrounded fine to medium. Cobbles are subangular to subrounded. MADE GROUND: Dark brown/grey very sandy gravelly CLAY with a low cobble content and red brick fragments.	0.70-0.80		
AA198505 B	1.40-1.50		
2.00 End of Trial Pit at 2.00m			
-3.0			
Groundwater Conditions Dry			
Stability Good			
General Remarks Slow progress from 1.0m bgl. Pit ended due to concrete slab obstruction.			

REPORT NUMBER

	3SL/									250	00-3	
CON	TRACT	NDFA Social Housing Bundles	4/5 - Lot 3 - Croke	e Villas				TRIAL P	IT NO.	TP0 Shee	3 et 1 of 1	
LOG	GED BY	DM	CO-ORDINAT	res		97.94 E 54.43 N		DATE ST			1/2023 1/2023	
CLIE ENGI	NT INEER	NDFA MORCE	GROUND LE	VEL (m)	4.13			EXCAVA METHOD	TION		ked Exc	avator
									Sample	s	a)	meter
		Geotechnical Description	1	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
1.0	a low co fragmen fine to m	GROUND: Dark grey clayey sand obble and boulder content and red ats. Sand is fine to medium. Grave nedium. Cobbles are subangular. ular (up to 300mm).	l brick el is subangular		0.20	3.93		AA198506	В	0.80-0.90		
	Stiff blad Sand is medium	ck sandy gravelly CLAY with a low fine to medium. Gravel is subang . Cobbles are subangular.	v cobble content. ular fine to		1.30	2.83		AA198507	В	1.50-1.60		
2.0	Sand is	y mottled light brown sandy slight fine to medium. Gravel is subang ided fine to medium.	ly gravelly CLAY. ular to		2.00	2.13	+	AA198508	В	2.40-2.50		
3.0	content. subroun	wn sandy gravelly CLAY with a lo Sand is fine to medium. Gravel is ided fine to medium. Cobbles are Frial Pit at 3.10m	s subangular to	0	3.10	1.23	(Moderate					
	ındwater (er strike at	Conditions t 2.80m										
Stab Good												
		ala.										
Gene	eral Rema	rks										

REPORT NUMBER

IGSL									25000-3		
CON	TRACT NDFA Social Housing Bundles 4/5	5 - Lot 3 - Croke	Villas				TRIAL PI SHEET	T NO.	TP0	4 t 1 of 1	
LOG	GED BY DM	CO-ORDINAT	ES		16.81 E 15.78 N		DATE STA			/2023	
CLIE ENGI	NT NDFA INEER MORCE	GROUND LEV	/EL (m)	3.92			EXCAVA METHOD	TION		ed Exc	avato
								Samples	3	a)	meter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSOIL										
	MADE GROUND: Dark brown/black slightly gravelly SAND with red brick fragments, placobble-sized concrete fragments. Sand is fir Gravel is subangular to subrounded fine to respect to the subrounded fine to the sub	stic and ne to medium.		0.20	3.72						
1.0				1.30	2.62		AA198509	В	0.80-0.90		
	Stiff dark brown mottled light brown sandy s CLAY. Sand is fine to medium. Gravel is subsubrounded fine to meidum.	lightly gravelly bangular to					AA198510	В	1.50-1.60		
2.0	(Dense) Light brown/grey slightly clayey san with a medium cobble content. Sand is fine Gravel is subangular fine to medium. Cobble subangular.	to medium.		1.90	2.02						
			8 0 0	2.50	1.42		AA198511	В	2.30-2.40		
	(Dense) Grey clayey sandy GRAVEL with a cobble content. Sand is fine to medium. Gra subangular fine to coarse. Cobbles are suba	evel is					AA198512	В	2.70-2.80		
3.0	End of Trial Pit at 2.90m		77 00	2.90	1.02						
	ındwater Conditions										
Dry											
Stab i Good											
Gene	eral Remarks										

REPORT NUMBER

/I@	BL/			00						250	00-3	
CON	TRACT	NDFA Social Housing Bundles 4	/5 - Lot 3 - Croke	e Villas				TRIAL P	IT NO.	TP0	5 et 1 of 1	
LOG	GED BY	DM	CO-ORDINAT	TES	716,63 735,76	31.44 E 63.85 N		DATE ST		28/1	1/2023 1/2023	
CLIE	NT NEER	NDFA MORCE	GROUND LE	VEL (m)	4.08			EXCAVA METHOD	TION		ked Exc	avator
ENGI	NEEK	MORGE							Samples	6		ter
							d)				КРа)	trome
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	OPOLIND: Dark brown grovelly SA	ND with a low		0.10	3.98						
1.0	MADE (cobble) cobble; Gravel i Cobbles	GROUND: Dark brown gravelly SA content and red brick fragments, pl sized concrete fragments. Sand is is subangular to subrounded fine to a are subrounded.	and with a low astic and fine to medium. medium.					AA198513 AA198514		0.80-0.90		
.0	End of ⁷	Trial Pit at 3.00m			3.00	1.08		AA198515	В	2.70-2.80		
Grou Ory	ndwater	Conditions										
Stab Good												
Gene	eral Rema	ırks										

REPORT NUMBER

25000-3

_OG(RACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas TRIAL PIT NO SHEET			TP06 Sheet 1 of 1						
	GED BY	DM	CO-ORDINAT	ES	716,64 735,75	17.26 E 50.03 N		DATE ST		29/11	1/2023	
CLIE	NT NEER	NDFA MORCE	GROUND LE	VEL (m)	4.11			EXCAVA METHOD		Track	ked Exc	avator
							Φ		Samples		(КРа)	trometer
		Geotechnical Descrip	tion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	O TOPSOIL MADE GROUND: Dark brown/black gravelly CLAY with red brick fragme medium. Gravel is subrounded fine		s. Sand is fine to		0.10	4.01						
	brick fra	GROUND: Brown sandy grave gments, plastic and cobble-sizes. Sand is fine to medium. Gradium	zed concrete		0.50	3.61		AA198516	В	0.70-0.80		
1.0	MADE O	GROUND: Dark brown/black s CLAY with red brick fragment . Gravel is subrounded fine to pe (measures 1.20m from wal	s. Sand is fine to medium.		0.90	3.21				0.70 0.00		
2.0	cobble c	Light brown clayey sandy GR content. Sand is fine to mediun ded fine to medium. Cobbles	m. Gravel is	\$ 6 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.60	2.51	,	AA198517	В	1.70-1.80		
-	End of T	Frial Pit at 2.80m			Į .	1.31	\$\frac{1}{}\$ (Seepage)	AA198518	В	2.50-2.60		
3.0												
	ndwater (er strike at	Conditions t 2.80m		ı	<u> </u>							

IGSL TP LOG 25000 -

General Remarks
Foundation Inspection Pit FP06 conducted in pit - no foundation exposed.

REPORT NUMBER

CO-ORDINATES 716,653.69 E 735,734.44 N CLIENT NDFA ENGINEER MORCE CO-ORDINATES 716,653.69 E 735,734.44 N GROUND LEVEL (m) 4.06 CLIENT NDFA EXCAVATION METHOD Samples Samples	et 1 of 1 1/2023 1/2023 ked Exca	avato
CLIENT NDFA ENGINEER MORCE Track GROUND LEVEL (m) Track GROUND LEVEL (m) A.06 Samples	1/2023 ked Exca	avato
CLIENT NDFA ENGINEER MORCE Samples		avato
	5 a)	avato
Controllering Departmention	1 0	neter
Geotechnical Description Elevation Water Strike Depth	Vane Test (KPa)	Hand Penetrometer
0.0 TOPSOIL 0.10 3.96		
MADE GROUND: Dark brown to brown sandy very gravelly CLAY with a low cobble content and red brick fragments, plastic and cobble-sized concrete fragments. Sand is fine to medium. Gravel is subangular to subrounded fine to medium. Cobbles are subangular to subrounded. MADE GROUND: Light brown sandy very gravelly CLAY with a low cobble content and red brick fragments, plastic and cobble-sized concrete fragments. Sand is fine to medium. Gravel is subangular to subrounded fine to medium. Cobbles are subangular to subrounded. AA198520 B 0.70-0.80		
Firm to stiff light brown sandy gravelly CLAY with a low cobble content. Sand is fine to medium. Gravel is subangular fine to medium. Cobbles are subangular to subrounded. 2.0 AA198521 B 1.70-1.80	J	
Stiff light brown/grey very sandy gravelly CLAY. Sand is fine to medium. Gravel is subangular to subrounded fine to medium.		
End of Trial Pit at 2.80m		
Groundwater Conditions Water strike at 2.50m	1	
Stability Good		
General Remarks Dig ended due to water ingress		

REPORT NUMBER

ावश्र											
CONTRACT	NDFA Social Housing Bund	les 4/5 - Lot 3 - Croke	Villas				TRIAL P	IT NO.	TP0	8 et 1 of 1	
LOGGED BY	Y DM	CO-ORDINAT		735,73	69.56 E 31.84 N		DATE S				
CLIENT ENGINEER	NDFA MORCE	GROUND LEV	/EL (m)	3.56			EXCAVA METHO		Tracl	avator	
								Sample	s	a)	neter
	Geotechnical Descrip	otion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
with a	GOIL GROUND: Dark brown/black s tow cobble content and red bricete, sea shells. Sand is fine to munded fine to medium. Cobbles	k fragments, plastic, nedium. Gravel is		0.20	3.36		A A198524	. В	0.60-0.70		
conter	to stiff brown sandy gravelly CLA nt. Sand is fine to medium. Grav o medium. Cobbles are subround	el is subrounded ded.		1.30	2.26		AA198525	; В	1.50-1.60		
Firm t a low subro	to stiff brown mottled grey sandy cobble content. Sand is fine to runded fine to medium. Cobbles	gravelly CLAY with nedium. Gravel is are subrounded.				(Moderate)	AA198526) B	2.20-2.30		
cobble	rey sandy gravelly CLAY/SILT we content. Sand is fine to mediur unded fine to medium. Cobbles	m. Gravel is		2.50	1.06		AA198527	'В	2.70-2.80		
3.0 End o	of Trial Pit at 3.00m		-X	3.00	0.56						
Groundwate Water strike Stability Good	er Conditions at 2.10m										
General Ren Dig ended d											

REPORT NUMBER

IGSL			THUAL THE	TH NEGOTIB						25000-3		
CONTR	RACT	NDFA Social Housing Bundles	4/5 - Lot 3 - Croke	Villas				TRIAL P	IT NO.	TP0	9 et 1 of 1	
LOGGE	ED BY	DM	CO-ORDINAT			92.90 E 55.88 N		DATE ST			1/2023 1/2023	
CLIENT ENGINE		NDFA MORCE	GROUND LEV	/EL (m)	3.50			EXCAVA METHOI		Track	ked Exc	avator
									Samples	8	oa)	meter
		Geotechnical Description	ו	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
⊢	TOPSO	IL GROUND: Dark brown sandy grav	velly CLAY with a		0.10	3.40						
-1.0 F	Firm to s	ole content and red brick fragmens, sea shells. Sand is fine to medided fine to medium. Cobbles are stiff brown sandy gravelly CLAY wontent. Sand is fine to medium. Cobbles are ded fine to medium. Cobbles are	nts, plastic, um. Gravel is subrounded. with a medium Gravel is		1.10	2.40		AA198530 AA198531	В	0.70-0.80		
\8	subroun subroun	stiff brown sandy very gravelly CL cobble content. Sand is fine to m ded fine to medium. Cobbles are ded. Frial Pit at 2.30m	AY with a ledium. Gravel is subangular to	\$ 0	2.10	1.40	(Moderate)	AA198532	В	2.10-2.20		
3.0												
	dwater (strike at	Conditions 2.0m				<u> </u>						
Stabilit Good	ty											
	al Rema ded due	rks to water ingress										

REPORT NUMBER

/10	3SL/									250	00-3	
CON	TRACT	NDFA Social Housing Bundle	s 4/5 - Lot 3 - Crok	e Villas				TRIAL PI	T NO.	TP1	0 et 1 of 1	
LOG	GED BY	DM	CO-ORDINA	TES		58.73 E 98.26 N		DATE ST		04/12	2/2023	
CLIE	NT INEER	NDFA MORCE	GROUND LE	EVEL (m)	3.88			EXCAVA METHOD	TION		2/2023 ked Exc	avator
									Sample	s		eter
		Geotechnical Descripti	on	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	IL						0,12				
	MADE (red brick medium	GROUND: Dark brown sandy gr k fragments, plastic, concrete. S . Gravel is subrounded fine to n	avelly CLAY with Sand is fine to nedium.		0.20	3.68		AA198537	В	0.70-0.80		
1.0	Firm bro content. fine to n	own sandy gravelly CLAY with a Sand is fine to medium. Grave nedium. Cobbles are subrounde	medium cobble I is subrounded ed.		1.10	2.78		AA198538	В	1.30-1.40		
2.0	medium are sub	n dense to dense) Brown slightl L with a medium cobble conten I. Gravel is subrounded fine to c rounded. Trial Pit at 2.40m	y clayey sandy t. Sand is fine to coarse. Cobbles			1.78	(Moderate)	AA198539	В	2.30-2.40		
- - 3.0 - - -												
	undwater (er strike at	Conditions t 2.30m										
Stab Good												
	eral Rema ended due	i rks e to water ingress										

REPORT NUMBER

\									250	00-3	
CONTR	NDFA Social Housing Bundles 4/5	5 - Lot 3 - Croke	Villas				TRIAL PI	T NO.	TP1	1 et 1 of 1	
LOGGE	ED BY DM	CO-ORDINAT	ES	716,66 735,78	63.82 E 32.51 N		DATE ST		04/12	2/2023	
CLIENT		GROUND LEV	VEL (m)	4.23			EXCAVA METHOD	TION		2/2023 ked Exc	avator
		1						Samples	3	a)	neter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
1 WE	MADE GROUND: Brown to grey sandy grav with red brick fragments, plastic and cobble concrete fragments. Sand is fine to medium ubrounded fine to medium. 60m Pipe (possible sewage) (measures 0 vall) end of Trial Pit at 1.60m			1.60	2.63		AA198540		0.80-0.90		
Dry	lwater Conditions										
Stability Good	у										
General Dig end	I Remarks led upon intercepting buried clay pipe										

TP01 – 1 of 4

TP01 – 2 of 4

<u>TP01 – 3 of 4</u>

TP01 – 4 of 4

TP02 – 1 of 4

TP02 – 2 of 4

TP02 – 3 of 4

TP02 - 4 of 4

TP03 – 1 of 4

TP03 – 2 of 4

TP03 – 3 of 4

TP03 - 4 of 4

TP04 – 1 of 4

TP04 – 2 of 4

TP04 – 3 of 4

TP04 – 4 of 4

TP05 – 1 of 4

<u>TP05 – 2 of 4</u>

TP05 – 3 of 4

TP05 - 4 of 4

TP06 – 1 of 6

TP06 – 2 of 6

TP06 – 3 of 6

TP06 – 4 of 6

TP06 – 5 of 6

TP06 – 6 of 6

TP07 – 1 of 4

TP07 – 2 of 4

TP07 – 3 of 4

TP07 – 4 of 4

TP08 – 1 of 4

<u>TP08 – 2 of 4</u>

TP08 – 3 of 4

TP08 – 4 of 4

TP09 – 1 of 4

TP09 - 2 of 4

TP09 – 3 of 4

TP09 – 4 of 4

TP10 – 1 of 3

TP10 – 2 of 3

TP10 – 3 of 3

TP11 – 1 of 1

Appendix 2

Foundation Pit Logs

FOUNDATION INSPECTION PIT RECORD

REPORT NUMBER

25000-3

FP04

CONTRACT: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas

LOCATION: FP04 (at ST04-1)

LOGGED BY: D.M.

Date of survey: 30/11/2023

TRIAL PIT NO.

From to Description Ground water

0.00 0.06 Concrete slabs

0.06 2.00 MADE GROUND: Firm dark brown to black sandy gravelly CLAY with a low cobble content, red brick fragments, plastic and concrete.

DRY

See also ST04 log

LOCATION ST/FP04

Date of survey: 29/11/2023

FOUNDATION INSPECTION PIT RECORD

REPORT NUMBER

25000-3

CONTRACT: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas LOCATION: FP06 (at TP06) LOGGED BY: D.M.

TRIAL PIT NO.

Summary of g	round condition	s	
from	to	Description	Ground water
0.00	0.10	TOPSOIL	
0.10	0.50	MADE GROUND: Dark brown/black sandy slightly gravelly CLAY with red brick fragments]
0.50	0.90	MADE GROUND: Brown sandy gravelly CLAY with red brick fragments, plastic and cobble-sized	DRY
		concrete fragments	DICT
0.90	1.60	MADE GROUND: Dark brown/black sandy slightly gravelly CLAY with red brick fragments]
1.60	1.90	(Dense) Light brown clayey sandy GRAVEL with a low cobble content	
See also TP06	log		
LOCATION	FP06	<u>DETAIL</u>	

FOUNDATION INSPECTION PIT RECORD

REPORT NUMBER

25000-3

FP11

CONTRACT: NDFA Social Housing Bundles 4/5 - Lot 3 – Croke Villas

LOCATION: FP11 (at TP11)

LOGGED BY: D.M.

Date of survey: 04/12/2023

TRIAL PIT NO.

Summary of ground conditions

from to Description

0.00 1.60 MADE GROUND: Brown to grey sandy gravelly CLAY with red brick fragments, plastic and cobble-sized concrete fragments

DRY

See also TP11 log

LOCATION FP11

Appendix 3

Cable Percussion Borehole Logs

SPT Calibration Sheet (Er)

IGSL.GDT

GPJ

25000 -

BH LOG

IGSL

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-3

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas BOREHOLE NO. **BH01** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 716,567.59 E **DATE COMMENCED 09/01/2024 BOREHOLE DIAMETER (mm)** 735,776.60 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 5.50 **DATE COMPLETED** 10/01/2024 3.86 CLIENT NDFA SPT HAMMER REF. NO. PT1 РΤ **BORED BY ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 78.21 FC Samples Standpipe Details $\widehat{\Xi}$ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 MADE GROUND comprising black sandy gravelly Clay with rubble) N = 6 (1, 1, 1, 1, 1, 3) AA210240 В 1.00 2.26 1.60 Stiff grey/brown sandy slightly gravelly SILT/CLAY -----1.86 2.00 \vee N = 26(3, 5, 5, 7, 5, 9) AA210241 В 2.00 Dense grey/brown very clayey GRAVEL (Possible very gravelly Clay) N = 18AA210242 В 3.00 0.66 3.20 (6, 6, 5, 4, 4, 5) Stiff brown sandy gravelly CLAY 0.26 3.60 Very stiff black sandy gravelly CLAY with occasional N = 31AA210243 4.00 (4, 5, 5, 7, 8, 11) . 0 . N = 50 (6, 9, 14, 12, 14, 10) - 5 AA210244 В 5.00 <u></u> -1.64 5.50 Obstruction End of Borehole at 5.50 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike Depth То (h) Αt (min) 2.40 3.10 1.5 No water strike 0.5 1.5 5.10 5.20 5.50 5.40 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type REMARKS Safety fencing erected. CAT scanned location and hand dug Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) UT - Undisturbed 100mm Diameter inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

IGSL.GDT

GPJ

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-3

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas BOREHOLE NO. **BH02** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 716,574.21 E **DATE COMMENCED 09/01/2024 BOREHOLE DIAMETER (mm)** 735,758.92 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.80 **DATE COMPLETED** 09/01/2024 4.07 CLIENT NDFA SPT HAMMER REF. NO. PT1 РΤ **BORED BY ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 78.21 FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 MADE GROUND comprising brown sandy gravelly Clay with rubble) N = 7(2, 2, 2, 1, 2, 2) AA210233 В 1.00 N = 23 (3, 4, 4, 7, 6, 6) AA210234 2.00 1.87 2.20 Medium dense grey/brown very clayey GRAVEL (Possible very gravelly Clay) 1.37 2.70 Stiff brown sandy gravelly CLAY 0 N = 21AA210235 В 3.00 ō (3, 3, 4, 4, 5, 8) N = 27AA210236 4.00 (4, 4, 5, 7, 7, 8)-0.23 4.30 Very stiff black sandy gravelly CLAY with occasional N = 46 (4, 5, 7, 9, 14, 16) AA210237 В 5.00 N = 48AA210238 В 6.00 (5, 9, 10, 12, 12, 14) AA210239 В 6.50 N = 50/225 mm (9, 16, 20, 22, 8) -2.73 6.80 Obstruction End of Borehole at 6.80 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike Depth То (h) At (min) 1.90 2 20 No water strike 6.60 6.80 2 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type REMARKS Safety fencing erected. CAT scanned location and hand dug Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

GEOTECHNICAL BORING RECORD

REPORT NUMBER

	NTRAC				dles 4/5 - Lot 3 -		ເຮ		D 1		BOREHO SHEET	JEE INU.	BH03 Sheet 1 of 1	
		NATES LEVEL (n	735,	588.57 E 761.87 N 4.17		PE OLE DIAM OLE DEPT		nm)	Dando 20 200 5.90				CED 08/01/2024 ED 08/01/2024	
_	ENT	ND				MMER REI			PT1		BORED		PT	
ENG	GINEEI	R MO	RCE		ENERG	Y RATIO (9	6)		78.21		PROCES nples	SSED BY	/ FC	
Œ							ے ا	Œ			.	2	- Field Teek	e d
Depth (m)			De	escription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
1	MAD with	E GROUN	ND comprick and (rising black ve concrete fragm	ry gravelly Clay nents		2.07	2.10	AA210228		1.00		N = 31 (3, 3, 6, 7, 8, 10) N = 15	
2	Firm	brown vei	ry gravell	/ SILT/CLAY			1.47	2.70	AA210229	В	2.00		(2, 3, 3, 5, 3, 4)	
3	Stiff I cobb	orown sai les	ndy grave	elly SILT/CLAY	with occasional				AA210230	В	3.00		N = 20 (3, 3, 4, 5, 5, 6)	
4	Very		sandy gr	avelly CLAY w	vith occasional		0.27	3.90	AA210231	В	4.00		N = 32 (5, 6, 6, 8, 9, 9)	
5							-1.73	5.90	AA210232	В	5.00		N = 40 (7, 9, 9, 10, 4, 17)	
-7 -8		ruction of Boreho	le at 5.90	m									N = 50/150 mm (25, 25, 25)	
HA	RD ST	RATA BO	ORING/CH	IISELLING						<u> </u>	<u> </u>	W	 Ater strike det	AILS
ror	m (m)	To (m)	Time (h)	Comments		Wate Strike		sing epth	Sealed At	Ris To		me nin)	Comments	
	.30 .70	1.50 5.90	1 1.5										No water strike	
								11.2	10 :	1 -		GR	OUNDWATER PRO	GRES
	TALLA Date	Tip Dep		p RZ Base	Туре	Dat	е	Hole Depth	Casing Depth	De W	pth to later	Commer	nts	
REI	MARK	S Safety to inspect	fencing elion pit ca	rected. CAT so	canned location a	nd hand d	ug	B - Bulk LB - Lard	DIe Legen II Disturbed (tub) Disturbed ge Bulk Disturbe vironmental San	d	+ Vial + Tub)	Sample P - Uni	ndisturbed 100mm Diameter e disturbed Piston Sample ater Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

O-ORI	DINATES		al Housing Bundl 593.45 E	RIG TY				Dando 20		SHEET		Sheet 1 of 1	
	ID LEVEL (735	,744.14 N 4.23	BORE	OLE DIAMI		nm)	200 7.60				CED 05/01/2024 ED 05/01/2024	
LIENT)FA			AMMER REF			PT1		BORED		PT	
NGINE	ER MO	DRCE		ENERG	SY RATIO (9	6)		78.21		PROCES nples	SSED B	Y FC	
						u K	Œ	_		ibies	2	Field Teek	be
		D	escription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
gra	ADE GROU avelly Clay		rising brown/blade e	k sandy		2.13	2.10	AA210221	В	1.00		N = 8 (2, 3, 2, 3, 2, 1) N = 8	
			andy gravelly SIL		-XO	1.53	2.70	AA210222	В	2.00		(1, 0, 1, 1, 3, 3)	
occ	casional co	bbles	, 5 , 5 // 5					AA210223	В	3.00		N = 14 (2, 3, 3, 3, 4, 4)	
Vei	ry stiff blac	k sandy g	ravelly CLAY with	n some		-0.17	4.40	AA210224 	В	4.00		N = 20 (3, 4, 4, 5, 5, 6)	
								AA210225	В	5.00		N = 34 (4, 6, 6, 8, 9, 11)	
								AA210226	В	6.00		N = 41 (4, 7, 9, 10, 10, 12)	
Ob	struction					-3.37	7.60	AA210227	В	7.00		N = 46 (3, 4, 8, 14, 12, 12) N = 50/75 mm (25, 50)	
	d of Boreho	ole at 7.60) m									(25, 50)	
 ARD	STRATA B		HISELLING		<u> </u>							ATER STRIKE DET	AILS
om (m) To (m)	Time (h)	Comments		Wate Strike		sing epth	Sealed At	Ris To		ime nin)	Comments	
7.40	7.60	2			1.50		.50	No	No		20	Seepage	
ют	LATIONS	TAIL 0					Hole	Casing	Πe	nth to		OUNDWATER PRO	GRI
Date	Tip De		op RZ Base	Туре	Dat	e	Depth	Depth	W	pth to ater	Comme	nts	
EMAR	KS Safety inspec	fencing e tion pit ca	rected. CAT sca rried out.	nned location	and hand d	ug	B - Bulk LB - Larg	Ole Legene Il Disturbed (tub) Disturbed ge Bulk Disturbed vironmental Sam	d	, Vial , Tub)	Samp P - Ur	Jndisturbed 100mm Diameter ile disturbed Piston Sample /ater Sample	

GPJ IGSL.GDT

25000 -

BH LOG

IGSL

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-3

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas BOREHOLE NO. **BH05** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 716,606.93 E **DATE COMMENCED** 04/01/2024 **BOREHOLE DIAMETER (mm)** 735,736.60 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 5.20 DATE COMPLETED 04/01/2024 4.15 SPT HAMMER REF. NO. PT1 CLIENT NDFA **BORED BY** РΤ **ENGINEER** MORCE **ENERGY RATIO (%)** PROCESSED BY 78.21 FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 MADE GROUND comprising brown gravelly Clay with frequent rubble N = 7 (1, 1, 2, 1, 2, 2) AA210215 В 1.00 N = 10 (1, 2, 1, 2, 2, 5) AA210216 В 2.00 1.85 2.30 Firm to stiff grey/brown very sandy gravelly XO SILT/CLAY N = 19AA210217 В 3.00 (3, 3, 4, 4, 5, 6) 0.05 4.10 N = 37AA210218 4.00 (4, 6, 7, 9, 9, 12) Very stiff black sandy gravelly CLAY with occasional cobbles 3 N = 50/150 mm (11, 14, 27, 23) AA210219 5.00 -1.05 5.20 Obstruction End of Borehole at 5.20 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Water Time Casing Sealed Rise Time From (m) To (m) Comments Comments Strike Depth Αt То (min) (h) 4.70 0.5 1.5 4.60 1.50 1.50 Nο Nο 20 Seepage 5.00 5.20 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type REMARKS Safety fencing erected. CAT scanned location and hand dug Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

IGSL.GDT

GPJ

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-3

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas BOREHOLE NO. **BH06** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 716,622.74 E **DATE COMMENCED 03/01/2024 BOREHOLE DIAMETER (mm)** 735,728.70 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.10 DATE COMPLETED 04/01/2024 4.17 CLIENT NDFA SPT HAMMER REF. NO. PT1 **BORED BY** РΤ **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 78.21 FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 MADE GROUND comprising brown Clay with frequent rubble N = 9 (1, 2, 2, 2, 3, 2) AA210210 1.00 N = 10 (2, 2, 2, 3, 2, 3) F-2 AA210211 2.00 1.77 2.40 0 0 0 Medium dense grey/brown very clayey GRAVEL (Possible very gravelly Clay) 0-0-0-0 1.17 3.00 N = 17AA210212 В 3.00 Firm to stiff brown sandy gravelly CLAY (2, 3, 3, 4, 4, 6) _____ _____ N = 25AA210213 4.00 (2, 4, 4, 6, 7, 8) -0.13 4.30 Very stiff black sandy gravelly CLAY with occasional N = 62 (8, 15, 15, 17, 18, 12) AA210214 В 5.00 · -1.93 6.10 N = 50/225 mm (11, 14, 15, 16, 19) AA210215 6.00 Obstruction End of Borehole at 6.10 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike Αt То (min) (h) Depth 5.50 6.00 5.70 4.70 Slow 5.20 20 5.20 Nο 1.5 6.10 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type REMARKS Safety fencing erected. CAT scanned location and hand dug Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

GEOTECHNICAL BORING RECORD

REPORT NUMBER

ON	TRACT	Γ NDF	A Social F	lousing Bu	ndles 4/5 - Lo	ot 3 - C	croke Villa	IS				BOREHO SHEET	DLE NO.	BH07 Sheet 1 of 1	
	ORDINA	ATES EVEL (m	735,75	34.89 E 50.89 N 3.87	ВО		E DLE DIAMI DLE DEPT		ım)	Dando 20 200 5.30	000	DATE CO		ED 03/01/2024 ED 03/01/2024	
LIE	NT	NDF	A		-		IMER REF			PT1		BORED I	вү	PT	
NG	INEER	MOF	CE		EN	ERGY	RATIO (9	6)		78.21		PROCES	SED BY	f FC	1
								Ē	Έ			nples		_	be
neplii (iii)			Desc	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
1			·		Clay with rubb			2.07	1.80	AA210206	В	1.00		N = 4 (1, 0, 1, 1, 1, 1)	
2	very gi	avelly Cla	ay)	r clayey Cir	IAVEE (1 055)	DIC		1.17	2.70	AA210207	В	2.00		N = 36 (6, 8, 8, 9, 8, 11)	
3				avelly CLA				0.57	3.30	AA210208	В	3.00		N = 15 (1, 2, 3, 4, 4, 4)	
	Very s cobble		andy grav	elly GLAY	with occasion	iai -				AA210209	В	4.00		N = 52 (5, 4, 10, 12, 12, 18)	
	Obstru End of		at 5.30 m	1				-1.43	5.30					N = 50/75 mm (25, 50)	
7															
IΔF	RD STE	ΡΑΤΑ ΒΟΙ	RING/CHIS	FILING									W	ATER STRIKE DET	ΔΙΙ 9
		o (m)	Time	omments			Wate		sing	Sealed	Ris		me C	Comments	- ILC
2.2	20	, ,	(h) 0.75 2				Strike 2.30		epth 30	2.70	<u>To</u> No		iin)	Seepage	
									Lle!s	Casim				DUNDWATER PRO	GRE
NST	ALLAT	ION DET					Dat		Hole Depth	Casing Depth	De W	oth to ater	Commer	nts	
	ate			RZ Base	Type										
EM	ARKS	Safety fe inspection	ncing ered n pit carri	cted. CAT sed out.	scanned locat	ion an	ıd hand dı	ug	B - Bulk LB - Lar	DIE Legen II Disturbed (tub) Disturbed ge Bulk Disturbe vironmental San	d		Sample P - Und	ndisturbed 100mm Diameter e disturbed Piston Sample ater Sample	

IGSL.GDT

GPJ

25000 -

BH LOG

IGSL

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-3

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas BOREHOLE NO. **BH08** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 716,640.65 E **DATE COMMENCED 10/01/2024 BOREHOLE DIAMETER (mm)** 735,773.51 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 6.50 DATE COMPLETED 11/01/2024 4.12 CLIENT NDFA SPT HAMMER REF. NO. PT1 РΤ **BORED BY ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 78.21 FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 MADE GROUND comprising brown gravelly Clay with frequent rubble N = 26AA210245 В 1.00 (4, 4, 4, 5, 8, 9)N = 28 (3, 4, 6, 6, 7, 9) AA210246 В 2.00 1.82 2.30 Medium dense grey/brown very clayey GRAVEL (Possible very gravelly Clay) 0000) L=0= N = 150000 AA210247 В 3.00 (3, 3, 3, 4, 4, 4) 0.72 3.40 Firm dark brown very sandy SILT/CLAY 0.32 3.80 Medium dense grey very sandy GRAVEL (Blowing N = 274 AA210248 4.00 (3, 5, 7, 8, 7, 5) -0.38 4.50 Very stiff black very sandy gravelly CLAY with some cobbles N = 36 (4, 6, 7, 9, 9, 11) AA210249 R 5.00 N = 60 (8, 12, 12, 15, 16, 17) AA210250 В **™** 6.00 -2.38 6.50 Obstruction End of Borehole at 6.50 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Water Time Casing Sealed Rise Time From (m) To (m) Comments Comments Strike Depth At То (min) (h) 1.70 4.10 2.80 1.50 3.90 20 Moderate 3.90 6.30 4.20 No 1.20 20 6.50 2 4.20 Rapid **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type REMARKS Safety fencing erected. CAT scanned location and hand dug Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) UT - Undisturbed 100mm Diameter inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

GPJ IGSL.GDT

25000 -

BH LOG

IGSL

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-3

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas BOREHOLE NO. **BH09** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 716,662.08 E **DATE COMMENCED** 21/12/2023 **BOREHOLE DIAMETER (mm)** 735,757.21 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 5.80 **DATE COMPLETED** 21/12/2023 4.77 CLIENT NDFA SPT HAMMER REF. NO. PT1 **BORED BY** РΤ **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 78.21 FC Samples Standpipe Details $\widehat{\Xi}$ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 MADE GROUND comprising Clay with rubble N = 4 (1, 1, 1, 1, 1, 1) AA210202 В 1.00 2.67 N = 25 (3, 5, 6, 6, 7, 6) 2.10 AA210203 В 2.00 Firm brown very gravelly SILT/CLAY ____ 2.17 2.60 Firm grey/brown slightly sandy slightly gravelly XO-SILT/CLÁY X N = 13AA210204 В 3.00 (3, 4, 4, 3, 3, 3) 0. -0_-X 0.97 3.80 Stiff dark brown very sandy gravelly silty CLAY $\overline{\times}$ 0.67 4.10 AA210205 4.00 (3, 6, 8, 10, 11, 15) 9. Very stiff black sandy gravelly CLAY with occasional N = 56 (7, 12, 12, 14, 16, 14) - 5 AA210206 В 5.00 <u>. O. .</u> <u>-00</u> -1.03 5.80 N = 50/75 mm Obstruction (25, 21, 50)-6 End of Borehole at 5.80 m -9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Water Time Casing Sealed Rise Time From (m) To (m) Comments Comments Strike At То (min) (h) Depth 4.10 3.00 Slow 4.40 4.60 3.40 20 3.40 1.5 5.70 5.80 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Type REMARKS 2.5hrs moving rig into position due to restricted access. CAT Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) scanned location and hand dug inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

GPJ IGSL.GDT

25000 -

BH LOG

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-3

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas BOREHOLE NO. **BH10** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 716,674.02 E **DATE COMMENCED** 20/12/2023 **BOREHOLE DIAMETER (mm)** 735,735.43 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 5.40 **DATE COMPLETED** 20/12/2023 3.52 CLIENT NDFA SPT HAMMER REF. NO. PT1 **BORED BY** РΤ **ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 78.21 FC Samples Standpipe Details Ξ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 MADE GROUND comprising brown sandy gravelly Clay with brick fragments N = 7(1, 2, 2, 2, 2, 1) AA207646 В 1.00 1.42 N = 12 (1, 0, 2, 2, 3, 5) 2.10 AA207647 В 2.00 Firm grey/brown sandy slightly gravelly SILT/CLAY XO-1.12 2.40 Medium dense grey/brown silty sandy GRAVEL *\(\frac{1}{2}\) 0.42 3.10 N = 45AA207648 В 3.00 (8, 11, 12, 15, 10, 8) Very stiff black sandy gravelly CLAY with occasional <u>.</u> N = 53AA207649 4.00 (6, 8, 10, 13, 14, 16) N = 50/150 mm (11, 14, 23, 27) AA207650 В 5.00 -1.88 5.40 Obstruction End of Borehole at 5.40 m 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike At То (min) (h) Depth 3.10 2.50 Slow 4.30 4.50 2.90 2.90 20 1.25 5.30 5.40 1.5 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type REMARKS 4hrs moving rig into position due to restricted access. CAT Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) scanned location and hand dug inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

GEOTECHNICAL BORING RECORD

REPORT NUMBER

CO	NTRAC	 Γ NDF/	A Social H	ousing Bu	ndles 4/5 - Lot 3 -	Croke Villa	as				BOREHO	DLE NO.	BH11	
	-ORDIN		716,68		RIG TYI				Dando 20		SHEET		Sheet 1 of 1	
		EVEL (mC	735,76		BOREH	OLE DIAM OLE DEPT		nm)	200 4.00				ED 11/01/2024 ED 12/01/2024	
	ENT	NDF			-	MMER REI	_		PT1		BORED I		PT	
ENC	GINEER	MOR	CE		ENERG	Y RATIO (9	%)		78.21		PROCES	SED BY	FC	
Ē							_ _	Ē			nples	>	_	be
Depth (m)			Desc	ription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0		GROUNE nt rubble) comprisi	ng brown g	ravelly Clay with				AA220201	В	1.00		N = 8 (1, 1, 2, 2, 2, 2)	
2	Mediu	m dense g	rey/brown	very claye	y GRAVEL -	00000	1.50	2.00	AA220202	В	2.00		N = 16 (2, 3, 3, 3, 4, 6)	
		y Clay)	on odour	notea. (PC	ssible very	0-0-0-				w	2.50			
3						000	0.30	3.20	AA220203	В	3.00		N = 50 (9, 12, 12, 14, 14, 10)	
	Very s	tiff black g	ravelly CL	.AY with so	me cobbles	0 0			A220204	В	3.50			
4	Obstru	ction Borehole	at 4.00 m			<u></u>	-0.50	4.00					N = 50/225 mm (8, 12, 16, 15, 19)	
5 6														
9														
HΑ	ARD STE	RATA BOR		ELLING		Wate		-1	Caalad	Ris	· T:		TER STRIKE DET	AILS
		o (m)	(11)	omments		Strik	e De	epth	Sealed At	То) (m	iin)	omments	
	.70 .80	2.80 4.00	1 1.5			2.50) 2	.50	No	2.0	υ 2	20	Slow	
								Uolo	Cooler	1	table		OUNDWATER PRO	GRES
		TON DETA				Dat	te	Hole Depth	Casing Depth	De W	oth to ater	Commen	ts	
	Date	Tip Depth	RZ Top	RZ Base	Туре									
REI	MARKS	Safety fer inspection 2.20m.	ncing erec	eted. CAT sed out. Stro	canned location a ng hydrocarbon o	and hand d dour noted	ug d from	B - Bulk LB - Larg	DIE Legen I Disturbed (tub) Disturbed Je Bulk Disturbe vironmental San	d	+ Vial + Tub)	Sample P - Und	disturbed 100mm Diameter isturbed Piston Sample ter Sample	

GPJ IGSL.GDT

25000 -

BH LOG

IGSL

GEOTECHNICAL BORING RECORD

REPORT NUMBER

25000-3

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas BOREHOLE NO. **BH12** SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 716,664.09 E **DATE COMMENCED** 19/12/2023 **BOREHOLE DIAMETER (mm)** 735,793.26 N 200 **GROUND LEVEL (mOD) BOREHOLE DEPTH (m)** 5.80 **DATE COMPLETED** 19/12/2023 3.83 CLIENT NDFA SPT HAMMER REF. NO. PT1 РΤ **BORED BY ENGINEER** MORCE PROCESSED BY **ENERGY RATIO (%)** 78.21 FC Samples Standpipe Details $\widehat{\Xi}$ Ξ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 MADE GROUND comprising brown sandy gravelly Clay with rubble 2.83 1.00 N = 21A207642 В 1.00 Firm brown sandy slightly gravelly SILT/CLAY (3, 3, 4, 4, 5, 8)2.53 1.30 Medium dense grey/brown very clayey GRAVEL (Possible very gravelly Clay) N = 29 (4, 6, 8, 6, 7, 8) -2 AA207643 В 2.00 1.03 2.80 Stiff brown sandy slightly gravelly CLAY N = 17AA207644 В 3.00 (3, 3, 4, 4, 4, 5) 0.23 3.60 Very stiff black very sandy gravelly silty CLAY -XO-- . -N = 37-4 AA207645 4.00 (5, 8, 9, 1, 11, 16) <u>.</u>o. . N = 51 (7, 10, 12, 15, 13, 11) AA207646 В 5.00 XO -1.97 5.80 N = 50/75 mm Obstruction (18, 25, 50)End of Borehole at 5.80 m -9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Rise Time From (m) To (m) Comments Comments Strike То (min) (h) Depth At 3.00 2.30 Slow 5.60 5.80 2.50 2.50 20 1.5 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Tip Depth RZ Top RZ Base Date Type REMARKS Safety fencing erected. CAT scanned location and hand dug Sample Legend D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) UT - Undisturbed 100mm Diameter inspection pit carried out. Sample P - Undisturbed Piston Sample W - Water Sample

GEOTECHNICAL BORING RECORD

REPORT NUMBER

COI	NTRACT	NDF.	A Social F	lousing Bu	ndles 4/5 - Lot	3 - Cr	roke Villa	as				BOREHO	DLE NO.		
CO-	ORDINA	ATES		1.54 E		TYPE		ETED (Dando 20	000	SHEET	MMENIC	Sheet 1 of 1 CED 18/12/2023	
GR	OUND L	EVEL (m0		5.92 N 3.87			LE DIAMI LE DEPT		•	200 6.00				ED 19/12/2023	
	ENT	NDF			-		MER REF			PT1		BORED		PT	
ENC	GINEER	MOR	CE		ENE	KGY I	RATIO (9	%) 		78.21		PROCES nples	SED B	/ FC	
Œ			D	udus Alisa va			ъ	io	(E)	ē	_	.	ery	Field Test	ojpe
Depth (m)			Desc	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Results	Standpipe
0	MADE	GROUNI	O compris	ng gravelly	y Clay	X							-		
						×									
						X	>>>>>							N OF	
1								2.57	1.30	AA207635	В	1.00		N = 25 (2, 3, 5, 5, 7, 8)	
		n dense g		n clayey GF	RAVEL (Possib		0 0 0 0								
	vory gi	avony Old	· <i>y)</i>			0			0.10						
2	Stiff bo	wn very c	ravelly Cl	_AY			<u> </u>	1.77	2.10	AA207636	В	2.00		N = 16 (2, 2, 3, 3, 5, 5)	
		, :	, , ,			-									
						-	00								
:						E				AA207637	В	3.00		N = 24 (3, 5, 5, 5, 7, 7)	
-	\/o=:	iff block -	andy ====	rolly OLAY	with opening	-	oo	0.37	3.50	4					
	cobble		andy grav	elly CLAY	with occasiona	' <u> </u>	<u></u>								
						2				AA207638	В	4.00		N = 55 (5, 8, 9, 14, 16, 16)	
						-	<u></u>								
						K	<u>~ ~ ~</u>								
5						-	2-00-			AA207639	В	5.00		N = 49 (6, 18, 10, 17, 12, 10)	
						-	<u>g</u>								
						K	<u> </u>								
	Obstru	ction					<u> </u>	-2.13	6.00	AA207640	В	6.00		N = 50/75 mm (18, 28, 50)	
			at 6.00 m	I										(12, 20, 00)	
,															
,															
10	DD CTF	ATA POP	RING/CHIS	ELLING									147	ATED STRIVE DET	Λ11 ·
			Time	omments			Wate		0	Sealed	Ris		me c	ATER STRIKE DETA Comments	AIL:
3.	20	3.40	0.75				Strike	e De	epth	At	To) (m	in)		
		6.00	1.5											No water strike	
													GR	OUNDWATER PRO	GRI
IS	TALLAT	ION DET	AILS				Dat	е	Hole Depth	Casing Depth	De	oth to ater	Comme		
	Date	Tip Depth	RZ Top	RZ Base	Type		+		Jopui	Бори	1				
Εľ	MARKS	Safetv fe	ncina erec	ted. CAT	scanned location	n and	hand d	ug	Samr	le Legen	d d				
		inspectio	n pit carrie	ed out.		and		- 9	B - Bulk	Die Legen I Disturbed (tub) Disturbed			Sampl	Indisturbed 100mm Diameter e disturbed Piston Sample	
									LB - Larç Env - En	ge Bulk Disturbe vironmental Sar	nple (Jar	+ Vial + Tub)	W - W	disturbed Piston Sample ater Sample	

SPT Calibration Report

Hammer Energy Measurement Report

Type of Hammer SPT Hammer
Test No EQU2023_58
Client IGSL

 Test Depth (m)
 9.70

 Mass of hammer
 m = 63.5 kg

 Falling height
 h = 0.76 m

 $E_{\text{theor}} = mxgxh = 473 \text{J}$

Characteristics of the instrumented rod

Key

- 1 Anvil
- 2 Part of instrumented rod
- 3 Drive Rod
- 4 Strain Gauge
- 5 Accelerometer
- 6 Ground
- F Force
- d_r Diameter of rod

Fig. B.1 and B.2

BS EN ISO 22476-3: 2005 + A1: 2011

 Diameter
 $d_r = 0.052 \text{ m}$

 Length of instrumented rod
 0.558 m

 Area
 A = 11.61 cm²

 Modulus
 $E_g = 206843 \text{ MPa}$

DATE OF TEST VALID UNTIL HAMMER ID

88		57	90	18	æ	₩.	œ	88	w.	XX.		100	œ	۷.	w	w.	œ	ĸ	90	œ.	68	w.	gr,	800	888.	888	w	œw	œ	888	٠.8	98	OT N	883	880	80C:	XXX
88		83	83	18	86	٧.	m,	89.	73	861		188	83	8.	ω	94	ю	s	79	ø,	(8	ø,	æ	88	88	88	æ	800	×	₩.	w	æ	ЯX		883	883	88
8	ı	•)	z	lø	ж	7)	92	(0,	73	86	88	188	83	8,	şω	y,	8	Ж	31	gr,	(8	g,	ш	8	88	88	æ	83	×	88	w	88	88		86	886	88
B	Å	0	Z	Ų.	Æ	Ľ	2	۷	Z:		W	И	8	ŝ,	Æ	z	U.	Æ	z_{l}	z	Ø	e	c	8	8	×	×	w	×	▓.	ú	×			×	×	×
Ľ	Å	9	ľ	Č	Σ	2	C	Ů.	2	8		8	8	ಪ್ರಿ	٤	z	Ľ.	٤	z_{i}	Z	u	c	s	×	8	8	8	8	×	8	ú	X	8.		×	8	8
Ľ												B	8	ů	£	ű	Ľ	٤	2		Ľ	۵	S	2	8		×	8		8	×	W					
Š							G					B	8	å		ű	٤	٤	u	S	S	۵	S	2	8		ö	8		8	×			×	测		۱
ď														å		ä	Š	Š	ü		ä	S	S	å				8		8							۱
														å		i	Š	Š	ä		ä	S	Š	å				8		ě							8
														å			į	Š	Ž,			S	Š	å						8							
														å			į	Ě	i			r.	Š	ě													
														i			į	Ě	i			ř		å									l				
														å					i			í		ě													
														å					i					i													
																								ě													
														i			į							i													
ı														3			•																				

 $E_{\text{meas}} =$ **0.370** kN-m

 $E_{\text{theor}} =$ **0.473** kN-m

Comments

Energy Ratio (Er) = $\frac{E_{\text{meas}}}{E_{\text{theor}}}$ © COPYRIGHT 2023

Equipe SPT Analyzer Operator

Certificate prepared by

Certificate checked by

Certificate date

10/03/2023

Appendix 4

Rotary Drillhole Logs & Core Photographs

SPT Calibration Sheet (Er)

REPORT NUMBER

CONTRACT ND	A Social Housin	g Bur	ndles 4/5	- Lot 3 - Cro	oke Villas			DRII SHE	LHOLE ET	NO	RC She	01 et 1 of	3					
CO-ORDINATES GROUND LEVEL (m	716,576.67 E 735,772.52 N	N		RIG TYPE FLUSH			ta T44		E COMP									
CLIENT NDI				INCLINATION	ON (deg)	Air/M -90	isi	DRII	LED BY	′	IC	SSL - E)H					
ENGINEER MO	RCE			CORE DIA	METER (mr	n) 78		LOG	GED BY	/	D	. O' Sh	ea					
Core Run Depth (m) T.C.R.% S.C.R.%	Fracture Spacing Log (mm)	500	Non-Intact Zone Legend			Descrip	ition			Depth (m)	Elevation	Standpipe Details	SPT (N Value)					
1 2			× 0 × × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	as returns black sand timber.	RIX DRILLI of MADE (dy gravelly gravelly RIX DRILLI of grey bro	GROUND clay with for	comprising ragments or covery, obs	grey brow f brick and erved by	n driller	1.60	2.44		N = 9 (1, 1, 2, 1, 2, 4)					
			×		RIX DRILLI				driller									
3			000		of grey bro				driller	2.90	1.14		N = 36					
			0 1	as returns	of grey bro	wn sandy	GRAVEL			3.30	0.74		(2, 3, 6, 7, 11, 12)					
5					of grey bla	ok graven	, OLAT			3.30 0.74 0 0 N = 3 (2, 3, 6, 5)								
6				CVMMET		NC: No ro	ooven, ebe	ow (od by (dvill o v	6.80	-2.76		N = 53 (5, 8, 14, 4, 17, 18)					
8				as returns SYMMETI	RIX DRILLI of grey bla RIX DRILLI of grey bla	.ck sandy (NG: No re	GRAVEL covery, obs			7.20	-3.16		N = 50/190 mm (4, 12, 16, 24, 10)					
9												0 0 0	N = 62/165 mm (6, 14, 24, 30, 8)					
REMARKS	05.0m	00.0	200/		Water	Casing	Sealed	Rise	Time				DETAILS					
REMARKS Hole cased from 0.0 INSTALLATION DET Date Tip Dep 08-02-24 25.00	-25.UM. SPI Er :	= 82.2	22%		2.90 16.40	2.90 16.40	At 3.30 N/S	To	(min)	s	mmen Seepag Slow	je						
DIOTAL CARROLL						Hole	Casing	Denth t	0 -			VATE	R DETAILS					
Data Tip Don		Paca	Т	20	Date	Depth	Depth	Depth t Water	Com	nment	S							
Date Tip Dep 08-02-24 25.00	h RZ Top RZ B 1.00 25.0		Тур 50 m	m SP														

REPORT NUMBER

СО	NTR	ACT	N	IDFA	Social H	ousing Bu	ındles 4	/5 - Lot 3 - Cro	oke Villas			DRII	LLHOLE	NO	RC	01 et 2 of	3
	-ORE				716,57 735,77	2.52 N		RIG TYPE		Beretta	a T44	DAT	E COMM		D 01/0	2/2024	1
	OUN	D LE	VEL	(mO IDFA		4.04		FLUSH	ON (dog)	Air/Mis			E COMP			2/2024 SSL - E	
- 1	GINE	ER		IORC				CORE DIA	ON (deg) METER (mr	-90 n) 78		I	GED BY			. O' Sh	
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	cing og m)	Non-intact Zone			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 10							_0.	SYMMET as returns	RIX DRILLI of grey bla	NG: No rec ck gravelly	overy, obs CLAY <i>(co</i>	served by ontinued)	driller			0 0	N = 31/80 mm (11, 19, 24, 7)
- 12																	N = 37/90 mm (8, 16, 27, 10)
14								. 이 . . 이									N = 51/115 mm (5, 10, 19, 32)
15								 - - - -									N = 6/5 mm (20, 24, 6)
17							0 0	as returns	RIX DRILLI of grey bro	NG: No recown clayey s	overy, obs sandy GR	served by o			-12.36		N = 50/35 mm (6, 17, 50)
18	17.70	27	0	0			9 C 0 0 0 0	SYMMET as returns Returns o subround	RIX DRILLI of COBBL f slightly cla ed fine to co	E iyey GRAVI	EL. Grave	l is angula	/		-13.36 -13.66	lo 🖂 o	
17/7/07	19.20	0	0	0			000000000000000000000000000000000000000	SYMMET as returns	RIX DRILLI				driller	19.20	-15.16	I —	N = 18/20 mm (32, 18)
RE	MAR						177.		100	0 : 1	0 1 1	D:		WA	TER S	TRIKE	DETAILS
RE Ho	le ca:	sed 1	from (0.0-2	5.0m. SP	T Er = 82	.22%		Water Strike 2.90 16.40	Casing Depth 2.90 16.40	Sealed At 3.30 N/S	Rise To	Time (min)	s	Seepag Slow	je	DETAILS
S	TA:	LAT	ON 5	CT *					D-4	Hole	Casing	Denth t	0 0			WATER	RDETAILS
L INS	Date -02-2		Tip D 25.0	epth		RZ Base 25.00		ype Imm SP	Date	Depth	Depth	Depth t Water	Con	nment	S		
08 28 28 28 28 28	02-2		۷.ر	,,,	1.00	25.00											

REPORT NUMBER

CON	NTR/	ACT	N	DFA	Social H	ousing B	undle	es 4/5	- Lot 3 - Cro	oke Villas			DRIL SHE	LHOLE	NO	RC	01 et 3 of	3
CO-0				. 0	716,57 735,77	2.52 N			RIG TYPE		Beretta	a T44	DAT	E COMN		D 01/0	2/2024	1
CLIE	ENT			DFA IORC		4.04			FLUSH INCLINATION CORE DIAM		Air/Mis -90 n) 78	st	DRIL	LED BY	1	IG	2/2022 SL - Ε . Ο' Sh	ЭH
	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m 0 ²⁵⁰	cing og m)	Non-intact Zone	Legend			Descripti	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
20	0.40							0 — 0 0 — A:							20.40	-16.36	0 0	
21	21.90	13	0	0					subrounde Driller note	ed fine to co es blowing	ayey GRAVI parse of lim sand & grav	estone. /el			21.90	-17.86		
22									SYMMETI as returns	RIX DRILLI	NG: No rec own black cl	overy, obs ayey sand	erved by c y GRAVEI	driller L				N = 10/5 mm (40, 10)
24															25.00	-20.96		N = 50/40 mm (50, 50)
- 26 - 27 - 28									End	of Borehole	at 21.90 m							N = 50/35 mm (50, 50)
REN			rom (100	5.0m CD	T Er of	200	/-		Water	Casing	Sealed	Rise	Time				DETAILS
REN Hole	e cas	sea 1	rom (J.U-2	5.0m. SP	ı ⊑r = 82		'o		Strike 2.90 16.40	2.90 16.40	At 3.30 N/S	To	(min)	s	mmen Seepag Slow	е	
INICT	TA! '	A T1	ON D	ET A						D-+-	Hole	Casing	Denth to	0 0-			VATER	RDETAILS
08-	Date 02-2	1	ON D Tip De 25.0	epth	RZ Top 1.00	RZ Base 25.00		Тур 50 m	oe ım SP	Date 08-02-24	Depth 25.00	Depth 25.00	Depth to Water 5.80				5 mins a	fter end of

REPORT NUMBER

SYMMETRIX DRILLING: No recovery, observed by driller as returns of MADE GROUND comprising grey brown black sandy gravelly clay with fragments of brick. 1.70 1.88	CON	TR/	ACT	N	DFA	Social H	ousing B	undle	es 4/5	- Lot 3 - Cro	oke Villas			DRI	LLHOLE	E NO	RC She	02 et 1 of	f 3
INCLINATION (deg)					(mOl	735,73	1.52 N							DAT	E COM		ED 09/0	2/202	4
E			ER.							INCLINATI	,	-90	isi						
SYMMETRIX DRILLING: No recovery, observed by driller as returns of Machanism of grey brown black sandy gravelly clay with fragments of brick. SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey brown sandy gravelly CLAY SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey brown clayey sandy GRAVEL SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey brown clayey sandy GRAVEL SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey brown clayey sandy GRAVEL SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey black sandy gravelly cobbly CLAY SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey black sandy gravelly cobbly CLAY N=6 N=6 N=6 N=7 N=8 N=8 N=8 N=8 N=8 N=8 N=8	Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Space Lo	cing og m)	Non-intact Zone	Legend		· ·	,	tion			Depth (m)			SPT (N Value)
SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey brown clayey sandy GRAVEL A SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey black sandy gravelly cobbly CLAY SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey black sandy gravelly cobbly CLAY No. (4.7) No. (8.14) No. (9.14) No. (10.2) No. (1										as returns black san	of MADE (dy gravelly	GROUND clay with fr	comprising agments o	grey brow f brick.	<i>r</i> n	1.70	1.88	ΙН	N = 12 (1, 0, 1, 2, 4, 5)
SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey black sandy gravelly cobbly CLAY SYMMETRIX DRILLING: No recovery, observed by driller as returns of grey black sandy gravelly cobbly CLAY N=6 N=6 N=6 REMARKS Hole cased from 0.0-20.40m. SPT Er = 82.22% Water Casing Depth Rise Time (min) 15.00 15.00 16.00 N/S Seepage Slow REMARKS Date Tip Depth RZ Top RZ Base Type GROUNDWATER DETAILS Date Tip Depth RZ Top RZ Base Type O Depth Depth RZ Top RZ Base Type O Depth Casing Depth to Water Casing Depth to Water Casing Depth to Water Casing Depth to Comments									000	SYMMET	RIX DRILLI	NG: No re	covery, obs	served by	driller	2.80	0.78		N = 36
N										SYMMET	RIX DRILLI	NG: No re	covery, obs	served by	driller	4.80	-1.22		N = 76 (4, 7, 10, 19, 22, 25)
N=31	6																		N = 50/115 mm (8, 14, 23, 27)
N																			N = 31/55 mm (10, 20, 31)
Water Casing Depth At To Time Comments	9																		N = 50/135 mm (8, 16, 25, 25)
Water Strike Depth At To Comments	REM						DT = 4				Motor	Coolna	Cooled	Diag	Time		TER S	TRIKE	DETAILS
NSTALLATION DETAILS Date Hole Depth RZ Top RZ Base Type 12-02-24 23.60 1.00 23.60 50mm SP	Hole	cas	sed f	rom (J.0-2	u.40m. S	⊬1 Er = {	32.22	2%		Strike 15.00	Depth 15.00	At 16.00) 00	Seepag		
NSTALLATION DETAILS Date Hole Depth Casing Depth Comments																GR	OUND	NATE	R DETAILS
Date Tip Depth RZ Top RZ Base Type 12-02-24 23.60 1.00 23.60 50mm SP	INST	ALL	ATI	ON D	ETA	ILS					Date			Depth t	Cor	nment	S		
	D 12-0				$\overline{}$			9					Į.						

REPORT NUMBER

CONTRAC	T NDI	A Social	Housing B	undle	es 4/5	- Lot 3 - Cro	oke Villas			DRII SHE	LHOLE ET	NO	RC(02 et 2 of	3
GROUND L		735,7	69.74 E 31.52 N 3.58			RIG TYPE FLUSH		Beret	ta T44	DAT	E COMP		D 09/0	2/202	1
CLIENT ENGINEER	NDI MOI	FA RCE				INCLINATION	ON (deg) METER (mn	-90		l l	LED BY			SSL - [. O' Sh	
Downhole Depth (m) Core Run Depth (m)	S. C.B. %	Sp ri (r	acture acing .og nm)	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 10 						SYMMETI as returns (continued	RIX DRILLII of grey blad	NG: No rec ck sandy g	covery, obs gravelly cob	served by obbly CLAY	driller			0 0 0	N = 17/20 mm (14, 33, 17)
12															N = 21/30 mm (12, 29, 21)
13															N = 31/35 mm (11, 23, 31)
15					6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SYMMETI as returns	RIX DRILLII of grey bro	NG: No rec wn clayey	covery, obs sandy GR	served by o	driller	15.00	-11.42		N = 50/125 mm (8, 16, 28, 22)
- 17															N = 72/190 mm (5, 12, 18, 26, 28)
18					0 0 0 0 0 0 0 0 0	QVMMET.	DIV DDII I II	NG: No ro	ooyony obo	ponyod by v	drillor	19.30	-15.72		N = 50/160 mm (9, 15, 17, 29, 4)
-						as returns	RIX DRILLII of possible	weathere	d ROCK	served by t	ırıner		-16.42		
REMARKS		00 10	CDT C. C	20.00	0/		Water	Casing	Sealed	Rise	Time				DETAILS
Hole cased	. 110111 U.C	-∠∪.4UM. }	ori E(= t)L.ZZ	/0		Strike 15.00 17.90	Depth 15.00 17.90	At 16.00 N/S	To	(min)		emmen Seepag Slow		
	TIO							Hole	Casing	Denth t	0 -			NATE	RDETAILS
Date			RZ Base		Tue	20	Date	Depth	Depth	Depth t Water	Con	nment	S		
12-02-24	23.60	1.00	23.60		Тур 50 m	m SP									

REPORT NUMBER

ONTRAC	T N	NDFA	Social Ho	ousing B	undle	s 4/5	- Lot 3 - Cro	oke Villas			DRIL SHE	.LHOLI ET	E NO	RC()2 et 3 of	3
O-ORDIN	ATES		716,669 735,731				RIG TYPE		Berett	a T44	DATI	E COM	MENCE	D 09/0	2/2024	1
ROUND L		•		3.58			FLUSH		Air/Mis		DATI	E COM	PLETE			
LIENT NGINEER		NDFA NORC					INCLINATION CORE DIA	ON (deg) METER (mm	-90 n) 78			.LED B GED B			SL - D O' Sh	
Core Run Depth (m)	S.C.R.%	R.Q.D.%	Fract Spac Lo (mr	eing g n)	Non-intact Zone	Legend		,	Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
20.40							SYMMETI as returns	RIX DRILLIN	NG: No rec	overy, obs	erved by d	Iriller	20 40	-16.82		
22.00	79	39			/ · · · ·		Weak to s grey/black argillaceor locally pyr Discontinu locally rou Apertures	trong, media k, fine-graine us/muddy la ite formation uities are me agh, fracture are tight to Dips are sul	ed LIMEST tyers with c n), fresh to edium to cl s are plana moderatel	ONE (intersalci-siltite/salci-siltite/salci-siltite/salci-siltite/salci-	bedded sandy laye athered. ed, smootl curviplanally clay	ers, h to ar.	20.10			
10	0 96	62			/											
23.00																
23.60	0 95	80											23.60	-20.02		
4							End o	of Borehole	at 23.60 m	l						
25 26 26 27 27 27 28 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20													WA	rep et	DIVE	DETAILS
EMARKS lole cased		0.0-2	0.40m. SF	PT Er = 8	32.22°	%		Water	Casing	Sealed	Rise	Time	Co	mmen		DETAILS
					_			Strike 15.00 17.90	Depth 15.00 17.90	16.00 N/S	То	(min	s	eepag Slow	е	RDETAILS
ISTALLA	TION [DETAI	ILS					Date	Hole	Casing	Depth to Water	Coi	nment		VAIEF	DETAILS
Date	Tip D	epth	RZ Top 1.00	RZ Base 23.60	9	Тур	n SP	12-02-24	Depth 23.60	20.40	4.60		er levels r		5 mins at	fter end of

REPORT NUMBER

СО	NTR	ACT	N	IDFA	Social H	lousing B	undle	es 4/5	- Lot 3 - Cro	oke Villas			DRII SHE	LLHOLE	E NO	RC	03 et 1 of	3	
			TES	(m^	716,61 735,74				RIG TYPE			ta T44	DAT	E COMI		D 14/0	2/2024	1	
CLI	ENT GINE		N	IDFA IORC		3.02				FLUSH Air/Mist INCLINATION (deg) -90 CORE DIAMETER (mm)			DRII	DRILLED BY LOGGED BY			IGSL - DH D. O' Shea		
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa Lo (m	cture cing og m)	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)	
1									as returns black sand	RIX DRILLI s of MADE (dy gravelly RIX DRILLI s of grey bro	GROUND (clay with fr	comprising agments o	grey brow f brick.	'n	1.70	2.12		N = 6 (1, 0, 1, 1, 2, 2)	
3									SYMMET as returns	RIX DRILLI s of grey bla	ING: No reack gravelly	covery, obs	served by o	driller	3.20	0.62		N = 18 (2, 2, 3, 4, 6, 5)	
5																		N = 65 (4, 4, 10, 14, 19, 22)	
6																		N = 50/205 mm (6, 8, 16, 22, 12)	
7																		N = 50/155 mm (5, 11, 19, 26, 5)	
9																		N = 50/215 mm (4, 8, 12, 16, 22)	
RE	MAR		•			T. C. 00	2.000	,		Mator	Casing	Soolod	Dico	Time		TER S	TRIKE	DETAILS	
RE	e ca	sed 1	from (υ.0-2	:5.0m. SF	PT Er = 82	2.22%	ō		Water Strike 17.80	Casing Depth 17.80	Sealed At	Rise To	Time (min)		mmen	its		
															GR)UND	NATER	R DETAILS	
INS	TAL Date		ION D			RZ Base		Тур	oe .	Date	Hole Depth	Casing Depth	Depth t Water	Coi	mment	s			

REPORT NUMBER

CONTRACT NDFA Social Housing Bundles 4/5 - Lot 3 - C								- Lot 3 - Cro	oke Villas				DRILLHOLE NO SHEET		RC(03 et 2 of	· 3
	CDOLIND LEVEL (mOD) 0.00							RIG TYPE					IMENCE IPLETE				
CLIENT	•	N	IDFA IORC						FLUSH Air/Mist INCLINATION (deg) -90 CORE DIAMETER (mm)			DRI	DRILLED BY LOGGED BY		IG	IGSL - DH D. O' Shea	
Downhole Depth (m) Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa Lo (m	m)	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
11								SYMMETI as returns (continued	RIX DRILLI of grey bla	NG: No red	covery, obs	served by n cobbles	driller				N = 36/55 mm (11, 24, 26, 10)
12									RIX DRILLI of grey da					12.40	-8.58		N = 35/90 mm (8, 22, 25, 10)
14								as returns	RIX DRILLI of grey bro	own clayey	sandy GR	AVEL			-10.08 -10.78		N = 73 (5, 6, 10, 14, 22, 27)
15									of grey bro			orved by					N = 31/50 mm (11, 29, 31) N = 50/90 mm (9, 14, 31, 19)
17									RIX DRILLI				driller		<u>1</u> -13.98		N = 56/210 mm (6, 8, 12, 20, 24)
19							0-	as returns	RIX DRILLI of grey bro es blowing	wn clayey	sandy GR		driller				
REMAR										0 : 1	0 1 1	- D:	·		TER S	TRIKE	DETAILS
REMAR Hole ca INSTAL INSTAL Date	sed	from (0.0-2	5.0m. SF	PT Er = 82	2.22%	%		Water Strike 17.80	Casing Depth 17.80	Sealed At	Rise To	Time (min	1) CC	ommen		D DETAIL C
NOTA:		1011 0	ETA						D-4-	Hole	Casing	Depth t	to			WAIL	R DETAILS
INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type								Date	Depth	Depth	Depth t Water	, 00	mment	S			

REPORT NUMBER

СО	NTR	ACT	N	IDFA	Social H	ousing B	undle	s 4/5	- Lot 3 - Cro	oke Villas			DRII	LHOL	E NO	RC	03	
СО	CO-ORDINATES 716,616.26 E											SHE				et 3 of		
GR	735,745.35 N RIG TYPE GROUND LEVEL (mOD) 3.82 FLUSH								RIG TYPE		Berett Air/Mis			E COM				
	IENT GINE			IDFA					INCLINATION CORE DIA		-90	J.	I	DRILLED BY IGSL - DH LOGGED BY D. O' Shea				
		En		IONC	, <u>c</u>				CORE DIA	WEIER (IIII	11)		LOG	IGED E			0 31	lea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lo (m	cing og m)	Non-intact Zone	Legend			Descript	ion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
22 22 24 24 25 25 26 27 27 28 28									as returns	RIX DRILLI	wn clayey sand & gra	sandy GR/ vel <i>(contin</i>	AVEL	driller	25.00	<u>)</u> -21.18		N = 19/25 mm (12, 31, 19) N = 8/15 mm (48, 8) N = 50/50 mm (50, 50) N = 5/5 mm (45, 5)
29 28/2/24	MAD	N.C.)A/A-	TED 03	TOWE	DETAIL C
P HE	MAR le ca		from (0.0-2	5.0m. SP	T Er = 82	2.22%	, ,		Water	Casing	Sealed	Rise	Time	00	TER S		DETAILS
GSL HC F110M 250000 - S11E3.GPJ IGSL:GPJ 28/22/24		'		-	3 .	3-	-,			Strike 17.80	Depth 17.80	At	То	(min)			
7 250											Hole	Casing	Donath :		GR	OUND	VATE	R DETAILS
SOL RC FI 100	INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type						oe	Date 15-02-24	Depth 25.00	Depth 25.00	Depth t Water 4.00				5 mins a	fter end of		

Project Number: 25000-3

Project: NDFA Social Housing Bundles 4/5 – Lot 3 – Croke Villas

Engineer: MORCE

RC01 Box 1 of 1 - 17.70-21.90m

Project Number: 25000-3

Project: NDFA Social Housing Bundles 4/5 – Lot 3 – Croke Villas

Engineer: MORCE

RC02 Box 1 of 2 - 20.40-23.0m

RC02 Box 2 of 2 - 23.0-23.60m

SPT Calibration Report

Hammer Energy Measurement Report

 Type of Hammer
 Beretta

 Test No
 EQU2023_67

 Client
 IGSL

 Test Depth (m)
 9.70

 Mass of hammer
 m = 63.5 kg

 Falling height
 h = 0.76 m

 $E_{\text{theor}} =$ $m \times g \times h = 473 \text{J}$

Characteristics of the instrumented rod

Key

- 1 Anvil
- 2 Part of instrumented rod
- 3 Drive Rod
- 4 Strain Gauge
- 5 Accelerometer
- 6 Ground
- F Force
- d_r Diameter of rod

Fig. B.1 and B.2

BS EN ISO 22476-3: 2005 + A1: 2011

 Diameter
 $d_r = 0.052 \text{ m}$

 Length of instrumented rod
 0.558 m

 Area
 A = 11.61 cm²

 Modulus
 $E_g = 206843 \text{ MPa}$

 DATE OF TEST
 VALID UNTIL
 HAMMER ID

 06/03/2023
 05/03/2024
 T44

 $E_{\text{meas}} =$ **0.389** kN-m

 $E_{\text{theor}} =$ **0.473** kN-m

Comments

Energy Ratio (Er) = $\frac{E_{\text{meas}}}{E_{\text{theor}}}$

Equipe SPT Analyzer Operator

Certificate prepared by

Certificate checked by

Certificate date

10/03/2023

Appendix 5

Slit Trench Logs

SLIT TRENCH RECORD

FACING DIRECTION:

I I						
Project: NDFA Social Housing Bundles 4/5 - Lot 3	3 -		Survey		Slit Trench No.	ST01
Croke Villas		Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Engineer: MORCE	Start of Trench	716635.824	735754.978	3.882	Date Commenced	27/11/2023
Crow: LP /D M /ESK	End of Tronch	716627 351	725747.4	2 021	Data Completed	27/11/2023

Dia	Direction	210°	S-W

From (m)	To (m)		Soil Description		Photograph	
0.00	0.10		TOPSOIL			
0.10	1.80	boulders, heavy concrete r	ed of dark grey/black/brown sandy gravelly clay, c ubble, red brick, timber pieces, occasional plastic old tarmac, mortar, concrete blocks)			
	Trench Dimens	sions	Location	Ex	cavation Quantities	
LHS of Trench (m)	0.0		* STATE OF THE STA	Surface	Length (m)	Material
RHS of Trench (m)	10.0		erofi.o	Road		
Trench Depth (m)	1.8			Path (LHS)		
Trench Width (m)	0.6			Path (RHS)		
		_		Grass Verge (LHS)		
			S106 1	Grass Verge (RHS)		
Facing Direction	SE		SAMPLES	Other	10	Grass
Facing Direction Facing Features	SE Ballybough Roa	d	SAMPLES 1.0m Ref.No AA209924	Other Total Length	10 10.0	Grass

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A			No services located			
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						

SLIT TRENCH RECORD

FACING DIRECTION:

	NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas	
--	--	--

Engineer: MORCE Crew: D.M./ESK

		Survey	
	Easting (m)	Northing (m)	Elevation (mOD)
Start of Trench	716640.044	735741.289	3.943
End of Trench	716643.859	735744.5	3.984

Slit Trench No. Sheet Date Commenced

Date Completed

1 of 1 29/11/2023 29/11/2023

ST02A

Ground Conditions			
From (m)	To (m)	Soil Description	Γ
0.00	0.08	TARMAC	
0.08	2.00	MADE GROUND: Soft to firm brown sandy gravelly CLAY with a low cobble content and red brick fragments, plastic and concrete.	
			1

	Trench Dimension	r
LHS of Trench (m)	0.0	
RHS of Trench (m)	5.0	l
Trench Depth (m)	2.0	Ì
Trench Width (m)	0.8	l

Facing Direction

Location	
ST02A-1	
ST02A-0	
CAMDLEC	

1.0m Ref.No AA198519

Surface	Length (m)	Material
Road	Longin (iii)	material
Path (LHS)		
Path (RHS)		
Grass Verge (LHS)		
Grass Verge (RHS)		
Other	5	Tarmac
Total Length	5.0	

Facing Features	GAA HANDBALL CENTRE	
Groundwater	DRY	

NW

Zero Metres Taken As: Steel Palisade fence

		X-Section		
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	possible services bellow		3	4 5
		Plan		
0 1			}	5

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A			No services located			
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						

SLIT TRENCH RECORD

FACING DIRECTION:

Project: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas

Engineer: MORCE Start of Crew: I.R./D.M./ESK End of Trench

	Survey				
	Easting (m)	Northing (m)	Elevation (mOD)		
of Trench	716639.554	735741.619	3.931		
f Trench	716633 603	735737 503	4.003		

Slit Trench No. Sheet Date Commenced

Date Completed

1 of 1 27/11/2023 27/11/2023

ST02B

Dig Direction 230° S-W

From (m)	To (m)		Soil Description		Photograph	
0.00	0.10		TOPSOIL		97 N 197	
0.10	2.00	boulders, concrete rubb	orising dark grey/black/brown sandy gravelly clay, cobbles, e, red brick, timber pieces, occasional plastic rubbish, roots, d tarmac, mortar and concrete blocks			
					Transition Transition	
	Trench Dimen	sions	Location	Exc	cavation Quantities	
LHS of Trench (m)	0.0			Surface	Length (m)	Material
RHS of Trench (m)	6.0		ST02B-0	Road		
Trench Depth (m)	2.0			Path (LHS)		
Trench Width (m)	0.6		√ST02B-1	Path (RHS)		
			A STATE OF THE STA	Grass Verge (LHS)		
			THE STATE OF	Grass Verge (RHS)		
Facing Direction	SE		SAMPLES	Other	6	Grass
Facing Features	Ballybough Roa	ıd	1.0m Ref.No AA209923	Total Length	6.0	
Groundwater	Se	Seepage at 2.0m Zero Metres Taken As: Steel Palisade fence		ce		

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A			No services located			
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						

Ground Conditions

SLIT TRENCH RECORD

FACING DIRECTION:

Project: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas

Engineer: MORCE Start of Tre Crew: I.R./D.M./ESK

	Survey					
	Easting (m)	Northing (m)	Elevation (mOD)			
Start of Trench	716644.268	735780.825	4.013			
End of Trench	716635.658	735771.636	4.076			

Slit Trench No. Sheet

Date Completed

1 of 1 Date Commenced 29/11/2023

29/11/2023

Dig Direction 215° S-W

Ground Conditions			
From (m)	To (m)	Soil Description	Τ
0.00	0.10	TOPSOIL	100
0.10	2.00	MADE GROUND comprising dark grey/black/brown sandy gravelly clay, cobbles, boulders, concrete rubble, red brick, timber pieces, occasional plastic rubbish, roots, old tarmac, mortar, old clay pipe pieces and rebar	THE PARTY OF THE
			1 18
			1

	Trench Dimension	on
LHS of Trench (m)	0.0	
RHS of Trench (m)	11.0	
Trench Depth (m)	2.0	
Trench Width (m)	0.8	

SE

Ballybough Road

SAMPLES
1.0m Ref.No AA198523

Location

Excavation Quantities					
Surface	Length (m)	Material			
Road					
Path (LHS)					
Path (RHS)					
Grass Verge (LHS)					
Grass Verge (RHS)					
Other	11	Grass			
Total Length	11.0				

Groundwater

Facing Direction

Facing Features

Seepage at 2.0m

Zero Metres Taken As: Steel Palisade fence

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A			ESB Warning Tape (from 2.70-3.90 in trench)			
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						

SLIT TRENCH RECORD

FACING DIRECTION:

Project: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas

Start of Trench

Survey							
Easting (m)	Northing (m)	Elevation (mOD)					
716661 610	735760 126	4 599					

Slit Trench No. Sheet Date Commenced

ST04 1 of 1 05/12/2023

Engineer: MORCE Crew: D.M./ESK

End of Trench

At Building Wall (no survey available)

Date Completed

Photograph

05/12/2023

Ground	Cor	nditi	ions
Fro	om (m)	

arouna conantions			
From (m)	To (m)	Soil Description	Π
0.00	0.06	Concrete slabs	
0.06	2.00	MADE GROUND: Firm dark brown to black sandy gravelly CLAY with a low cobble content and red brick fragments, plastic and concrete.	一大
			The Section
			1

	Trench Dimension	on
LHS of Trench (m)	0.0	
RHS of Trench (m)	8.6	
Trench Depth (m)	2.0	
Trench Width (m)	0.7	

SE

Location

Surface	Length (m)	Material
Road		
Path (LHS)		
Path (RHS)		
Grass Verge (LHS)		
Grass Verge (RHS)		
Other	8.6	Made Ground / Slabs
Total Length	8.6	
	<u> </u>	

Excavation Quantities

Ballybough Road Facing Features Groundwater

Facing Direction

DRY

Zero Metres Taken As: Fence

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	150	Clay (damaged)	Pipe (cable inside)	6.2	0.5	340
Service B	150	Clay	Sewage pipe (Possible)	8.5	1.15	325
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						

SLIT TRENCH RECORD

FACING DIRECTION:

Project: NDFA Social Housing Bundles	4/5 - Lot 3 -	Survey		Slit Trench No.	ST05	
Croke Villas		Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Engineer: MORCE	Start of Trench	716676.146	735730.368	3.364	Date Commenced	30/11/2023
Crew: D.M./ESK	End of Trench	716669 905	735736 493	3 593	Date Completed	30/11/2023

0.00	To (m)	Soil Description		Photograph	
0.00	0.20 TOPSOIL: So	ft brown sandy gravelly CLAY. Sand is fine to medium. Gravel is subangular to subrounded fine to medium.			100
0.20	1.80 content and re	Firm dark brown to black sandy gravelly CLAY with a low cobble d brick fragments, plastic and concrete. Sand is fine to medium. ungular to subrounded fine to medium. Cobbles are subrounded.			
1	French Dimensions	Location	E	xcavation Quantities	
of Trench (m)	0.0	same of	Surface	Length (m)	Material
of Trench (m)	9.0		Road		
h Depth (m)	1.8		Path (LHS)		
	0.6		Path (RHS)		
h Width (m)		ST05-0	Grass Verge (LHS)	9.0	
h Width (m)			Grass Verge (RHS)		
h Width (m)					
	SW	SAMPLES	Other		
h Width (m)		\$5105-0		9.0	

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	1000	Concrete	Possible Storm drain	0	1.6	90
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						•

To (m)

0.2

1.80

Ground Conditions

From (m)

0.00

0.2

SLIT TRENCH RECORD

Soil Description

TOPSOIL: Soft brown sandy gravelly CLAY. Sand is fine to medium. Gravel is subangular to subrounded fine to medium.

MADE GROUND: Firm dark brown to black sandy gravelly CLAY with a low cobble content and red brick fragments, plastic and concrete. Sand is fine to medium. Gravel is subangular to subrounded fine to medium. Cobbles are subrounded.

FACING DIRECTION:

Photograph

Project:	NDFA Social Housing Bundles 4/5 - Lot 3 -			Survey			ST06
Croke Villas			Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Engineer:	MORCE	Start of Trench	716682.143	735737.350	3.519	Date Commenced	30/11/2023
Crew:	D M /ESK	End of Trench	716676 313	735742 847	3 678	Date Completed	30/11/2023

	Trench Dimensions	Location	Excavation Quantities		
LHS of Trench (m)	0.0		Surface	Length (m)	Material
RHS of Trench (m)	8.0	Curio s	Road		
Trench Depth (m)	1.8		Path (LHS)		
Trench Width (m)	0.6		Path (RHS)		
		ST06:0-	Grass Verge (LHS)	8.0	
			Grass Verge (RHS)		
Facing Direction	sw	SAMPLES	Other		
Facing Features	Sackville Gardens / Railway line	1.0m Ref.No AA198528	Total Length	8.0	
Groundwater	Water near pipe in gravel surround		Zero Metres Taken	As: Steel palisade fence	9

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A	1000	Concrete	Possible Storm drain	0	1.4	90
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						•

Ground Conditions

SLIT TRENCH RECORD

FACING DIRECTION:

Project: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas			Survey		Slit Trench No.	ST07
Croke Villas		Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Engineer: MORCE	Start of Trench	716693.002	735749.210	3.587	Date Commenced	01/12/2023
Crew: D.M./ESK	End of Trench	716699.896	735755.928	3.447	Date Completed	01/12/2023

From (m)	To (m)		Soil Description	Photograph		
0.00	0.1		andy gravelly CLAY. Sand is fine to medium. Gravel is gular to subrounded fine to medium.			
0.1	1.90	content and red brick fra	ark brown to black sandy gravelly CLAY with a low cobble agments, plastic and concrete. Sand is fine to medium. subrounded fine to medium. Cobbles are subrounded.		· d	
Tranch Dimensions			ı			
	Trench Dimensi	ons	Location	EX	cavation Quantities	
LHS of Trench (m)	Trench Dimensi	ons	Location	Surface	Length (m)	Material
LHS of Trench (m) RHS of Trench (m)		ons	Location			Material
` ′	0.0	ons	Location ST07-1	Surface		Material
RHS of Trench (m)	0.0	ons	Location ST07-1	Surface Road		Material
RHS of Trench (m) Trench Depth (m)	0.0 10.0 1.9	ons	Location ST07-1	Surface Road Path (LHS)		Material
RHS of Trench (m) Trench Depth (m)	0.0 10.0 1.9	ons	-3107-1	Surface Road Path (LHS) Path (RHS)		Material
RHS of Trench (m) Trench Depth (m) Trench Width (m)	0.0 10.0 1.9	ons	-3107-1	Surface Road Path (LHS) Path (RHS) Grass Verge (LHS)		Material Made Ground
RHS of Trench (m) Trench Depth (m) Trench Width (m) Facing Direction	0.0 10.0 1.9 0.7	ons	ST07-1	Road Path (LHS) Path (RHS) Grass Verge (LHS) Grass Verge (RHS)	Length (m)	

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A			No services located			
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						
	•	•		•		

To (m)

0.10

2.00

Ground Conditions

From (m)

0.00

0.10

SLIT TRENCH RECORD

Soil Description

TOPSOIL: Soft brown sandy gravelly CLAY. Sand is fine to medium. Gravel is subangular to subrounded fine to medium.

MADE GROUND: Firm dark brown to black sandy gravelly CLAY with a low cobble content and red brick fragments, plastic and concrete. Sand is fine to medium. Gravel is subangular to subrounded fine to medium. Cobbles are subrounded.

FACING DIRECTION:

Photograph

Project:	NDFA Social Housing Bundles 4/5 - Lot 3 -			Survey			ST08
i iojeci.	Croke Villas		Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Engineer:	MORCE	Start of Trench	716686.554	735755.157	3.572	Date Commenced	01/12/2023
Crew:	D.M./ESK	End of Trench	716694.984	735763.282	3.378	Date Completed	01/12/2023

	Trench Dimensi	ons	Location	E	Excavation Quantities			
LHS of Trench (m)	0.0			Surface	Length (m)	Material		
RHS of Trench (m)	10.0		S HOB: 12	Road				
Trench Depth (m)	2.0			Path (LHS)				
Trench Width (m)	0.8			Path (RHS)				
	•	•	9703.0	Grass Verge (LHS)	10.0			
			S10000	Grass Verge (RHS)				
Facing Direction	NW		SAMPLES	Other				
Facing Features	Croke Park		1.0m Ref.No AA198534	Total Length	10.0			
Groundwater	Water	strike at 2.0m		Zero Metres Taken	As: Steel palisade fend	e		

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A			No services located			
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						
	•					

SLIT TRENCH RECORD

FACING DIRECTION:

Project: NDFA Social Housing Bundles 4/5 - Lo	ot 3 -		Survey		Slit Trench No.	ST10
Croke Villas		Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Engineer: MORCE	Start of Trench	716653.075	735787.778	4.031	Date Commenced	04/12/2023
Crew: D.M./ESK	End of Trench	716660 302	735795 095	3 947	Date Completed	04/12/2023

Ground Conditions From (m)	To (m)		Soil Description		Photograph	
0.00	0.10		andy gravelly CLAY. Sand is fine to medium. Gravel igular to subrounded fine to medium.	is		arith
0.10	1.90	content and red brick fra	ark brown to black sandy gravelly CLAY with a low co agments, plastic and concrete. Sand is fine to mediun subrounded fine to medium. Cobbles are subrounde	m.		
	Trench Dimensi	ons	Location	Ex	cavation Quantities	
LHS of Trench (m)	0.0			Surface	Length (m)	Material
RHS of Trench (m)	11.0		ST10-1	Road		
Trench Depth (m)	1.9			Path (LHS)		
Trench Width (m)	0.6			Path (RHS)		
, ,	,	-	sroo in	Grass Verge (LHS)		
				Grass Verge (RHS)		
Facing Direction	NW		SAMPLES	Other	11	Made Ground
Facing Features	Croke Park		1.0m Ref.No AA198541	Total Length	11.0	
	DRY					

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A			No Services Located			
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						
	•					

To (m)

Ground Conditions From (m)

SLIT TRENCH RECORD

Soil Description

FACING DIRECTION:

Photograph

Projec	NDFA Social Housing Bundles 4/5 - Lot 3 -			Survey		Slit Trench No.	ST11
i rojec	Croke Villas		Easting (m)	Northing (m)	Elevation (mOD)	Sheet	1 of 1
Engine	er: MORCE	Start of Trench	716646.736	735794.370	3.973	Date Commenced	04/12/2023
Cre	w. D.M./ESK	End of Trench	716654 713	735801 719	3.868	Date Completed	04/12/2023

0.00	0.10		andy gravelly CLAY. Sand is fine to medium. Gravel is agular to subrounded fine to medium.			
0.10	1.60	content and red brick fra	ark brown to black sandy gravelly CLAY with a low cobble agments, plastic and concrete. Sand is fine to medium. subrounded fine to medium. Cobbles are subrounded.			
				Y		
	+					
	Trench Dimension	ons	Location	Ex	xcavation Quantities	
LHS of Trench (m)	Trench Dimensio	ons	Location	Surface	xcavation Quantities Length (m)	Material
LHS of Trench (m) RHS of Trench (m)		ons	Location			Material
` ′	0.0	ons	Location	Surface		Material
RHS of Trench (m)	0.0	ons	Location States	Surface Road		Material
RHS of Trench (m) Trench Depth (m)	0.0 12.0 1.6	ons	Location States	Surface Road Path (LHS) Path (RHS) Grass Verge (LHS)		Material
RHS of Trench (m) Trench Depth (m) Trench Width (m)	0.0 12.0 1.6 0.8	ons	Sinus:	Surface Road Path (LHS) Path (RHS) Grass Verge (LHS) Grass Verge (RHS)	Length (m)	
RHS of Trench (m) Trench Depth (m) Trench Width (m) Facing Direction	0.0 12.0 1.6 0.8	ons	SAMPLES	Surface Road Path (LHS) Path (RHS) Grass Verge (LHS) Grass Verge (RHS) Other	Length (m)	Material Made Ground
RHS of Trench (m) Trench Depth (m) Trench Width (m) Facing Direction	0.0 12.0 1.6 0.8	ons	Sinus:	Surface Road Path (LHS) Path (RHS) Grass Verge (LHS) Grass Verge (RHS)	Length (m)	

	Diameter (mm)	Material	Description	Distance (m)	Depth to crown (m)	Angle (deg.)
Service A			No Services Located			
Service B						
Service C						
Service D						
Service E						
Service F						
Service G						
Service H						
Service I						
Service J						
Service K						
Service L						
Service M						
	•					

Appendix 6

Soakaway Records

Soakaway Design f -value from field tests **IGSI** Contract: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas 25000-3 Contract No. Test No. SA02 (cycle 1) 716582.131 Easting Engineer MORCE Northing 735764.221 Date: 28/11/2023 Elevation 4.13 Summary of ground conditions Ground water Description TOPSOIL: Soft brown sandy slightly gravelly CLAY. Sand is fine to medium. 0.00 0.10 Gravel is subangular fine to medium. MADE GROUND: (Medium dense to dense) Brown/grey clayey gravelly SAND with a low 0.10 1.30 cobble content and red brick fragments. Sand is fine to medium. Gravel is subangular to DRY subrounded fine to medium. Cobbles are subangular to subrounded. MADE GROUND: Firm to stiff very sandy gravelly CLAY with red brick fragments. Sand is 1.30 1.50 fine to medium. Gravel is subangular to subrounded fine to medium. Notes: SA02 undertaken at TP02 Field Data Field Test Depth to Depth of Pit (D) 1.50 Elapsed m Water Time Width of Pit (B) 0.60 m Length of Pit (L) (m) (min) 1.30 0.750 0.75 0.00 Initial depth to Water = m 0.770 Final depth to water = 1.000 1.00 m 0.790 2.00 Elapsed time (mins)= 60.00 0.800 3.00 4.00 0.800 Top of permeable soil 0.810 5.00 Base of permeable soil 0.810 6.00 0.810 7.00 0.810 8.00 0.820 9.00 0.820 10.00 Base area= 0.78 m2 0.830 12.00 2.375 m2 *Av. side area of permeable stratum over test perio 0.840 14.00 Total Exposed area = 3.155 m2 0.850 16.00 0.860 18.00 0.870 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.900 25.00 f= 0.00103 m/min 0.910 30.00 or 1.71685E-05 m/sec 40.00 0.950 0.970 50.00

Soaka	way De	sign f -value	from field tests		IGSL
Contract:	NDFA Social	Housing Bundles 4/5 - Lot 3	3 - Croke Villas Co	ntract No.	25000-
	SA02 (cycle	2)		sting	716582.13
Engineer		.		orthing	735764.22
	28/11/2023 of ground con		Ele	evation	4.1
from	to	Description			Ground water
			ly slightly gravelly CLAY. San	d is fine to medium.	Ground Water
0.00	0.10	Gravel is subangular fine t		a 10 11110 to 1110a1a1111	
		Ť T	se to dense) Brown/grey clayey	gravelly SAND with a low	
0.10	1.30		fragments. Sand is fine to medi		DRY
		subrounded fine to medium.	Cobbles are subangular to subro	unded.	DKT
		MADE GROUND: Firm to stiff	very sandy gravelly CLAY with re	ed brick fragments. Sand is	
1.30	1.50		angular to subrounded fine to m		
otes: SA()2 undertaker	at TP02 location			
ield Data			Field Test		
		_	· 		
Depth to	Elapsed		Depth of Pit (D)	1.50	m
Water	Time		Width of Pit (B)	0.60	m
(m)	(min)		Length of Pit (L)	1.30	m
0.700	0.00	 	Initial depth to Water =	0.70	lm
0.700	1.00		Final depth to water =	0.880	m
0.710	2.00	†	Elapsed time (mins)=	60.00	
0.720	3.00]			
0.720	4.00]	Top of permeable soil		m
0.720	5.00	_	Base of permeable soil		m
0.720	6.00	_			
0.730	7.00	_			
0.730	8.00 9.00	_			
0.740	10.00	_	Base area=	0.78	lm2
0.750	12.00	*Av. side area of permeab	le stratum over test perio	2.698	m2
0.750	14.00		Total Exposed area =	3.478	m2
0.760	16.00	_			
0.770	18.00	In filturation and a (f)	\/_\		
0.780	20.00 25.00	Infiltration rate (f) =	Volume of water used/unit	exposed area / unit time	
0.820	30.00	f= 0.00067	m/min or	1.12133E-05	m/sec
0.850	40.00	1			
0.870	50.00				
0.880	60.00				
		_			
		1			
		Depth of wa	ter vs Elapsed Time (mins)		
	70.00				٦
	60.00				
				▼ -	
į	E 50.00 +			*	†
	8 40.00			•	4
_:	- 20 20				
į.	3 0.00 $+$			•	1
j	8			*	4
i.	20.00				
ji T	_				
ji T	10.00				
į.	_	0 0.200	0.400 0.600	0.800 1.	000

Soakaway Design f -value from field t	ests	IGSL
Contract: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas	Contract No.	25000-3
Test No. SA08 (cycle 1)	Easting	716671.439
Engineer MORCE	Northing	735730.314
Date: 30/11/2022	Elevation	3.519
Summary of ground conditions		

Summary of ground conditions					
from	to	Description	Ground water		
0.00	0.20	TOPSOIL			
0.20	1.30	MADE GROUND: Dark brown/black sandy gravelly Clay, cobbles, red brick, plastic,			
		concrete rubble and sea shells	DRY		
1.30	1.50	Firm to stiff brown, sandy gravelly CLAY with a low cobble content			

Notes: SA08 undertaken at TP08

Field Data			Field Test		
Depth to	Elapsed]	Depth of Pit (D)	1.50	m
Water	Time		Width of Pit (B)	0.50	m
(m)	(min)		Length of Pit (L)	1.50	m
					1
0.640	0.00		Initial depth to Water =	0.64	m
0.670	1.00		Final depth to water =	1.280	m
0.700	2.00		Elapsed time (mins)=	60.00	
0.725	3.00				•
0.740	4.00		Top of permeable soil		m
0.775	5.00		Base of permeable soil		m
0.810	6.00				
0.830	7.00				
0.850	8.00				
0.860	9.00				
0.885	10.00		Base area=	0.75	m2
0.905	12.00	*Av. side area of permeabl	e stratum over test period	2.16	m2
0.930	14.00		Total Exposed area =	2.91	m2
0.960	16.00				•
0.990	18.00				
1.010	20.00	Infiltration rate (f) =	Volume of water used/ur	nit exposed area / unit time	
1.060	25.00				
1.100	30.00	f= 0.00275	m/min or	4.5819E-05	m/sec
1.150	35.00				
1.190	40.00				
1.210	45.00				
1.240	50.00				
1.260	55.00				
1.280	60.00				

Soakaway Design f -value from field t	ests	IGSL
Contract: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas	Contract No.	25000-3
Test No. SA08 (cycle 2)	Easting	716671.439
Engineer MORCE	Northing	735730.314
Date: 30/11/2022	Elevation	3.519
Summary of ground conditions		
		O 1 .

Summary of ground conditions					
from	to	Description	Ground water		
0.00	0.20	TOPSOIL			
0.20	1.30	MADE GROUND: Dark brown/black sandy gravelly Clay, cobbles, red brick, plastic	Ţ		
		concrete rubble and sea shells	DRY		
1.30	1.50	Firm to stiff brown, sandy gravelly CLAY with low cobble content]		
			1		

Notes: SA08 undertaken at TP08

1.140

55.00

<u>Field Data</u>				Field Test				
Depth to	Elapsed	7		Depth of Pit	(D)	1	1.50	m
Water	Time			Width of Pit	(B)	(0.50	m
(m)	(min)			Length of Pit	(L)	1	1.50	m
								•
0.640	0.00	1		Initial depth	to Water =	().64	m
0.670	1.00	1		Final depth t	o water =	1	.160	m
0.700	2.00]		Elapsed time	(mins)=	6	0.00]
0.710	3.00]						_
0.730	4.00			Top of perme	eable soil		_	m
0.740	5.00	I		Base of perm	neable soil			m
0.750	6.00							
0.760	7.00							
0.770	8.00	1						
0.780	9.00]						
0.790	10.00]		Base area=		().75	m2
0.810	12.00	*Av. side area	of permeable	e stratum ove	er test period		2.4	m2
0.830	14.00	I		Total Expose	d area =	(1)	3.15	m2
0.845	16.00							
0.865	18.00							
0.890	20.00	Infiltration rate	e(f) =	Volume of w	ater used/un	it exposed a	area / unit time	
0.930	25.00							
0.980	30.00	f=	0.00206	m/min	or	3	3.43915E-05	m/sec
1.030	35.00	I						
1.070	40.00	1						
1.110	45.00							
1.120	50.00	1						

Soaka	way Des	sign f -value from field t	ests	IGSL			
Contract:	NDFA Social H	ousing Bundles 4/5 - Lot 3 - Croke Villas	Contract No.	25000-3			
Test No.	SA09 (cycle 1)	Easting	716694.934			
Engineer	MORCE		Northing	735757.681			
Date:	30/11/2022		Elevation	3.405			
Summary of	Summary of ground conditions						
from	to	Description	·	Ground water			

Juli illiar y	n ground cond	Tuoris	
from	to	Description	Ground water
0.00	0.10	TOPSOIL	
0.10		MADE GROUND: Dark brown/black sandy gravelly Clay, cobbles, red brick, plastic, concrete rubble and sea shells	DRY
1.10	1.50	Firm to stiff brown, sandy gravelly CLAY with a medium cobble content	

Notes: SA09 undertaken at TP09

1.075

55.00

Field Data		Field Test	
Depth to	Elapsed	Depth of Pit (D)	1.50 m
Water	Time	Width of Pit (B)	0.50 m
(m)	(min)	Length of Pit (L)	1.30 m
0.630	0.00	Initial depth to Water	= 0.63 m
0.690	1.00	Final depth to water =	1.090 m
0.730	2.00	Elapsed time (mins)=	60.00
0.745	3.00	1	
0.765	4.00	Top of permeable soil	m
0.785	5.00	Base of permeable soil	m
0.800	6.00	1	•
0.810	7.00		
0.820	8.00	1	
0.830	9.00	7	
0.845	10.00	Base area=	0.65 m2
0.860	12.00	*Av. side area of permeable stratum over test pe	rio(2.304 m2
0.880	14.00	Total Exposed area =	2.954 m2
0.890	16.00	1	
0.900	18.00	1	
0.915	20.00	Infiltration rate (f) = Volume of water used.	/unit exposed area / unit time
0.950	25.00		
0.980	30.00	f= 0.00169 m/min or	2.81163E-05 m/sec
1.000	35.00		
1.015	40.00		
1.030	45.00		
1.050	50.00		
1 075	FF 00	7	

Soaka	Soakaway Design f -value from field tests										
Contract:	NDFA Social H	ousing Bundles 4/5 - Lot 3 - Croke Villas	Contract No.	25000-3							
Test No.	SA09 (cycle 2)	Easting	716694.934							
Engineer	MORCE		Northing	735757.681							
Date:	30/11/2022		Elevation	3.405							
Summary of	Summary of ground conditions										
from	to	Description		Ground water							

Summary C	n ground cond	itions	
from	to	Description	Ground water
0.00	0.10	TOPSOIL	
0.10		MADE GROUND: Dark brown/black sandy gravelly Clay, cobbles, red brick, plastic, concrete rubble and sea shells	DRY
1.10	1.50	Firm to stiff brown, sandy gravelly CLAY with a medium cobble content	

Notes: SA09 undertaken at TP09

ield Data			Field Test	
Depth to	Elapsed	1	Depth of Pit (D)	1.50 m
Water	Time		Width of Pit (B)	0.50 m
(m)	(min)		Length of Pit (L)	1.30 m
0.640	0.00		Initial depth to Water =	0.64 m
0.660	1.00	<u> </u>	Final depth to water =	1.040 m
0.680	2.00	<u> </u>	Elapsed time (mins)=	60.00
0.700	3.00]		
0.720	4.00	1	Top of permeable soil	m
0.735	5.00	1	Base of permeable soil	m
0.750	6.00	1		
0.765	7.00			
0.780	8.00	1		
0.790	9.00	1		
0.800	10.00	1	Base area=	0.65 m2
0.810	12.00	*Av. side area of permeab	le stratum over test period	2.376 m2
0.820	14.00	1	Total Exposed area =	3.026 m2
0.835	16.00	1		
0.845	18.00	1		
0.855	20.00	Infiltration rate (f) =	Volume of water used/ur	nit exposed area / unit time
0.880	25.00	<u> </u>		
0.910	30.00	f= 0.00143	m/min or	2.38672E-05 m/sec
0.940	35.00	1		
0.970	40.00	7		
0.990	45.00	1		
1.010	50.00			
1.025	55.00	7		
1.040	60.00			

f -value from field tests Soakaway Design **IGSL** Contract: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas 25000-3 Contract No. Test No. SA10 (cycle 1) 716658.73 Easting Engineer MORCE Northing 735798.257 Date: 04/12/2022 Elevation 3.881 Summary of ground conditions

	5		
from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	1.10	MADE GROUND: Dark brown/black sandy gravelly Clay, cobbles, red brick, plastic,	
		concrete rubble and sea shells	DRY
1.10	1.60	Firm to stiff brown, sandy gravelly CLAY with low cobble content	

Notes: SA10 undertaken at TP10

Field Data			Field Test		
Depth to	Elapsed	1	Depth of Pit (D)	1.60	m
Water	Time		Width of Pit (B)	0.60	m
(m)	(min)		Length of Pit (L)	1.50	m
0.750	0.00		Initial depth to Water =	0.75	m
0.790	1.00	1	Final depth to water =	1.100	m
0.810	2.00	<u> </u>	Elapsed time (mins)=	60.00	
0.835	3.00	<u> </u>			_
0.845	4.00		Top of permeable soil		m
0.855	5.00	1	Base of permeable soil		m
0.865	6.00	1			-
0.875	7.00	1			
0.885	8.00	1			
0.895	9.00	7			
0.905	10.00	7	Base area=	0.9	m2
0.920	12.00	*Av. side area of permeable	e stratum over test perio	2.835	m2
0.940	14.00	1	Total Exposed area =	3.735	m2
0.955	16.00	1			•
0.965	18.00	7			
0.975	20.00	Infiltration rate (f) =	Volume of water used/u	nit exposed area / unit time	
0.990	25.00	1			•
1.020	30.00	f= 0.00141	m/min or	2.3427E-05	m/sec
1.040	35.00	1			
1.060	40.00	1			
1.070	45.00	1			
1.080	50.00	1			
1.090	55.00	1			
1.100	60.00				

f -value from field tests Soakaway Design IGSI Contract: NDFA Social Housing Bundles 4/5 - Lot 3 - Croke Villas 25000-3 Contract No. Test No. SA10 (cycle 2) 716658.73 Easting Engineer MORCE 735798.257 Northing Date: 04/12/2022 Elevation 3.881 Summary of ground conditions Description Ground water from 0.00 0.20 TOPSOIL 0.20 1.10 MADE GROUND: Dark brown/black sandy gravelly clay, cobbles, red brick, plastic, concrete rubble and sea shells) DRY 1.10 1.60 Firm to stiff brown, sandy gravelly CLAY with low cobble content

Notes: SA10 undertaken at TP10

Field Data			Field Test	
Depth to	Elapsed		Depth of Pit (D)	1.60 m
Water	Time		Width of Pit (B)	0.60 m
(m)	(min)		Length of Pit (L)	1.50 m
0.750	0.00		Initial depth to Water =	0.75 m
0.760	1.00		Final depth to water =	1.050 m
0.770	2.00		Elapsed time (mins)=	60.00
0.780	3.00			
0.790	4.00]	Top of permeable soil	m
0.800	5.00	Ī	Base of permeable soil	m
0.810	6.00			
0.820	7.00			
0.830	8.00	İ		
0.840	9.00	1		
0.850	10.00	Ĭ	Base area=	0.9 m2
0.860	12.00	*Av. side area of permeabl	e stratum over test perio	2.94 m2
0.870	14.00	<u>'</u>	Total Exposed area =	3.84 m2
0.880	16.00	Ī		
0.890	18.00	Ī		
0.900	20.00	Infiltration rate (f) =	Volume of water used/ur	nit exposed area / unit time
0.925	25.00			·
0.945	30.00	f= 0.00117	m/min or	1.95313E-05 m/sec
0.965	35.00	†		
0.980	40.00	1		
1.000	45.00	†		
1.020	50.00	1		
1.035	55.00	†		
1.050	60.00	1		

Appendix 7

Geotechnical Laboratory Results (Soil)

IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

Report No. R154155 Contract No. 25000 Contract Name: NDFA Social Housing Site 3 Croke Villas

Customer MORCE

Samples Received: 15/02/24 Date Tested: 15/02/24

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description
BH01	AA210243	4.0	A24/0525	В	11	0	0	0	0	WS	4.4		Grey sandy gravelly SILT/CLAY
BH02	AA210235	3.0	A24/0526	В	15	0	0	0	0	WS	4.4		Brown sandy gravelly SILT/CLAY
BH02	AA210237	5.0	A24/0527	В	13	0	0	0	0	WS	4.4		Grey sandy gravelly SILT/CLAY
BH02	AA210239	6.5	A24/0528	В	12	0	0	0	0	WS	4.4		Grey sandy gravelly SILT/CLAY
BH03	AA210230	3.0	A24/0529	В	13	0	0	0	0	WS	4.4		Grey sandy gravelly SILT/CLAY
BH03	AA210232	5.0	A24/0530	В	14	27	15	12	59	WS	4.4	CL	Brown slightly sandy, slightly gravelly, CLAY
BH04	AA210230	4.0	A24/0531	В	12	27	17	10	56	WS	4.4	CL	Brown sandy gravelly CLAY
BH04	AA210226	6.0	A24/0532	В	12	30	17	13	61	WS	4.4	CL	Brown slightly sandy, gravelly, CLAY
BH05	AA210224	3.0	A24/0533	В	12	30	18	12	46	WS	4.4	CL	Brown sandy gravelly CLAY
BH05	AA210219	5.0	A24/0534	В	13	34	13	11	56	WS	4.4	CL	Grey/Brown slightly sandy, slightly gravelly, CLAY
BH06	AA210212	3.0	A24/0535	В	12	24	NP	NP	44	WS	4.4		Brown sandy gravelly SILT
BH06	AA210214	5.0	A24/0536	В	10	28	14	14	61	WS	4.4	CL	Grey/Brown sandy, gravelly, CLAY
BH07	AA210208	3.0	A24/0539	В	8	30	NP	NP	20	WS	4.4		Brown silty sandy GRAVEL
BH07	AA210250	4.0	A24/0540	В	11	29	16	13	51	WS	4.4	CL	Grey/Brown sandy, gravelly, CLAY
BH08	AA210248	4.0	A24/0542	В	10	0	0	0	0	WS	4.4		Grey silty sandy GRAVEL

Remarks:

Preparation: WS - Wet sieved

VVO - VVEL SIEVEU

AR - As received

NP - Non plastic

Liquid Limit 4.3 Cone Penetrometer definitive method Clause: 4.4 Cone Penetrometer one point method

ethod

Sample Type: B - Bulk Disturbed

Persons authorized to approve reports

H Byrne (Laboratory Manager)

U - Undisturbed

Approved by

Results relate only to the specimen tested, in as received condition unless otherwise noted.

This report shall not be reproduced except in fullwithout written approval from the Laboratory.

Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.

NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.

Date 29/02/24 Page 1 of 1

IGSL Ltd Materials Laboratory

R154155 PI Tmp: Pl. temp Rev 1 04/21

IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

NDFA Social Housing Site 3 Croke Villas Report No. R154157 Contract No. 25000 Contract Name:

Customer MORCE

Samples Received: 15/02/24 Date Tested: 15/02/24

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample	Moisture	Liquid	Plastic	Plasticity	%	Preparation	-	Classification (BS5930)	Description
			ļ	Type*	Content %	Limit %	Limit %	Index	<425μm		Clause		
TP07	AA210250	2.5	A24/0563	В	15	30	NP	NP	14	WS	4.4		Brown silty, very gravelly, SAND
TP08	AA210248	2.2	A24/0564	В	15	55	26	29	34	WS	4.4	СН	Brown slightly sandy, slightly gravelly, CLAY
TP08	AA210206	2.7	A24/0565	В	21	30	16	14	89	WS	4.4	CL	Brown slightly sandy, slightly gravelly, CLAY
TP09	AA207648	2.1	A24/0566	В	7.7	0	0	0	0	WS	4.4		Brown silty/clayey sandy GRAVEL
TP10	AA207650	1.3	A24/0567	В	7	0	0	0	0	WS	4.4		Brown silty/clayey sandy GRAVEL
	1												
	1												
	1												
	Preparation:	WS - Wet sieved			Sample Type:	B - Bulk Distu	ırbed	Remarks:					

AR - As received

NP - Non plastic

Liquid Limit 4.3 Cone Penetrometer definitive method Clause: 4.4 Cone Penetrometer one point method

IGSL Ltd Materials Laboratory

U - Undisturbed

Results relate only to the specimen tested, in as received condition unless otherwise noted.

NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.

Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.

This report shall not be reproduced except in fullwithout written approval from the Laboratory.

Persons authorized to approve reports

H Byrne (Laboratory Manager)

Approved by A Byone

Date Page 29/02/24 1 of 1 IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**

NDFA Social Housing Site 3 Croke Villas Report No. R154156 Contract No. 25000 Contract Name:

Customer MORCE

Samples Received: 15/02/24 Date Tested: 15/02/24

BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description
BH08	AA210250	6.0	A24/0543	В	14	0	0	0	0	WS	4.4		Grey sandy gravelly SILT/CLAY
BH09	AA210248	3.0	A24/0544	В	13	0	0	0	0	WS	4.4		Grey sandy gravelly SILT/CLAY
BH09	AA210206	5.0	A24/0545	В	18	0	0	0	0	WS	4.4		Grey/brown sandy gravelly SILT/CLAY
BH10	AA207648	3.0	A24/0546	В	23	0	0	0	0	WS	4.4		Grey/brown sandy gravelly SILT/CLAY
BH10	AA207650	5.0	A24/0547	В	13	29	16	13	49	WS	4.4	CL	Brown/grey slightly sandy, gravelly, CLAY
BH12	AA207643	2.0	A24/0549	В	10	33	NP	NP	26	WS	4.4		Brown silty, very sandy, GRAVEL
BH12	AA207644	3.0	A24/0550	В	18	31	15	16	48	WS	4.4	CL	Brown sandy gravelly CLAY
BH12	AA207646	5.0	A24/0551	В	8	23	14	9	37	WS	4.4	CL	Brown clayey, sandy, GRAVEL with some cobbles
BH13	AA207637	3.0	A24/0553	В	14	30	19	11	39	WS	4.4	CL	Brown sandy gravelly CLAY
BH13	AA2076639	5.0	A24/0554	В	11	28	15	13	53	WS	4.4	CL	Brown slightly sandy, gravelly, CLAY
TP01	AA198502	1.3	A24/0555	В	35	58	32	26	83	WS	4.4	МН	Brown sandy gravelly SILT
TP03	AA198507	1.5	A24/0557	В	40	56	NP	NP	63	WS	4.4		Brown sandy gravelly SILT
TP03	AA198508	2.4	A24/0558	В	22	51	29	22	62	WS	4.4	МН	Brown slightly sandy, gravelly, SILT with some cobbles
TP04	AA198510	1.5	A24/0559	В	31	0	0	0	0	WS	4.4		Grey/brown sandy gravelly SILT/CLAY
TP07	AA198521	1.7	A24/0562	В	17	48	30	18	36	WS	4.4	МΙ	Brown sandy gravelly SILT

Preparation: WS - Wet sieved

AR - As received

NP - Non plastic

Liquid Limit 4.3 Cone Penetrometer definitive method Clause: 4.4 Cone Penetrometer one point method

IGSL Ltd Materials Laboratory

Sample Type: B - Bulk Disturbed

U - Undisturbed

Results relate only to the specimen tested, in as received condition unless otherwise noted.

NOTE: **These clauses have been superceded by EN 17892-1 and EN17892-12.

Opinions and interpretations are outside the scope of accreditation. * denotes Customer supplied information.

This report shall not be reproduced except in fullwithout written approval from the Laboratory.

Persons authorized to approve reports

H Byrne (Laboratory Manager)

Approved by A Byone

Date Page 29/02/24 1 of 1

Remarks:

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000 Report No. R15401	6		
size	passing		Contract Name :	NDFA Social Housing Site 3 Croke Vil	as	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	BH03		condition unless otherwise note	d. * denotes Customer
63	100	COBBLES	Sample No.*	AA210232 Lab. Sample No.	A24/0530	supplied information. Opinions a	nd interpretations are
50	100		Sample Type:	В		outside the scope of accreditati	on.
37.5	100		Depth* (m)	5m Customer: MORCE		This report shall not be reprodu	ced except in full without
28	91		Date Received	15/02/2024 Date Testing started	15/02/2024	the written approval of the Labo	oratory.
20	89		Description:	Brown slightly sandy, slightly gravelly	, CLAY		
14	87	GRAVEL					
10	84	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 ha	ve been superseded by ISO17892-4:	2016.	
6.3	79			63	15 25 5 18	2 22	ī.
5	77		100	0.063	0.15 0.3 0.425 0.6	23.3.3.1 6.3.3.3.2 7.0.0	37.5 37.5 53 63 63
3.35	73		100				
2	68		90				
1.18	64		80				
0.6	58		× 70				
0.425	56	SAND	ig 60				
0.3	53		50				
0.15	48		40 Lage		11111111111		
0.063	40		Dercentage passing (%) 00 00 00 00 00 00 00 00 00				
			20				
		SILT/CLAY	10				
		SILT/ CLAT	0				
			0.0001 0.0	0.01 0.01 0.1	1	10	100
				CLAY SILT Sieve size	(mm) SAND	GRAVEL	
		1001 :		Approve	d by:	Date:	Page no:
		IGSL L	td Materials Laborato	ry HE	Jene-	23/02/24	1 of 1

Determination of Particle Size Distribution

particle	%		Contract No.	25000 Report No.	R154021		
size	passing		Contract Name :	NDFA Social Housing Site	3 Croke Villas	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	BH04		condition unless otherwise noted	d. * denotes Customer
63	100	CODDLES	Sample No.*	AA210226 Lab. Sample	e No. A24/0532	supplied information. Opinions a	nd interpretations are
50	100		Sample Type:	В		outside the scope of accreditation	on.
37.5	89		Depth* (m)	6m Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	86		Date Received	15/02/2024 Date Testir	ng started 15/02/2024	the written approval of the Labo	oratory.
20	81		Description:	Brown slightly sandy, grav	velly, CLAY		
14	78	GRAVEL					
10	74	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS13	377:Part 2:1990 have been superseded by ISO17892-4:	2 Sample size did not nmeet the requirements of BS1377	
6.3	70				63 3 3 5 5 18	3 35	rċ
5	68		100		0.063 0.3 0.425 0.6	2 3.3.3 10 10 20 20 20 20	530033
3.35	66		100				
2	61		90			 	
1.18	57		80				
0.6	52		» 70 				
0.425	50	SAND	ig 60 				
0.3	49		Dercentage passing (%) 60 40 30				
0.15	43		96 40				
0.063	37		30				
0.038	33						
0.027	30		20				
0.017	27	SILT/CLAY	10				
0.010	23	SILT/ CLAT	0				1.00
0.007	21		0.0001 0.0	0.01	0.1 1	10	100
0.005	19			CLAY SILT	Sieve size (mm) SAND	<i>GRAVEL</i>	
0.002	14				-		
		ICSI I	td Materials Laborator	~~~	Approved by:	Date:	Page no:
		IUSL L	itu materiais Laborator	A Byene	23/02/24	1 of 1	

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract N	lo. 25000	Report No.	R154020								
size	passing		Contract N	lame: NDFA Social	Housing Site 3	3 Croke Villas		Results relate only to the specia	men tested in as received					
75	100	COBBLES	BH/TP No.	BH05				condition unless otherwise note	ed. * denotes Customer					
63	100	COBBLES	Sample No	.* AA210219	Lab. Sample	No.	A24/0534	supplied information. Opinions a	and interpretations are					
50	100		Sample Ty	pe: B				outside the scope of accreditat	ion.					
37.5	100		Depth* (m) 5m	Customer:	MORCE		This report shall not be reprodu	iced except in full without					
28	100		Date Recei	ived 15/02/202	4 Date Testing	g started	15/02/2024	the written approval of the Lab	oratory.					
20	98		Description	n: Grey/Brown	slightly sandy	, slightly gravelly,	, CLAY							
14	94	GRAVEL												
10	91	UIVAVEL	Remarks	Note: **Clause 9.2 a	and Clause 9.5 of BS137	77:Part 2:1990 have been su	perseded by ISO17892-4:	2016.						
6.3	86					0.15	0.3 .425 0.6 1.18	3 22	7.					
5	83		100			0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 70 10 10 20	37. 50. 53. 7. 50.					
3.35	78		100											
2	72		90											
1.18	67		© 80				 							
0.6	61		° 70					1 						
0.425	58	SAND	(%) 70											
0.3	55		50 50				<u> </u>							
0.15	50		90											
0.063	43		30											
0.037	39		20											
0.027	35													
0.017	32	SILT/CLAY	10											
0.010	28		0.0001	0.001	0.01	0.1	1	10	100					
0.007	25		0.0001				I		100					
0.005	21			CLAY	SILT	Sieve size (mm)	SAND	GRAVEL						
0.002	13					A manage and b		ID-t	ID					
		IGSL I	td Materials Labo	oratory		Approved by:		Date:	Page no:					
1		.502 1			1GSL LIG Materials Laboratory 23/02/24 1 of 1									

A Ryane

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154017			
size	passing			Contract Name :		•	3 Croke Villas		Results relate only to the speci	men tested in as received
75	100	00001.50		BH/TP No.	BH06	· ·			condition unless otherwise note	ed. * denotes Customer
63	100	COBBLES		Sample No.*	AA210215	Lab. Sample	No.	A24/0537	supplied information. Opinions a	and interpretations are
50	100			Sample Type:	В				outside the scope of accreditat	ion.
37.5	100			Depth* (m)	6m	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	100			Date Received	15/02/2024	1 Date Testing	g started	15/02/2024	the written approval of the Lab	oratory.
20	98			Description:	Grey Brown s	slightly sandy,	, slightly gravelly	, SILT/CLAY		
14	95	OD 41 /FI		·						
10	90	GRAVEL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS137	77:Part 2:1990 have been s	uperseded by ISO17892-4:	2016.	
6.3	85						53	8 25		r.i
5	82						0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3.35	78		100 -							
2	73		90 -							
1.18	68		80 -					+		
0.6	64		Š 70 -						1 	
0.425	61	SAND	Percentage passing (%)							
0.3	57		<u>8</u> 50 -					1		
0.15	50		1436 40							
0.063	43		30 -							
0.037	36									
0.027	32		20 -							
0.017	29	SILT/CLAY	10 -							
0.010	25		0 -	201 0.00	<u> </u>	0.01	0.1	1	10	100
0.007	21		0.00	0.00		0.01	0.1	I	10	100
0.005	18				CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
0.002	11								In .	In
		IGSL I	td Mater	ials Laborator	/		Approved by:		Date:	Page no:
		IGOL L		idio Edbordtor	′		A Bypene		23/02/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000 Report No.	R154022		
size	passing		Contract Name :	NDFA Social Housing Site	3 Croke Villas	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	BH07		condition unless otherwise note	d. * denotes Customer
63	100	CODDLES	Sample No.*	AA210209 Lab. Sampl	e No. A24/0540	supplied information. Opinions a	nd interpretations are
50	100		Sample Type:	В		outside the scope of accreditati	on.
37.5	97		Depth* (m)	4m Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	96		Date Received	15/02/2024 Date Testir	ng started 15/02/202	4 the written approval of the Labo	oratory.
20	93		Description:	Brown slightly sandy, slig	htly gravelly, CLAY		
14	89	GRAVEL					
10	84	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS13	377:Part 2:1990 have been superseded by ISO17892-	1:2016 .	
6.3	79				53 55 55 55 55 55 55 55 55 55 55 55 55 5		rō.
5	77				0.063 0.15 0.3 0.425 0.6	2 3.3.3 6.3 10 10 20 20	37.5 37.5 53 53
3.35	72		100				
2	66		90				
1.18	60		80				
0.6	54		⁸ 70 + + + + + + + + + + + + + + + + + +				
0.425	52	SAND	Dercentage passing (%) 60 40 30			1	
0.3	49		86 50				
0.15	44		tude 40				
0.063	38		Send Company				
0.038	33						
0.027	29		20				
0.017	24	SILT/CLAY	10				
0.010	21	SIL I / CLAT	0				
0.007	18		0.0001 0.0	0.01	0.1 1	10	100
0.005	16			CLAY SILT	Sieve size (mm) SAND	GRA VEL	
0.002	12						
		ICCL I	td Matariala Labarata	0.4	Approved by:	Date:	Page no:
		IGSL L	td Materials Laborator	y	A Byene	23/02/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract	No. 25000	Report No.	R154023				
size	passing		Contract	Name : NDFA Soc	ial Housing Site	3 Croke Villas		Results relate only to the speci	men tested in as received	
75	100	COBBLES	BH/TP N	o. BH10				condition unless otherwise note	ed. * denotes Customer	
63	100	COBBLES	Sample N	No.* AA20765	0 Lab. Sample	e No.	A24/0547	supplied information. Opinions a	and interpretations are	
50	100		Sample T	ype: B				outside the scope of accreditat	ion.	
37.5	100		Depth* (m) 5m	Customer:	MORCE		This report shall not be reprodu	iced except in full without	
28	94		Date Rec	eived 15/02/20	24 Date Testin	g started	15/02/2024	the written approval of the Lab	oratory.	
20	89		Descripti	on: Brown/gre	ey slightly sandy	, gravelly, CLAY				
14	83	GRAVEL								
10	78	GIVAVLL	Remarks	Note: **Clause 9	.2 and Clause 9.5 of BS13	77:Part 2:1990 have been s	superseded by ISO17892-4:	2016 .		
6.3	73					63	0.3 .425 0.6 1.18	3 22	τĊ	
5	71		100			0.063	0.3 0.425 0.6 1.18	2 3.35 6.3 10 14 20	37. 50. 53. 53.	
3.35	68		100							
2	62		90							
1.18	57		80							
0.6	50		70							
0.425	48	SAND	(%) 70							
0.3	45		50							
0.15	38		143 de 14							
0.063	31		Percentage							
0.038	27									
0.027	25		20							
0.017	22	SILT/CLAY	10							
0.010	19	01217 02711	0	0.001				10	100	
0.007	16		0.0001	0.001	0.01	0.1	1	10	100	
0.005	14			CLAY	SILT	Sieve size (mm)	SAND	GRAVEL		
0.002	10							T-		
		ICSI I	td Materials I ah	oratory		Approved by:		Date:	Page no:	
	IGSL Ltd Materials Laboratory Harring 23/02/24 1 of									

A Ryane

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154026			
size	passing		_	Contract Name:	NDFA Social	Housing Site	3 Croke Villas		Results relate only to the speci	men tested in as received
75	100	COBBLES		BH/TP No.	BH12				condition unless otherwise note	ed. * denotes Customer
63	100	CODDLES		Sample No.*	AA207643	Lab. Sample	e No.	A24/0549	supplied information. Opinions a	and interpretations are
50	94			Sample Type:	В				outside the scope of accreditat	ion.
37.5	91			Depth* (m)	2m	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	85			Date Received	15/02/2024	Date Testin	g started	15/02/2024	the written approval of the Lab	oratory.
20	81			Description:	Brown silty, \	very sandy, G	RAVEL			
14	67	GRAVEL								
10	60	GIVAVLL		Remarks	Note: **Clause 9.2 an	nd Clause 9.5 of BS13	77:Part 2:1990 have be	een superseded by ISO17892-4:	2016.	
6.3	52						0.15	0.3 .425 0.6 1.18	3 32	ι
5	49		100				0.063	0.3 0.425 0.6 1.18	2 3.3 6.3 6.3 7 7 7 7 7	37.0
3.35	45		100							
2	40		90							
1.18	35		© 80 ·							
0.6	30		<u>ම</u> 70						 	
0.425	27	SAND	issi 60							
0.3	25		ω 50							
0.15	21		Percentage passing (%) 00 00 00 00 00 00 00 00 00 00 00 00 00							
0.063	17		30							
			20 -							
		SILT/CLAY	10							
			0.0	001 0.00)1	0.01	0.1	1	10	100
					CLAY		Sieve size (m	m) SAND	GRAVEL	
							Approved b	v:	Date:	Page no:
		IGSL L	td Mater	ials Laborator	/		A Byen		23/02/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154027	7		
size	passing			Contract Name :	NDFA Social	Housing Site	3 Croke Vill	as	Results relate only to the specir	nen tested in as received
75	100	COBBLES		BH/TP No.	BH12				condition unless otherwise note	d. * denotes Customer
63	91	CODDLLO		Sample No.*	AA207646	Lab. Sampl	e No.	A24/0551	supplied information. Opinions a	nd interpretations are
50	85			Sample Type:	В				outside the scope of accreditati	on.
37.5	74			Depth* (m)	5m	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	65			Date Received	15/02/2024	↓ Date Testir	ng started	15/02/2024	the written approval of the Labo	oratory.
20	59			Description:	Brown clayey	/, sandy, GRA	AVEL with so	me cobbles		
14	53	GRAVEL								
10	49	GRAVEL		Remarks	Note: **Clause 9.2 an	nd Clause 9.5 of BS13	377:Part 2:1990 hav	re been superseded by ISO17892-4:2	2016 .	
6.3	45						93	8 22 2	5	r.
5	44						0.063	0.15 0.3 0.425 0.6	2 3.35 5.3 6.3 10 10 20	37. 37. 550 553 7.
3.35	41		100							
2	38		90							
1.18	35		80							
0.6	32		(%) bassing (%) 60							
0.425	30	SAND	ising 60						1 11 11 11 11 11	
0.3	29		9 50 s							
0.15	25		tage 04							
0.063	19		e e							
			20							
		CIL T /CL AV	10							
		SILT/CLAY	0							
			0.0	0.00)1	0.01	0.1	1	10	100
					CLAY	SILT	Sieve size (mm) SAND	GRAVEL	
							Approve	d by:	Date:	Page no:
		IGSL L	_td Mate	rials Laboratory	/		WB		23/02/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Cont	ract No.	25000	Report No.	R154024		•						
size	passing		Cont	ract Name :	NDFA Social	Housing Site	3 Croke Villas		Results relate only to the speci	men tested in as received					
75	100	COBBLES	ВН/Т	P No.	BH13				condition unless otherwise note	ed. * denotes Customer					
63	100	COBBLES	Samp	ole No.*	AA207639	Lab. Sample	e No.	A24/0554	supplied information. Opinions	and interpretations are					
50	92		Samp	ole Type:	В				outside the scope of accreditat	cion.					
37.5	92		Dept	h* (m)	5m	Customer:	MORCE		This report shall not be reprodu	uced except in full without					
28	89		Date	Received	15/02/2024	1 Date Testin	g started	15/02/2024	the written approval of the Lab	oratory.					
20	85		Desc	ription:	Brown slight	ly sandy, grav	elly, CLAY								
14	82	GRAVEL													
10	79	GIVAVLL	Rema	arks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS13	77:Part 2:1990 have beer	superseded by ISO17892-4:	2016 .						
6.3	74						63	0.3 1.425 0.6	3 32	ī.					
5	72		100				0.063	0.3 0.425 0.6 1.18	2 3.35 6.3 10 10 20	7 2 3 3 7 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					
3.35	69		100							ШИШ					
2	64		90												
1.18	59		© 80												
0.6	54		ô 70												
0.425	52	SAND	70						1 						
0.3	50		50 E												
0.15	45		40 trage												
0.063	38		Percentage 0												
0.038	31														
0.027	28		20												
0.017	26	SILT/CLAY	10												
0.010	22		0	0.00	1	0.01	0.1	1	10	100					
0.007	20		0.0001	0.00		0.01		I	10	100					
0.005	18				CLAY	SILT	Sieve size (mm) SAND	GRAVEL						
0.002	12								In.	In					
		IGSL I	td Materials	aboratory			Approved by		Date:	Page no: 1 of 1					
		.302 1					IGSL Ltd Materials Laboratory A Region 23/02/24								

A Ryane

Determination of Particle Size Distribution

particle	%			Contract No.	25000	Report No.	R154015			
size	passing		_	Contract Name:	NDFA Social	Housing Site	3 Croke Villas		Results relate only to the specir	men tested in as received
75	100	COBBLES		BH/TP No.	TP01				condition unless otherwise note	d. * denotes Customer
63	100	CODDLLS		Sample No.*	AA198503	Lab. Sample	e No.	A24/0556	supplied information. Opinions a	and interpretations are
50	97			Sample Type:	В				outside the scope of accreditati	ion.
37.5	90			Depth* (m)	2.2m	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	78			Date Received	15/02/2024	4 Date Testin	g started	15/02/2024	the written approval of the Lab	oratory.
20	68			Description:	Brown slight	ly clayey/silty	, sandy, GRAVEL	-		
14	58	GRAVEL								
10	48	GIVAVEL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS13	77:Part 2:1990 have been s	superseded by ISO17892-4:	2016.	
6.3	37						0.15	0.3 .425 0.6 1.18	3 32	τ.
5	33		100				0.063	0.3 0.425 0.6 1.18	2 3.3.3 6.3 6.3 7 8 7 8 7 8 7 8 7	37. 50. 53. 53.
3.35	28		100							
2	22		90							
1.18	17		© 80 ·						$lackbox{1}{\hspace{0.1cm}} \hspace{0.1cm} 0.1c$	/
0.6	9		<u>\$</u> 70						 	
0.425	7	SAND	Percentage passing (%) 00 00 00 00 00 00 00 00 00 00 00 00 00						 	
0.3	6		g 50							
0.15	5		14age							
0.063	4		30 accen							
			20						1	
		SILT/CLAY	10							
		0.2.7 02.11	0	001		0.01		1	10	100
			0.0	0.00		0.01	0.1	I	10	100
					CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
			- 1 3 5				Approved by:		Date:	Page no:
		IGSL L	_td Mate	rials Laboratory	· on/			23/02/24	1 of 1	

Determination of Particle Size Distribution

particle	%		Contract No.	25000 Report No.	R154019		
size	passing		Contract Name:	NDFA Social Housing Site	3 Croke Villas	Results relate only to the specin	nen tested in as received
75	100	COBBLES	BH/TP No.	TP03		condition unless otherwise noted	d. * denotes Customer
63	93	CORRES	Sample No.*	AA198508 Lab. Sample	e No. A24/0558	supplied information. Opinions a	nd interpretations are
50	88		Sample Type:	В		outside the scope of accreditation	on.
37.5	84		Depth* (m)	2.4m Customer:	MORCE	This report shall not be reproduc	ced except in full without
28	79		Date Received	15/02/2024 Date Testin	ng started 15/02/2024	the written approval of the Labo	oratory.
20	72		Description:	Brown slightly sandy, grav	velly, SILT with some cobbles		
14	67	GRAVEL					
10	61	GRAVEL	Remarks	Note: **Clause 9.2 and Clause 9.5 of BS13	377:Part 2:1990 have been superseded by ISO17892-4	:2016 .	
6.3	57				.063 0.15 0.3 .425 0.6	3 22	ī.
5	53		100		0.063 0.3 0.425 0.6	23.33.37.4	37.5 50 53 53
3.35	50		100				ППИП
2	46		90				
1.18	41		80				
0.6	39		8 70 				
0.425	37	SAND	·ig 60				
0.3	34		Dercentage passing (%) 70 60 40 30				
0.15	30		143 tage				
0.063	26		30				
0.038	21						
0.027	19		20				
0.017	17	SILT/CLAY	10				
0.010	14	SILT/ CLAT	0				100
0.007	12		0.0001 0.0	0.01	0.1 1	10	100
0.005	11			CLAY SILT	Sieve size (mm) SAND	<i>GRAVEL</i>	
0.002	8					1_	
		ופטו ו	td Materials Laborator		Approved by:		Page no:
		IUSE E	.tu materiais Laborator	У	A Byone	23/02/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154029			
size	passing		_	Contract Name:	NDFA Social	Housing Site	3 Croke Villas		Results relate only to the specir	men tested in as received
75	100	COBBLES		BH/TP No.	TP04				condition unless otherwise note	d. * denotes Customer
63	100	CODDLLS		Sample No.*	AA198511	Lab. Sample	e No.	A24/0560	supplied information. Opinions a	nd interpretations are
50	96			Sample Type:	В				outside the scope of accreditati	ion.
37.5	88			Depth* (m)	2.3m	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	82			Date Received		4 Date Testin	•	15/02/2024	the written approval of the Labo	oratory.
20	76			Description:	Brown slight	ly sandy, grav	elly, SILT/CLAY			
14	68	GRAVEL								
10	64	GIVAVEL		Remarks	Note: **Clause 9.2 a	nd Clause 9.5 of BS13	77:Part 2:1990 have been s	superseded by ISO17892-4:2	2016 .	
6.3	58						0.15	0.3 .425 0.6 1.18	3 22	₹.
5	55		100				0.063	0.3 0.425 0.6 1.18	2 3.3.3 6.3 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	37. 50. 753. 753.
3.35	51		100							
2	47		90							
1.18	42		80							
0.6	36		Š 70 ·							
0.425	33	SAND	Percentage passing (%) 00 00 00 00 00 00 00 00 00 00 00 00 00							
0.3	31		g 50 -							
0.15	28		tage						<u> </u>	
0.063	23		30 -							
0.038	19									
0.027	17		20 -							
0.017	16	SILT/CLAY	10 -		+++					
0.010	14	SIL I / CLAI	0 -							100
0.007	12		0.0	0.00	JΊ	0.01	0.1	1	10	100
0.005	11				CLAY	SILT	Sieve size (mm)	SAND	<i>GRAVEL</i>	
0.002	8								-	
		ICSI I	td Mater	ials Laborator			Approved by:		Date:	Page no:
		IGSL L	Liu Matel	A Byene		23/02/24	1 of 1			

Determination of Particle Size Distribution

particle	%	<u> </u>		Contract No.	25000	Report No.	R154018			
size	passing			Contract Name :		Housing Site		3	Results relate only to the speci	men tested in as recei
75 63	100 100	COBBLES		BH/TP No. Sample No.*	TP06 AA198518	Lab. Sample		A24/0561	condition unless otherwise note supplied information. Opinions	ed. * denotes Custome
50 37.5 28 20	100 85 79 71			Sample Type: Depth* (m) Date Received Description:		Customer: 4 Date Testin y/silty, sandy	-	15/02/2024	outside the scope of accredital This report shall not be reprodu the written approval of the Lab	uced except in full with
14 10 6.3	60 53 41	GRAVEL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS13		255	2 Sample size did not meet the requirements of BS1377	ιΩ
5 3.35 2	36 29 21		100 - 90 -				0:0	3 0 % 0 L	2 3.3.3.3	25.55 × 25.55
1.18 0.6 0.425 0.3 0.15	16 11 10 8 8	SAND	Percentage passing (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.063	7	SILT/CLAY	30 - 20 - 10 - 0.0	001 0.00	D1 CLAY	0.01 S/LT	0.1 Sieve size (n	1 nm) SAND	10 GRAVEL	100
		IGSL L	td Mater	ials Laboratory	/		Approved		Date: 23/02/24	Page no:

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

<u> </u>										
particle	%			Contract No.	25000	Report No.	R154028	3		
size	passing		•	Contract Name :	NDFA Social	Housing Site	3 Croke Vill	as	Results relate only to the specir	men tested in as received
75	100	COBBLES		BH/TP No.	TP07				condition unless otherwise note	d. * denotes Customer
63	100	CODDLLO		Sample No.*	AA198522	Lab. Sample	e No.	A24/0563	supplied information. Opinions a	and interpretations are
50	100			Sample Type:	В				outside the scope of accreditati	ion.
37.5	95			Depth* (m)	2.5m	Customer:	MORCE		This report shall not be reprodu	ced except in full without
28	95			Date Received	15/02/2024	4 Date Testir	ng started	15/02/2024	the written approval of the Lab	oratory.
20	94			Description:	Brown silty,	very gravelly	, SAND			
14	91	GRAVEL								
10	89	GRAVEL		Remarks	Note: **Clause 9.2 a	nd Clause 9.5 of BS13	377:Part 2:1990 hav	ve been superseded by ISO17892-4:	2016 .	
6.3	85						53	8 55		r.
5	83						0.063	0.15 0.3 0.425 0.6	2 3.35 6.3 10 10 20	37. 750. 750.
3.35	79		100							
2	74		90							
1.18	66		80							
0.6	46		(%) bassing (%) 60						1 	
0.425	33	SAND	iss 60					- Н. Н. Н. Н. И.		
0.3	22		<u>8</u> 50							
0.15	13		tage 40							
0.063	10		e e							
			20 -							
		SILT/CLAY	10 -					1 		
		SIL1/CLA1	0 -							
			0.0	0.00)1	0.01	0.1	1	10	100
					CLAY	SILT	Sieve size	(mm) SAND	GRAVEL	
							Approve	d by:	Date:	Page no:
		IGSL L	_td Mater	ials Laboratory	/		AB		23/02/24	1 of 1

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%		Contract No.	25000 Rep	oort No. R154025		•	
size	passing		Contract Name	e: NDFA Social Hous	sing Site 3 Croke Villas		Results relate only to the spec	imen tested in as received
75	100	COBBLES	BH/TP No.	TP08			condition unless otherwise not	ed. * denotes Customer
63	100	CODDLES	Sample No.*	AA198527 Lak	o. Sample No.	A24/0565	supplied information. Opinions	and interpretations are
50	100		Sample Type:	В			outside the scope of accredita	tion.
37.5	100		Depth* (m)	2.7m Cus	stomer: MORCE		This report shall not be reprod	uced except in full without
28	99		Date Received	15/02/2024 Dat	te Testing started	15/02/2024	the written approval of the Lak	ooratory.
20	98		Description:	Brown slightly sa	ndy, slightly gravelly, Cl	_AY		
14	97	GRAVEL						
10	96		Remarks	Note: **Clause 9.2 and Claus	e 9.5 of BS1377:Part 2:1990 have be	en superseded by ISO17892-4:2016 .		
6.3	95				63	0.3 .425 0.6	3 32	
5	94		100		0.063	0.3 0.425 0.6 1.18	2 3.33 6.3 6.3 20	28 37. 50. 530.
3.35	93		100					
2	91		90					
1.18	89	SAND	© 80 					
0.6	86		<u></u> 70					
0.425	85		(%) 70					
0.3	82		50					
0.15	76		40 Lage					
0.063	70	SILT/CLAY	Percentage 40					
0.037	57							
0.027	52		20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
0.017	47		10					
0.010	41		0 1	0.001	1 01	1	10	100
0.007	35		0.0001	0.001 0.0		I	10	100
0.005	31			CLAY	S/LT Sieve size (mr	n) SAND	GRAVEL	
0.002	19				Approved by		In .	In.
	Date:	Page no:						
		IOOL L	td Materials Laborat	A Began		23/02/24	1 of 1	

A Ryane

Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5** (note: Sedimentation stage not accredited)

particle	%			Contract No.	25000	Report No.	R154014		•	
size	passing		_	Contract Name:	NDFA Social	Housing Site	3 Croke Villas		Results relate only to the speci	men tested in as received
75	100	COBBLES		BH/TP No.	TP10				condition unless otherwise note	ed. * denotes Customer
63	100	COBBLES		Sample No.*	AA198539	Lab. Sample	e No.	A24/0568	supplied information. Opinions a	and interpretations are
50	100	GRAVEL		Sample Type:	В				outside the scope of accreditat	ion.
37.5	98			Depth* (m)	2.3m	Customer:	MORCE		This report shall not be reprodu	iced except in full without
28	94			Date Received	15/02/202	4 Date Testing	g started	15/02/2024	the written approval of the Lab	oratory.
20	77			Description:	Brown slight	ly clayey/silty	, sandy, GRAVEL			
14	64									
10	51	GIVAVLL		Remarks Note: **Clause 9.2 and Clause 9.5 of BS1377:Part 2:1990 have been superseded by IS017892-4					2016 .	
6.3	33						63	0.3 .425 0.6 1.18	3 22	τĊ
5	26		100				0.063	0.3 0.425 0.6 1.18	2 3.3 6.3 6.3 7 7 7 7 7 7 7 7 7	37. 750 753 753
3.35	20		100							
2	14		90						 	
1.18	12		80						 	
0.6	8		Percentage passing (%) 00 00 00 00 00 00 00 00 00 00 00 00 00						 	
0.425	6	SAND							+ + + + + + + + + + + + + + + + + + +	
0.3	5									
0.15	4		tage 04							
0.063	3	SILT/CLAY	30						1	
			20							
			10							
			0	001 0.00	<u> </u>	0.01	0.1	1	10	100
			0.0	0.00				1		100
					CLAY	SILT	Sieve size (mm)	SAND	GRAVEL	
		100: :	- 1 1 4		Approved by:		Date:	Page no:		
IGSL Ltd Materials Laboratory						A Ryane			23/02/24	1 of 1

Appendix 8

Geo-Environmental & Chemical Laboratory Results (Soils)

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 24-03653-1

Initial Date of Issue: 22-Feb-2024

Re-Issue Details:

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): Darren Keogh

Project 25000 Croke Villas

Quotation No.: Q20-21693 Date Received: 07-Feb-2024

Order No.: Date Instructed: 07-Feb-2024

No. of Samples: 19

Turnaround (Wkdays): 7 Results Due: 15-Feb-2024

Date Approved: 22-Feb-2024

Approved By:

Details: Stuart Henderson, Technical

Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Leachate

Client: IGSL			Chei	mtest J	ob No.:	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763594	1763595	1763596	1763597	1763599	1763601	1763602	1763604	1763605
Order No.:			Clie	nt Samp	le Ref.:	TP2	TP2	TP3	TP4	TP5	TP5	TP6	TP7	TP8
				Sampl	е Туре:	SOIL								
		Top Depth (m):			0.70	1.40	0.80	0.80	0.80	2.50	0.70	0.70	0.60	
				Date Sa	mpled:	02-Feb-2024								
Determinand	Accred.	SOP	Type	Units	LOD									
Ammonium	U	1220	10:1	mg/l	0.050	0.056	0.058	0.058	0.078	< 0.050	0.070	0.061	0.078	< 0.050
Ammonium	N	1220	10:1	mg/kg	0.10	0.63	0.63	0.64	0.85	0.65	0.87	0.68	0.93	0.50

Results - Leachate

Client: IGSL	Sa Top Da Accred. SOP Type U		mtest Jo	ob No.:	24-03653	24-03653	24-03653	24-03653	
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763611	1763612	1763614	1763616
Order No.:			Clie	nt Samp	le Ref.:	TP9	TP9	TP10	TP11
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	0.70	1.50	0.70	0.80
		Date Sampled:					02-Feb-2024	02-Feb-2024	02-Feb-2024
Determinand	Accred.	SOP	Type	Units	LOD				
Ammonium	U	U 1220 10:1 mg/l 0.050				0.092	0.074	0.077	0.066
Ammonium	N	N 1220 10:1 mg/kg 0.			0.10	1.0	1.0	1.0	0.75

Project: 25000 Croke Villas												
Client: IGSL			Che	mtest Jo	ob No.:	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763594	1763595	1763596	1763597	1763598	1763599	1763600
Order No.:			Clie	nt Samp	le Ref.:	TP2	TP2	TP3	TP4	TP4	TP5	TP5
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	1			Top De	pth (m):	0.70	1.40	0.80	0.80	1.50	0.80	1.60
	1			Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest		DURHAM	DURHAM	DURHAM	DURHAM		DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	-	2011111111	2014.174.11	2011111111	20.4.2.4.		20.4.2.4.	
ACM Type		U	2192	Cinto	N/A	-	-	-	-		Fibres/Clumps	
Asbestos Identification		U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected		Chrysotile	
Asbestos by Gravimetry		U	2192	%	0.001						<0.001	
Total Asbestos	+	U	2192	%	0.001						<0.001	
Moisture		N	2030	%	0.020	18	26	23	15	16	12	13
Soil Colour	+	N	2040	70	N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Soli Colodi		IN	2040		IN/A	DIOWII	DIOWII	BIOWII	DIOWII	DIOWII	DIOWII	BIOWII
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Sand	Sand	Sand	Clay	Sand	Sand
pH at 20C		М	2010		4.0	7.9	8.0	8.1	8.1		8.5	
pH (2.5:1) at 20C		N	2010		4.0					8.4		8.5
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	1.3	1.6	1.3	0.85		1.5	
Magnesium (Water Soluble)		N	2120	g/l	0.010					< 0.010		< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010					0.032		0.32
Total Sulphur		U	2175	%	0.010					0.032		0.20
Sulphur (Elemental)		М	2180	mg/kg	1.0	10	22	3.9	7.4		2.1	
Chloride (Water Soluble)		М	2220	g/l	0.010					< 0.010		< 0.010
Nitrate (Water Soluble)		N	2220	g/l	0.010					< 0.010		0.011
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	0.70	< 0.50		< 0.50	
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	5.5	8.2	3.7	5.0		5.5	
Ammonium (Water Soluble)		М	2220	g/l	0.01					< 0.01		< 0.01
Sulphate (Total)	1	U	2430	%	0.010	0.13	0.98	0.42	0.32		0.091	
Sulphate (Acid Soluble)	1	U	2430	%	0.010					0.077		0.44
Arsenic		М	2455	mg/kg	0.5	19	19	29	37		22	
Barium		М	2455	mg/kg	0	170	170	220	200		270	
Cadmium		М	2455	mg/kg	0.10	2.6	2.3	1.1	1.2		2.0	
Chromium		М	2455	mg/kg	0.5	20	19	20	22		25	
Molybdenum		М	2455	mg/kg	0.5	4.0	3.6	4.8	6.3		4.0	
Antimony		N	2455	mg/kg	2.0	14	12	15	10		4.9	
Copper		M	2455	mg/kg	0.50	52	52	140	360		83	
Mercury		M	2455	mg/kg	0.05	0.72	0.70	2.3	1.4		0.93	
Nickel		M	2455	mg/kg		31	26	45	65		46	
Lead	+	M	2455	mg/kg	0.50	490	480	860	610		230	—
Selenium	+	M	2455	mg/kg		1.7	0.53	1.6	1.5		1.3	
Zinc	+	M	2455	mg/kg	0.23	3000	3000	310	340		280	
Chromium (Trivalent)		N	2490	mg/kg	_	20	19	20	22		25	—
, ,	+											——
Chromium (Hexavalent)	LIC OD AL	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	——
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	1

Project: 25000 Croke Villas												
Client: IGSL			Che	mtest J	ob No.:	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693		•	Chemte	est Sam	ple ID.:	1763594	1763595	1763596	1763597	1763598	1763599	1763600
Order No.:			Clie	nt Samp	le Ref.:	TP2	TP2	TP3	TP4	TP4	TP5	TP5
				Sampl	е Туре:	SOIL						
				Top De	pth (m):	0.70	1.40	0.80	0.80	1.50	0.80	1.60
				Date Sa	ampled:	02-Feb-2024						
				Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM		DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25		< 0.25	
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg		< 2.0	5.8	< 2.0	< 2.0		4.1	
Aliphatic EPH >C12-C16 MC	EH 2D AL #1	М	2690	mg/kg	1.00	< 1.0	3.0	< 1.0	< 1.0		< 1.0	
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	М	2690	mg/kg		< 2.0	3.7	< 2.0	< 2.0		< 2.0	
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	М	2690	mg/kg	3.00	< 3.0	5.9	< 3.0	< 3.0		3.3	
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10		< 10	
Total Aliphatic EPH >C10-C35 MC	EH 2D AL #1	М	2690	mg/kg	5.00	< 5.0	18	< 5.0	< 5.0		9.2	
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg	_	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Aromatic VPH >C7-C8	HS 2D AR	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg		< 0.25	< 0.25	< 0.25	< 0.25		< 0.25	
Aromatic EPH >C10-C12 MC	EH 2D AR #1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	
Aromatic EPH >C12-C16 MC	EH 2D AR #1	U	2690	mg/kg		< 1.0	4.2	< 1.0	< 1.0		< 1.0	
Aromatic EPH >C16-C21 MC	EH 2D AR #1	U	2690	mg/kg	2.00	5.5	23	16	3.2		17	
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	2.9	19	13	< 2.0		16	
Aromatic EPH >C35-C40 MC	EH 2D AR #1	N	2690	mg/kg		< 1.0	31	< 1.0	< 1.0		2.1	
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg		8.3	46	29	< 5.0		34	
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	
Total EPH >C10-C35 MC	EH 2D Total #1	U	2690	mg/kg	10.00	< 10	64	29	< 10		43	
Total Organic Carbon		М	2625	%	0.20	5.4	5.7	12	11		2.6	
Mineral Oil EPH	EH CU 1D Total	N	2670	mg/kg	10	< 10	18	< 10	< 10		< 10	
Benzene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	
Toluene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	
Ethylbenzene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	
o-Xylene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	
Methyl Tert-Butyl Ether		M	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	
Naphthalene		M	2800	mg/kg		0.72	0.49	< 0.10	0.24		< 0.10	
Acenaphthylene		N	2800	mg/kg		0.43	0.34	< 0.10	< 0.10		< 0.10	
Acenaphthene		M	2800	mg/kg		0.17	0.12	< 0.10	0.26		< 0.10	
Fluorene		M	2800	mg/kg		0.32	0.26	< 0.10	0.26		< 0.10	
Phenanthrene		M	2800	mg/kg		3.8	2.7	0.88	3.0		0.63	
Anthracene		M	2800	mg/kg		0.83	0.59	0.18	0.52		0.14	
Fluoranthene		M	2800	mg/kg		4.4	2.7	1.1	3.6		0.84	
Pyrene	1	M	2800	mg/kg	0.10	3.5	2.3	0.97	3.0		0.70	
Benzo[a]anthracene		M	2800	mg/kg	-	1.9	1.2	0.53	1.7		0.42	
Donzo[a]antinaoono		IVI	2000	I mg/kg	0.10	1.9	1.4	0.00	1.7		U.4Z	

Client: IGSL			Che	mtest J	ob No.:	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763594	1763595	1763596	1763597	1763598	1763599	1763600
Order No.:			Clie	nt Samp	le Ref.:	TP2	TP2	TP3	TP4	TP4	TP5	TP5
				Sampl	е Туре:	SOIL						
					pth (m):	0.70	1.40	0.80	0.80	1.50	0.80	1.60
				Date Sa	ampled:	02-Feb-2024						
				Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM		DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chrysene		М	2800	mg/kg	0.10	1.9	1.3	0.57	1.8		0.34	
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	2.3	1.4	0.65	1.9		0.45	
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	0.81	0.60	0.21	0.59		0.16	
Benzo[a]pyrene		М	2800	mg/kg	0.10	1.7	1.0	0.50	1.6		0.34	
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	1.0	0.64	0.32	0.96		0.23	
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	0.21	0.16	< 0.10	0.26		< 0.10	
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	0.99	0.72	0.31	0.99		0.22	
Coronene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	25	17	6.2	21		4.5	
PCB 28		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010	
PCB 52		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010	
PCB 101		U			0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010	
PCB 118		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010	
PCB 153		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010	
PCB 138		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010	
PCB 180		U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010	
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	

Project. 25000 Croke Villas												
Client: IGSL			Che	mtest J	ob No.:	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763601	1763602	1763603	1763604	1763605	1763610	1763611
Order No.:			Clie	nt Samp	ole Ref.:	TP5	TP6	TP6	TP7	TP8	TP8	TP9
				Sampl	le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	2.50	0.70	1.70	0.70	0.60	1.50	0.70
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
					tos Lab:	DURHAM	DURHAM		DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
ACM Type		U	2192		N/A	-	-		-	-		-
Asbestos Identification		U	2192		N/A	No Asbestos Detected	No Asbestos Detected		No Asbestos Detected	No Asbestos Detected		No Asbestos Detected
Asbestos by Gravimetry		U	2192	%	0.001							
Total Asbestos		U	2192	%	0.001							
Moisture		N	2030	%	0.020	13	14	12	16	13	19	15
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Sand	Sand	Sand	Sand	Clay	Sand
pH at 20C	+	M	2010	 	4.0	8.3	8.1	Cana	8.3	8.0	Olay	8.1
pH (2.5:1) at 20C		N	2010		4.0	0.0	0.1	8.6	0.0	0.0	8.0	0.1
Boron (Hot Water Soluble)		M	2120	mg/kg	0.40	1.0	1.3	0.0	1.1	2.4	0.0	1.1
Magnesium (Water Soluble)		N	2120	g/l	0.010	1.0	1.0	< 0.010			< 0.010	1.1
Sulphate (2:1 Water Soluble) as SO4		M	2120	g/l	0.010			0.021			0.052	
Total Sulphur	+	U	2175	%	0.010			0.13			0.023	
Sulphur (Elemental)		M	2180	mg/kg	1.0	1.9	6.2	0.10	4.7	2.8	0.020	2.2
Chloride (Water Soluble)		M	2220	g/l	0.010		0.2	< 0.010		2.0	0.016	
Nitrate (Water Soluble)		N	2220	g/l	0.010			< 0.010			< 0.010	
Cyanide (Total)		M	2300	mg/kg	0.50	< 0.50	< 0.50	0.0.0	< 0.50	< 0.50	0.0.0	0.60
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	5.2	4.3		6.3	4.7		4.7
Ammonium (Water Soluble)		М	2220	g/l	0.01		- 112	< 0.01			< 0.01	
Sulphate (Total)		U	2430	%	0.010	0.31	0.21	0.01	0.17	0.12	0.01	0.24
Sulphate (Acid Soluble)		U	2430	%	0.010			0.085		-	0.046	
Arsenic	1	М	2455	mg/kg	0.5	23	33	-	25	18		43
Barium		М	2455	mg/kg	0	220	130		90	85		280
Cadmium		М	2455	mg/kg	0.10	2.1	1.1		1.0	1.2		2.0
Chromium		М	2455	mg/kg	0.5	18	18		15	20		26
Molybdenum		М	2455	mg/kg	0.5	3.3	7.1		3.4	3.1		7.5
Antimony		N	2455	mg/kg	2.0	19	4.2		4.9	3.7		6.3
Copper		М	2455	mg/kg	0.50	61	88		63	56		120
Mercury		М	2455	mg/kg	0.05	0.75	1.7		1.0	0.54		3.0
Nickel		М	2455	mg/kg		41	59		44	36		64
Lead		М	2455	mg/kg		210	250		320	100		420
Selenium		М	2455	mg/kg		1.0	1.2		0.96	0.92		1.4
Zinc	1	M	2455	mg/kg	0.50	220	190	1	160	220	1	1100
Chromium (Trivalent)	1	N	2490	mg/kg	1.0	18	18	1	15	20	1	26
Chromium (Hexavalent)	1	N	2490	mg/kg	0.50	< 0.50	< 0.50	1	< 0.50	< 0.50	1	< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg	-	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05
,						3.00			3.00	3.00		0.00

Project: 25000 Croke Villas									•	•		
Client: IGSL				mtest Jo		24-03653	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763601	1763602	1763603	1763604	1763605	1763610	1763611
Order No.:			Clie	nt Samp	le Ref.:	TP5	TP6	TP6	TP7	TP8	TP8	TP9
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	2.50	0.70	1.70	0.70	0.60	1.50	0.70
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:	DURHAM	DURHAM		DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Aliphatic VPH >C6-C7	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05
Aliphatic VPH >C7-C8	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25	< 0.25	< 0.25		< 0.25	< 0.25		< 0.25
Aliphatic EPH >C10-C12 MC	EH 2D AL #1	М	2690	mg/kg	2.00	< 2.0	< 2.0		< 2.0	< 2.0		< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	< 1.0	< 1.0		2.0	< 1.0		< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	M	2690	mg/kg	2.00	< 2.0	< 2.0	†	2.4	< 2.0		< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	M	2690	mg/kg	3.00	< 3.0	< 3.0	i e	< 3.0	< 3.0		< 3.0
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	< 10	< 10	<u> </u>	< 10	< 10		< 10
Total Aliphatic EPH >C10-C35 MC	EH 2D AL #1	M	2690	mg/kg	5.00	< 5.0	< 5.0	<u> </u>	7.1	< 5.0		< 5.0
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05
Aromatic VPH >C7-C8	HS 2D AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25	< 0.25	< 0.25		< 0.25	< 0.25		< 0.25
Aromatic EPH >C10-C12 MC	EH 2D AR #1	U	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0
Aromatic EPH >C16-C21 MC	EH 2D AR #1	U	2690	mg/kg	2.00	6.2	2.0	 	3.5	3.2		9.9
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	5.0	< 2.0		4.3	4.4		13
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	< 1.0	< 1.0		15	< 1.0		< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	11	< 5.0		7.8	7.5		23
Total VPH >C5-C10	HS 2D Total	U	2780	mg/kg	0.50	< 0.50	< 0.50		< 0.50	< 0.50		< 0.50
Total EPH >C10-C35 MC	EH 2D Total #1	U	2690	mg/kg	10.00	11	< 10		15	11		26
Total Organic Carbon	LII_ZD_Total_#1	M	2625	%	0.20	3.8	8.0		4.9	2.6		8.1
Mineral Oil EPH	EH CU 1D Total	N	2670	mg/kg	10	< 10	< 10		< 10	< 10		< 10
Benzene	LII_CO_ID_IOIAI	M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0
Toluene		M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0
Ethylbenzene		M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0
m & p-Xylene		M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0
o-Xylene		M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0
Methyl Tert-Butyl Ether		M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0
Naphthalene		M	2800	mg/kg	0.10	1.5	< 0.10		< 0.10	< 0.10		0.41
·		N	2800		0.10	0.21	< 0.10		< 0.10	< 0.10		0.41
Acenaphthylene Acenaphthene	+	M	2800	mg/kg	0.10	0.21	< 0.10	 	< 0.10	< 0.10		0.19
Fluorene	+	M	2800	mg/kg mg/kg	0.10	0.45	< 0.10	 	< 0.10	< 0.10		0.22
Phenanthrene	+	M	2800		0.10	6.1	0.88	 	0.10	< 0.10		3.5
	+	M	2800	mg/kg		1.5						0.73
Anthracene		M	2800	mg/kg	0.10		< 0.10 0.74		< 0.10 0.29	< 0.10 < 0.10		8.2
Fluoranthene		M	2800	mg/kg	0.10	5.9	0.74		0.29			7.5
Pyrene				mg/kg	0.10	4.5				< 0.10		
Benzo[a]anthracene		М	2800	mg/kg	0.10	2.6	0.31		0.21	< 0.10		4.6

Client: IGSL			Che	mtest Jo	ob No.:	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763601	1763602	1763603	1763604	1763605	1763610	1763611
Order No.:			Clie	nt Samp	le Ref.:	TP5	TP6	TP6	TP7	TP8	TP8	TP9
				Sample	е Туре:	SOIL						
				Top Dep			0.70	1.70	0.70	0.60	1.50	0.70
				Date Sa	ampled:	02-Feb-2024						
				Asbest	os Lab:	DURHAM	DURHAM		DURHAM	DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chrysene		М	2800	mg/kg	0.10	2.0	0.41		0.23	< 0.10		4.0
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	2.9	0.50		0.28	< 0.10		7.6
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	1.0	0.12		< 0.10	< 0.10		2.4
Benzo[a]pyrene		М	2800	mg/kg	0.10	2.2	0.30		< 0.10	< 0.10		6.3
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	1.3	0.21		< 0.10	< 0.10		4.0
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10		0.82
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	1.3	0.23		< 0.10	< 0.10		3.9
Coronene		N	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10		< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	34	4.3		1.8	< 1.0		55
PCB 28		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010	< 0.010		< 0.010
PCB 52		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010	< 0.010		< 0.010
PCB 101		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010	< 0.010		< 0.010
PCB 118		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010	< 0.010		< 0.010
PCB 153		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010	< 0.010		< 0.010
PCB 138		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010	< 0.010		< 0.010
PCB 180		U	2815	mg/kg	0.010	< 0.010	< 0.010		< 0.010	< 0.010		< 0.010
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05
Total Phenols		M	2920	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10		< 0.10

Client: IGSL				mtest J		24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693			Chemte	st Sam	ple ID.:	1763612	1763613	1763614	1763615	1763616
Order No.:			Clie	nt Samp	le Ref.:	TP9	TP9	TP10	TP10	TP11
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	1.50	2.10	0.70	1.30	0.80
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:	DURHAM		DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD					
ACM Type		U	2192		N/A	-		-		-
A - 4 - - - - - - - - - - -			0400		NI/A	No Asbestos		No Asbestos		No Asbestos
Asbestos Identification		U	2192		N/A	Detected		Detected		Detected
Asbestos by Gravimetry		U	2192	%	0.001					
Total Asbestos		U	2192	%	0.001					
Moisture		N	2030	%	0.020	9.6	16	7.5	7.1	11
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones and Roots	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Sand	Sand	Sand	Sand
pH at 20C	+	M	2010		4.0	8.5	Caria	8.8	Odrid	7.9
pH (2.5:1) at 20C		N	2010	 	4.0	0.0	7.7	0.0	8.5	7.0
Boron (Hot Water Soluble)		M	2120	mg/kg	0.40	0.69	7.7	0.46	0.0	1.5
Magnesium (Water Soluble)	+	N	2120	g/l	0.010	0.00	< 0.010	0.40	< 0.010	1.0
Sulphate (2:1 Water Soluble) as SO4		M	2120	g/l	0.010		0.88		0.094	
Total Sulphur		U	2175	%	0.010		0.22		0.025	
Sulphur (Elemental)		M	2180	mg/kg	1.0	1.6	0.22	3.6	0.020	2.7
Chloride (Water Soluble)		M	2220	g/l	0.010		< 0.010	0.0	< 0.010	
Nitrate (Water Soluble)		N	2220	g/l	0.010		0.017		< 0.010	
Cyanide (Total)		М	2300	mg/kg	0.50	0.90		< 0.50		< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	9.7		7.5		6.1
Ammonium (Water Soluble)		М	2220	g/l	0.01		< 0.01		< 0.01	
Sulphate (Total)		U	2430	%	0.010	0.15		0.21		0.37
Sulphate (Acid Soluble)		Ü	2430	%	0.010		0.55		0.057	
Arsenic		М	2455	mg/kg	0.5	17		12		12
Barium		М	2455	mg/kg	0	83		88		85
Cadmium		М	2455	mg/kg	0.10	1.5		1.6		1.5
Chromium		М	2455	mg/kg	0.5	20		20		19
Molybdenum		М	2455	mg/kg	0.5	4.0		4.6		4.3
Antimony		N	2455	mg/kg	2.0	2.3		< 2.0		2.0
Copper		М	2455	mg/kg	0.50	40		30		30
Mercury	†	М	2455	mg/kg	0.05	0.34		0.18	i	0.19
Nickel		М	2455	mg/kg	0.50	44		40		38
Lead		М	2455	mg/kg	0.50	75		49		48
Selenium		М	2455	mg/kg	0.25	1.2		1.4		1.3
Zinc		М	2455	mg/kg	0.50	150		110		110
Chromium (Trivalent)		N	2490	mg/kg	1.0	20		20		19
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50		< 0.50		< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg	0.05	< 0.05		< 0.05	İ	< 0.05

Client: IGSL				mtest Jo		24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693		(st Sam		1763612	1763613	1763614	1763615	1763616
Order No.:			Clie	nt Samp	le Ref.:	TP9	TP9	TP10	TP10	TP11
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1.50	2.10	0.70	1.30	0.80
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:	DURHAM		DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD					
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05		< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05		< 0.05
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05		< 0.05		< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25		< 0.25		< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0		< 2.0		< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	< 1.0		1.7		< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0		2.6		< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	3.00	< 3.0		3.7		< 3.0
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00	< 10		< 10		< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	5.00	< 5.0		9.8		< 5.0
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05		< 0.05		< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05		< 0.05		< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05		< 0.05		< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25		< 0.25		< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0		< 1.0		< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0		< 1.0		< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	3.8		6.1		4.1
Aromatic EPH >C21-C35 MC	EH 2D AR #1	U	2690	mg/kg	2.00	< 2.0		7.4		3.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	< 1.0		< 1.0		< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	< 5.0		14		7.2
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50		< 0.50		< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00	< 10		23		< 10
Total Organic Carbon		М	2625	%	0.20	2.3		2.1		1.6
Mineral Oil EPH	EH_CU_1D_Total	N	2670	mg/kg	10	< 10		< 10		< 10
Benzene		М	2760	μg/kg	1.0	< 1.0		< 1.0		< 1.0
Toluene		М	2760	μg/kg	1.0	< 1.0		< 1.0		< 1.0
Ethylbenzene		М	2760	μg/kg	1.0	< 1.0		< 1.0		< 1.0
m & p-Xylene		М	2760	μg/kg	1.0	< 1.0		< 1.0		< 1.0
o-Xylene		М	2760	μg/kg	1.0	< 1.0		< 1.0		< 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0	< 1.0		< 1.0		< 1.0
Naphthalene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10
Acenaphthene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10
Phenanthrene		М	2800	mg/kg	0.10	< 0.10		0.24		< 0.10
Anthracene		М	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10
Fluoranthene		М	2800	mg/kg	0.10	0.45		0.30		< 0.10
Pyrene		М	2800	mg/kg	0.10	0.39		0.28		< 0.10
Benzo[a]anthracene		М	2800	mg/kg		0.24		0.22		< 0.10

Client: IGSL			Che	mtest Jo	ob No.:	24-03653	24-03653	24-03653	24-03653	24-03653
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763612	1763613	1763614	1763615	1763616
Order No.:		1	Clie	nt Samp	le Ref.:	TP9	TP9	TP10	TP10	TP11
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1.50	2.10	0.70	1.30	0.80
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:	DURHAM		DURHAM		DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD					
Chrysene		М	2800	mg/kg	0.10	0.23		0.21		< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	0.36		< 0.10		< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	0.11		< 0.10		< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	0.28		< 0.10		< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	0.25		< 0.10		< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	0.25		< 0.10		< 0.10
Coronene		N	2800	mg/kg	0.10	< 0.10		< 0.10		< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	2.6		1.3		< 1.0
PCB 28		U	2815	mg/kg	0.010	< 0.010		< 0.010		< 0.010
PCB 52		U	2815	mg/kg	0.010	< 0.010		< 0.010		< 0.010
PCB 101		U	2815	mg/kg	0.010	< 0.010		< 0.010		< 0.010
PCB 118		U	2815	mg/kg	0.010	< 0.010		< 0.010		< 0.010
PCB 153		U	2815	mg/kg	0.010	< 0.010		< 0.010		< 0.010
PCB 138		U	2815	mg/kg	0.010	< 0.010		< 0.010		< 0.010
PCB 180		U	2815	mg/kg	0.010	< 0.010		< 0.010		< 0.010
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	< 0.05		< 0.05		< 0.05
Total Phenols		M	2920	mg/kg	0.10	< 0.10		< 0.10		< 0.10

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03653					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1763594						Limits	
Sample Ref:	TP2						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.70					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	5.4	3	5	6
Loss On Ignition	2610		M	%	9.9			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	64	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		7.9		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0069	0.069	0.5	2	25
Barium	1455		U	0.006	0.058	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0009	0.0089	0.5	10	70
Copper	1455		U	0.0030	0.030	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0046	0.046	0.5	10	30
Nickel	1455		U	0.0008	0.0076	0.4	10	40
Lead	1455		U	0.0024	0.024	0.5	10	50
Antimony	1455		U	0.013	0.13	0.06	0.7	5
Selenium	1455		U	0.0006	0.0059	0.1	0.5	7
Zinc	1455		U	0.020	0.21	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.15	1.5	10	150	500
Sulphate	1220		U	47	470	1000	20000	50000
Total Dissolved Solids	1020		N	110	1100	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.4	54	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	18

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03653					Landfill \	e Criteria	
Chemtest Sample ID:	1763595						Limits	
Sample Ref:	TP2						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.40					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	5.7	3	5	6
Loss On Ignition	2610		M	%	11			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	170	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.0		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.035		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455		U	0.0092	0.092	0.5	2	25
Barium	1455		U	0.005	0.051	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0010	0.0099	0.5	10	70
Copper	1455		U	0.0027	0.027	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0039	0.040	0.5	10	30
Nickel	1455		U	0.0008	0.0081	0.4	10	40
Lead	1455		U	0.0011	0.011	0.5	10	50
Antimony	1455		U	0.0087	0.087	0.06	0.7	5
Selenium	1455		U	0.0006	0.0059	0.1	0.5	7
Zinc	1455		U	0.018	0.18	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.14	1.4	10	150	500
Sulphate	1220		U	51	510	1000	20000	50000
Total Dissolved Solids	1020		N	130	1300	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.1	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	26

Waste Acceptance Criteria

Project: 25000 Croke Villas								
Chemtest Job No:	24-03653		LandfIII Waste Acceptance Criteria					
Chemtest Sample ID:	1763596						Limits	
Sample Ref:	TP3						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.80					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	12	3	5	6
Loss On Ignition	2610		M	%	12			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	130	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.1		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0040		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.012	0.12	0.5	2	25
Barium	1455		U	0.008	0.080	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0010	0.0096	0.5	10	70
Copper	1455		U	0.0042	0.042	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0025	0.026	0.5	10	30
Nickel	1455		U	0.0008	0.0080	0.4	10	40
Lead	1455		U	0.0043	0.043	0.5	10	50
Antimony	1455		U	0.026	0.26	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.021	0.22	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.40	4.0	10	150	500
Sulphate	1220		U	28	280	1000	20000	50000
Total Dissolved Solids	1020		N	95	940	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.2	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	23

Waste Acceptance Criteria

Project: 25000 Croke Villas									
Chemtest Job No:	24-03653					Landfill Waste Acceptance Criteria			
Chemtest Sample ID:	1763597						Limits		
Sample Ref:	TP4						Stable, Non-		
Sample ID:							reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	0.80					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units	1				
Total Organic Carbon	2625		M	%	11	3	5	6	
Loss On Ignition	2610		M	%	11			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	80	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.1		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	< 0.0020		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test	
			mg/l	mg/kg	using B	S 10 I/kg			
Arsenic	1455		U	0.0070	0.070	0.5	2	25	
Barium	1455		U	0.006	0.060	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	0.0009	0.0094	0.5	10	70	
Copper	1455		U	0.0057	0.057	2	50	100	
Mercury	1455		U	0.00007	0.00069	0.01	0.2	2	
Molybdenum	1455		U	0.0063	0.063	0.5	10	30	
Nickel	1455		U	0.0008	0.0077	0.4	10	40	
Lead	1455		U	0.0032	0.032	0.5	10	50	
Antimony	1455		U	0.0051	0.051	0.06	0.7	5	
Selenium	1455		U	0.0008	0.0085	0.1	0.5	7	
Zinc	1455		U	0.019	0.19	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.35	3.5	10	150	500	
Sulphate	1220		U	29	290	1000	20000	50000	
Total Dissolved Solids	1020		N	96	950	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	3.6	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Project: 25000 Croke Villas								
Chemtest Job No:	24-03653		LandfIII Waste Acceptance Criteria					
Chemtest Sample ID:	1763599						Limits	
Sample Ref:	TP5						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.80					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	2.6	3	5	6
Loss On Ignition	2610		M	%	5.1			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	170	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.5		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0050		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455		U	0.014	0.14	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0024	0.024	0.5	10	70
Copper	1455		U	0.0026	0.026	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0051	0.052	0.5	10	30
Nickel	1455		U	0.0005	0.0053	0.4	10	40
Lead	1455		U	0.0005	0.0053	0.5	10	50
Antimony	1455		U	0.0036	0.036	0.06	0.7	5
Selenium	1455		U	0.0011	0.011	0.1	0.5	7
Zinc	1455		U	0.018	0.18	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.13	1.3	10	150	500
Sulphate	1220		U	66	660	1000	20000	50000
Total Dissolved Solids	1020		N	140	1400	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.3	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03653					Landfill \	e Criteria	
Chemtest Sample ID:	1763601						Limits	
Sample Ref:	TP5						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	2.50					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024				J		Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	3.8	3	5	6
Loss On Ignition	2610		M	%	3.8			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	360	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.3		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0040		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455		U	0.012	0.12	0.5	2	25
Barium	1455		U	0.005	0.052	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0006	0.0062	0.5	10	70
Copper	1455		U	0.0031	0.031	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0023	0.023	0.5	10	30
Nickel	1455		U	0.0008	0.0078	0.4	10	40
Lead	1455		U	0.0020	0.020	0.5	10	50
Antimony	1455		U	0.0047	0.047	0.06	0.7	5
Selenium	1455		U	0.0006	0.0061	0.1	0.5	7
Zinc	1455		U	0.023	0.23	4	50	200
				< 1.0	< 10	800	15000	25000
Chloride	1220		U					
Chloride Fluoride	1220		Ü	0.13	1.3	10	150	500
Chloride Fluoride Sulphate	1220 1220		U U	0.13 32	1.3 320	10 1000	150 20000	500 50000
Chloride Fluoride Sulphate Total Dissolved Solids	1220 1220 1020		U U N	0.13 32 90	1.3 320 900	10	150	500
Chloride Fluoride Sulphate	1220 1220		U U	0.13 32	1.3 320	10 1000	150 20000	500 50000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas									
Chemtest Job No:	24-03653	24-03653					Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1763602						Limits		
Sample Ref:	TP6						Stable, Non-		
Sample ID:							reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	0.70					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units	1				
Total Organic Carbon	2625		M	%	8.0	3	5	6	
Loss On Ignition	2610		M	%	14			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	85	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.1		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.0050		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test	
			mg/l		mg/kg	using BS EN 12457 at L/S 10 l/kg			
Arsenic	1455		U	0.025	0.25	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	0.0034	0.034	2	50	100	
Mercury	1455		U	0.00006	0.00057	0.01	0.2	2	
Molybdenum	1455		U	0.0046	0.046	0.5	10	30	
Nickel	1455		U	0.0016	0.016	0.4	10	40	
Lead	1455		U	0.0030	0.031	0.5	10	50	
Antimony	1455		U	0.0036	0.036	0.06	0.7	5	
Selenium	1455		U	0.0006	0.0062	0.1	0.5	7	
Zinc	1455		U	0.018	0.18	4	50	200	
Chloride	1220		U	1.1	11	800	15000	25000	
Fluoride	1220		U	0.20	2.0	10	150	500	
Sulphate	1220		U	6.7	67	1000	20000	50000	
Total Dissolved Solids	1020		N	77	770	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	4.4	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03653					Landfill Waste Acceptance Criteria		
Chemtest Sample ID:	1763604	1763604				Limits		
Sample Ref:	TP7						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.70					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	4.9	3	5	6
Loss On Ignition	2610		M	%	9.7			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	76	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.3		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0030		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455		U	0.021	0.21	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0039	0.039	2	50	100
Mercury	1455		U	0.00007	0.00066	0.01	0.2	2
Molybdenum	1455		U	0.0016	0.016	0.5	10	30
Nickel	1455		U	0.0017	0.017	0.4	10	40
Lead	1455		U	0.0041	0.041	0.5	10	50
Antimony	1455		U	0.0029	0.029	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.020	0.20	4	50	200
Chloride	1220		U	1.2	12	800	15000	25000
Fluoride	1220		U	0.17	1.7	10	150	500
Sulphate	1220		U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020		N	55	550	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	6.5	65	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

Project: 25000 Croke Villas								
Chemtest Job No:	24-03653					LandfIII Waste Acceptance Criteria		
Chemtest Sample ID:	1763605						Limits	
Sample Ref:	TP8						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.60					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	2.6	3	5	6
Loss On Ignition	2610		M	%	6.3			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.0		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.014	0.14	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0008	0.0081	0.5	10	70
Copper	1455		U	0.0037	0.037	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0035	0.035	0.5	10	30
Nickel	1455		U	0.0017	0.017	0.4	10	40
Lead	1455		U	0.0011	0.011	0.5	10	50
Antimony	1455		U	0.0048	0.048	0.06	0.7	5
Selenium	1455		U	0.0007	0.0071	0.1	0.5	7
Zinc	1455		U	0.041	0.41	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.11	1.1	10	150	500
Sulphate	1220		U	5.7	57	1000	20000	50000
Total Dissolved Solids	1020		N	63	630	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.6	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03653					Landfill Waste Acceptance Criteria		
Chemtest Sample ID:	1763611						Limits	
Sample Ref:	TP9						Stable, Non-	
Sample ID:							reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	0.70					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	8.1	3	5	6
Loss On Ignition	2610		M	%	20			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	130	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.1		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.0030		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.013	0.13	0.5	2	25
Barium	1455		U	0.009	0.092	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0053	0.053	0.5	10	70
Copper	1455		U	0.0044	0.044	2	50	100
Mercury	1455		U	0.00011	0.0011	0.01	0.2	2
Molybdenum	1455		U	0.0018	0.018	0.5	10	30
Nickel	1455		U	0.0019	0.019	0.4	10	40
Lead	1455		U	0.0050	0.050	0.5	10	50
Antimony	1455		U	0.0039	0.039	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.037	0.37	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.32	3.2	10	150	500
Sulphate	1220		U	4.3	43	1000	20000	50000
Total Dissolved Solids	1020		N	67	670	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	5.0	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas									
Chemtest Job No:	24-03653					Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1763612						Limits		
Sample Ref:	TP9						Stable, Non-		
Sample ID:							reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	1.50					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		M	%	2.3	3	5	6	
Loss On Ignition	2610		M	%	3.6			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.5		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.0060		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test	
			mg/l		mg/kg	using BS EN 12457 at L/S 10 l/kg			
Arsenic	1455		U	0.0079	0.079	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	0.0013	0.013	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0071	0.071	0.5	10	30	
Nickel	1455		U	0.0005	0.0050	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	0.0015	0.015	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.018	0.19	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.15	1.5	10	150	500	
Sulphate	1220		U	1.1	11	1000	20000	50000	
Total Dissolved Solids	1020		N	53	530	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	< 2.5	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	9.6

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas									
Chemtest Job No:	24-03653					Landfill Waste Acceptance Criteria			
Chemtest Sample ID:	1763614						Limits		
Sample Ref:	TP10						Stable, Non-		
Sample ID:							reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	0.70					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		M	%	2.1	3	5	6	
Loss On Ignition	2610		М	%	1.9			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.8		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.050		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	•		eaching test	
				mg/l	mg/kg	using B	3 10 l/kg		
Arsenic	1455		U	0.0028	0.028	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	0.0006	0.0063	0.5	10	70	
Copper	1455		U	0.0010	0.0096	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.014	0.14	0.5	10	30	
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	0.0014	0.014	0.06	0.7	5	
Selenium	1455		U	0.0011	0.011	0.1	0.5	7	
Zinc	1455		U	0.017	0.17	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.18	1.8	10	150	500	
Sulphate	1220		U	1.5	15	1000	20000	50000	
Total Dissolved Solids	1020		N	51	510	4000	60000	100000	
	1000		1.1		4 0 20	4			
Phenol Index Dissolved Organic Carbon	1920 1610		U U	< 0.030 < 2.5	< 0.30 < 50	500	800	1000	

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	7.5				

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas									
Chemtest Job No:	24-03653	24-03653					Landfill Waste Acceptance Criteria		
Chemtest Sample ID:	1763616						Limits		
Sample Ref:	TP11						Stable, Non-		
Sample ID:							reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	0.80					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units	1				
Total Organic Carbon	2625		M	%	1.6	3	5	6	
Loss On Ignition	2610		М	%	5.0			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	< 10	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		7.9		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.016		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test	
-				mg/l	mg/kg	S EN 12457 at L/	457 at L/S 10 I/kg		
Arsenic	1455		U	0.0048	0.048	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	0.0013	0.013	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0054	0.054	0.5	10	30	
Nickel	1455		U	0.0007	0.0069	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	0.0010	0.010	0.06	0.7	5	
Selenium	1455		U	0.0013	0.013	0.1	0.5	7	
Zinc	1455		U	0.039	0.39	4	50	200	
Chloride	1220		U	2.1	21	800	15000	25000	
Fluoride	1220		U	0.12	1.2	10	150	500	
Sulphate	1220		U	75	750	1000	20000	50000	
Total Dissolved Solids	1020		N	150	1500	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	< 2.5	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	11

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
1010	pH Value of Waters	pH at 20°C	pH Meter	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	pH at 20°C	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p- phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils	. ,	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2690	EPH A/A Split		Acetone/Heptane extraction / GCxGC FID detection	
	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10		
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge	

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Τ	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of UKAS accreditation

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water

GW - Ground Water

LE - Land Leachate

NA - Not Applicable

PL - Prepared Leachate

PW - Processed Water

Report Information

RE - Recreational Water

SA - Saline Water

SW - Surface Water

TE - Treated Effluent

TS - Treated Sewage

UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up

MC - Mathematical Clean Up

FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

eurofins

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 24-03656-1

Initial Date of Issue: 15-Feb-2024

Re-Issue Details:

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): Darren Keogh

Project 25000 Croke Villas

Quotation No.: Q20-21693 Date Received: 07-Feb-2024

Order No.: Date Instructed: 07-Feb-2024

No. of Samples: 22

Turnaround (Wkdays): 7 Results Due: 15-Feb-2024

Date Approved: 15-Feb-2024

Approved By:

Details: Stuart Henderson, Technical

Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Leachate

Client: IGSL	Chemtest Job No.:		24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656			
Quotation No.: Q20-21693	Chemtest Sample ID.					1763617	1763618	1763620	1763621	1763622	1763623	1763625	1763627	1763628
Order No.:	Client Sample Ref.					BH1	BH2	BH3	BH4	BH4	BH5	BH6	BH7	BH9
	Client Sample ID.:					BH1	BH2	BH3	BH4	BH4	BH5	BH6	BH7	BH9
	Sample Type:					SOIL								
				Top Dep	oth (m):	1.0	1.0	2.0	1.0	3.0	1.0	2.0	1.0	1.0
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
Determinand	Accred. SOP Type Units LOD													
Ammonium	U 1220 10:1 mg/l 0.050		< 0.050	0.065	0.26	0.13	0.10	0.084	0.067	0.065	< 0.050			
Ammonium	N	1220	10:1	mg/kg	0.10	0.62	0.83	3.2	1.4	1.3	0.97	0.78	0.78	0.56

Results - Leachate

Client: IGSL			Che	mtest Jo	b No.:	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693		Chemtest Sample ID.				1763630	1763632	1763633	1763634	1763635	1763637	1763638
Order No.:	Client Sample Ref				le Ref.:	BH10	BH11	BH11	BH12	BH13	TP1	TP1
	Client Sample ID.:					BH10	BH11	BH11	BH12	BH13	TP1	TP1
	Sample Type:					SOIL						
				Top Dep	oth (m):	1.0	1.0	2.5	1.0	1.0	0.7	1.3
				Date Sa	ımpled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
Determinand	Accred. SOP Type Units LOD											
Ammonium	U	1220	1220 10:1 mg/l 0.050		0.066	0.055	0.061	0.059	< 0.050	< 0.050	< 0.050	
Ammonium	N	1220	10:1	mg/kg	0.10	0.78	0.67	0.79	0.64	0.53	0.49	0.50

Project: 25000 Croke Villas												
Client: IGSL			Chei	mtest J	ob No.:	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763617	1763618	1763619	1763620	1763621	1763622	1763623
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH2	BH2	BH3	BH4	BH4	BH5
			Clie	ent Sam	ple ID.:	BH1	BH2	BH2	BH3	BH4	BH4	BH5
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		1.0	1.0	3.0	2.0	1.0	3.0	1.0
					ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest		COVENTRY	COVENTRY	02 : 02 202 :	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD	0012	0012.1111		0012.1111	001211111	0012.1111	3312.1111
ACM Type	111102 0000	U	2192	Omico	N/A	_	-		-	_	-	-
,						No Asbestos	No Asbestos		No Asbestos	No Asbestos	No Asbestos	No Asbestos
Asbestos Identification		U	2192		N/A	Detected	Detected		Detected	Detected	Detected	Detected
Moisture		N	2030	%	0.020	14	17	9.3	20	15	9.9	18
Soil Colour	1	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
		1								Stones and		Stones and
Other Material		N	2040		N/A	Stones	Stones	Stones	Stones	Roots	Stones	Roots
Soil Texture		N	2040		N/A	Sand	Sand	Sand	Sand	Sand	Sand	Loam
pH at 20C		M	2010		4.0	8.6	8.4		8.4	8.2	8.7	10.2
pH (2.5:1) at 20C		N	2010		4.0			9.3				
Boron (Hot Water Soluble)		M	2120	mg/kg	0.40	0.54	0.46		1.5	0.84	< 0.40	0.50
Magnesium (Water Soluble)		N	2120	g/l	0.010			< 0.010				
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010			0.032				
Total Sulphur		U	2175	%	0.010			0.038				
Sulphur (Elemental)		М	2180	mg/kg	1.0	2.0	2.6		4.3	3.9	< 1.0	7.9
Chloride (Water Soluble)		М	2220	g/l	0.010			< 0.010				
Nitrate (Water Soluble)		N	2220	g/l	0.010			< 0.010				
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50	1.0	< 0.50	4.9
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	4.5	4.1		3.7	3.3	4.5	3.9
Ammonium (Water Soluble)		М	2220	g/l	0.01			< 0.01			-	
Sulphate (Total)		U	2430	%	0.010	0.095	0.20		0.32	0.27	0.082	0.30
Sulphate (Acid Soluble)		U	2430	%	0.010	0.000	0.20	0.046	0.02	0.2.	0.002	0.00
Arsenic		M	2455	mg/kg	0.5	12	15	0.0.0	20	22	12	17
Barium		M	2455	mg/kg	0	84	230		320	320	78	210
Cadmium		M	2455	mg/kg	0.10	1.4	0.74		10	1.2	2.3	0.40
Chromium	+	M	2455	mg/kg	0.5	19	19		200	24	18	36
Molybdenum	+	M	2455	mg/kg	0.5	4.3	1.9	 	3.5	2.6	5.1	4.2
Antimony	+	N	2455	mg/kg	2.0	3.7	9.2	 	5.3	150	2.0	190
Copper	+	M	2455	mg/kg	0.50	25	45		67	92	32	110
Mercury		M	2455	mg/kg	0.05	0.18	0.62		0.53	0.69	0.06	6.9
Nickel		M	2455	mg/kg	0.50	31	25	 	43	29	53	44
Lead	+	M	2455	mg/kg	0.50	43	240	 	1600	1300	29	1100
Selenium	+	M	2455		0.30	1.2	0.63	 	1.9	0.86	1.1	0.67
Zinc	+	M	2455	mg/kg mg/kg		90	180		3700	700	98	220
Chromium (Trivalent)		N	2490	mg/kg	1.0	19	19		200	24	18	36
Chromium (Hexavalent)	110.05.41	N	2490	mg/kg	0.50	< 0.50	< 0.50	 	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05

Project: 25000 Croke Villas	-											
Client: IGSL			Che	mtest Jo	ob No.:	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763617	1763618	1763619	1763620	1763621	1763622	1763623
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH2	BH2	BH3	BH4	BH4	BH5
			Cli	ent Sam	ple ID.:	BH1	BH2	BH2	BH3	BH4	BH4	BH5
				Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1.0	1.0	3.0	2.0	1.0	3.0	1.0
				Date Sa		02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest		COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD	0012.1111	0012.1111		0012.1111	0012.11111	3372	0012.11.11
Aliphatic VPH >C7-C8	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25	< 0.25	< 0.25		< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH AL 2D #1	M	2690	mg/kg	2.00	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0	2.8
Aliphatic EPH >C12-C16 MC	EH_AL_2D_#1	M	2690	mg/kg	1.00	< 1.0	4.8		5.1	1.1	1.9	4.6
Aliphatic EPH >C16-C21 MC	EH_AL_2D_#1	M				< 2.0	6.5		4.9	6.5	< 2.0	4.0
			2690	mg/kg	2.00				5.3			
Aliphatic EPH >C21-C35 MC	EH_AL_2D_#1	M	2690	mg/kg	3.00	< 3.0	4.1			10	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_AL_2D_#1	N	2690	mg/kg	10.00	< 10	< 10		< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_AL_2D_#1	M	2690	mg/kg	5.00	< 5.0	17		17	19	< 5.0	13
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	< 0.25		< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00	< 1.0	1.5		< 1.0	3.3	< 1.0	1.1
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	4.2	21		9.0	97	4.9	110
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	< 2.0	84		17	320	3.5	220
Aromatic EPH >C35-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	1.00	< 1.0	3.8		1.6	31	< 1.0	7.8
Total Aromatic EPH >C10-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	5.00	6.1	110		26	420	8.4	340
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50		< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_Total_2D_#1	U	2690	mg/kg	10.00	< 10	120		43	430	12	350
Total Organic Carbon		M	2625	%	0.20	1.9	5.2		8.1	8.5	0.41	12
Mineral Oil EPH	EH_AL_2D_#1	N	2670	mg/kg	10	< 10	17		17	19	< 10	13
Benzene		M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Toluene		M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene		M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene		М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene		М	2800	mg/kg	0.10	< 0.10	0.19		< 0.10	< 0.10	< 0.10	0.33
Acenaphthylene	1	N	2800	mg/kg	0.10	< 0.10	0.14		< 0.10	< 0.10	< 0.10	0.16
Acenaphthene		М	2800	mg/kg	0.10	< 0.10	0.13		< 0.10	< 0.10	< 0.10	0.11
Fluorene		М	2800	mg/kg	0.10	< 0.10	0.15		< 0.10	< 0.10	< 0.10	0.11
Phenanthrene	1	M	2800	mg/kg	0.10	< 0.10	1.6		0.93	2.6	< 0.10	2.0
Anthracene		M	2800	mg/kg	0.10	< 0.10	0.37		0.24	0.87	< 0.10	0.86
Fluoranthene	+	M	2800	mg/kg	0.10	< 0.10	2.9		1.3	10	< 0.10	10
Pyrene		M	2800	mg/kg	0.10	< 0.10	2.7		1.2	10	< 0.10	11
Benzo[a]anthracene		M	2800	mg/kg	0.10	< 0.10	1.7		0.61	6.5	< 0.10	5.5
Denzolajanunacene		IVI	2000	my/kg	0.10	\ 0.10	1.7		0.01	0.5	\ 0.10	5.5

Client: IGSL			Che	mtest J	ob No.:	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693			Chemte	est Sam	ple ID.:	1763617	1763618	1763619	1763620	1763621	1763622	1763623
Order No.:			Clie	nt Samp	le Ref.:	BH1	BH2	BH2	BH3	BH4	BH4	BH5
			Cli	ent Sam	ple ID.:	BH1	BH2	BH2	BH3	BH4	BH4	BH5
				Sampl	е Туре:	SOIL						
				<u> </u>	pth (m):	1.0	1.0	3.0	2.0	1.0	3.0	1.0
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:	COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chrysene		M	2800	mg/kg	0.10	< 0.10	2.0		0.72	6.8	< 0.10	6.0
Benzo[b]fluoranthene		M	2800	5 5		< 0.10	2.7		0.86	11	< 0.10	8.2
Benzo[k]fluoranthene		M	2800	mg/kg	0.10	< 0.10	1.0		0.26	3.9	< 0.10	3.2
Benzo[a]pyrene		M	2800	mg/kg	0.10	< 0.10	2.5		0.66	8.6	< 0.10	6.6
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	1.8		0.45	5.7	< 0.10	4.4
Dibenz(a,h)Anthracene		N		mg/kg		< 0.10	0.40		< 0.10	1.1	< 0.10	0.85
Benzo[g,h,i]perylene		М		mg/kg		< 0.10	1.7		0.45	5.4	< 0.10	4.5
Coronene		N	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10	< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	< 1.0	22		7.7	73	< 1.0	64
PCB 28		U	2815	mg/kg	0.010	< 0.010	0.060		< 0.010	< 0.010	< 0.010	< 0.010
PCB 52		U	2815	mg/kg	0.010	< 0.010	0.048		< 0.010	< 0.010	< 0.010	< 0.010
PCB 101		U		mg/kg		< 0.010	0.048		< 0.010	< 0.010	< 0.010	< 0.010
PCB 118		U		mg/kg		< 0.010	0.048		< 0.010	< 0.010	< 0.010	< 0.010
PCB 153		U	2815	mg/kg	0.010	< 0.010	0.036		< 0.010	< 0.010	< 0.010	< 0.010
PCB 138		U		mg/kg		< 0.010	0.036		< 0.010	< 0.010	< 0.010	< 0.010
PCB 180		U		mg/kg		< 0.010	0.048		< 0.010	< 0.010	< 0.010	< 0.010
Tot PCBs Low (7 Congeners)		N		mg/kg		< 0.05	0.32		< 0.05	< 0.05	< 0.05	< 0.05
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10	< 0.10

Client: IGSL			Che	mtest J	ob No.:	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763624	1763625	1763626	1763627	1763628	1763629	1763630
Order No.:				nt Samp		BH5	BH6	BH6	BH7	BH9	BH9	BH10
			Cli	ent Sam		BH5	BH6	BH6	BH7	BH9	BH9	BH10
					е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		2.0	2.0	4.0	1.0	1.0	2.0	1.0
					ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
					os Lab:		COVENTRY		COVENTRY	COVENTRY		COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
АСМ Туре		U	2192		N/A		-		-	-		
Asbestos Identification		U	2192		N/A		No Asbestos Detected		No Asbestos Detected	No Asbestos Detected		No Asbestos Detected
Moisture		N	2030	%	0.020	20	19	11	14	14	23	14
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones	None	Stones	Stones	Stones	Stones
Soil Texture	1	N	2040		N/A	Clay	Clay	Clay	Loam	Clay	Loam	Clay
pH at 20C		М	2010		4.0	·	8.4		8.4	8.5	ĺ	9.5
pH (2.5:1) at 20C		N	2010		4.0	9.3		8.9			8.9	
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40		0.55		< 0.40	0.83		0.50
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010		< 0.010			< 0.010	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010		0.012			< 0.010	
Total Sulphur		U	2175	%	0.010	0.063		0.020			0.097	
Sulphur (Elemental)		М	2180	mg/kg	1.0		4.6		2.7	5.0		2.0
Chloride (Water Soluble)		M	2220	g/l	0.010	< 0.010		< 0.010			< 0.010	
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010		< 0.010			< 0.010	
Cyanide (Total)		M	2300	mg/kg	0.50		< 0.50		< 0.50	< 0.50		< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50		4.7		4.1	13		4.7
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01		< 0.01			< 0.01	
Sulphate (Total)		U	2430	%	0.010		0.20		0.26	0.23		0.16
Sulphate (Acid Soluble)		U	2430	%	0.010	0.063	40	0.024	00	40	0.12	0.4
Arsenic		M	2455	mg/kg	0.5		46		26	16		21
Barium		M	2455	mg/kg	0		140		180	240		73 0.94
Cadmium		M M	2455 2455	mg/kg	0.10		1.1 15		2.0 26	0.84 19		16
Chromium Molybdenum	+	M	2455	mg/kg mg/kg	0.5		5.9		6.0	2.6		2.4
Antimony	+	N	2455	mg/kg	2.0		33		4.1	9.3		< 2.0
Copper	+	M	2455	mg/kg	0.50		100		65	55		32
Mercury		M	2455	mg/kg	0.05		2.4		0.86	0.83		0.26
Nickel		M	2455	mg/kg	0.50		49		55	28		25
Lead	+	M	2455	mg/kg	0.50		320		200	280		51
Selenium	+	M	2455	mg/kg	0.30		1.3		1.4	0.76		0.74
Zinc	+	M	2455	mg/kg	0.50		160		230	220		76
Chromium (Trivalent)	 	N	2490	mg/kg	1.0		15		26	19		16
Chromium (Hexavalent)	1	N	2490	mg/kg	0.50		< 0.50		< 0.50	< 0.50		< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg	0.05		< 0.05		< 0.05	< 0.05		< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	U	2780	mg/kg	0.05		< 0.05		< 0.05	< 0.05		< 0.05

Project. 25000 Croke Villas												
Client: IGSL			Che	mtest Jo	ob No.:	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763624	1763625	1763626	1763627	1763628	1763629	1763630
Order No.:			Clie	nt Samp	le Ref.:	BH5	BH6	BH6	BH7	BH9	BH9	BH10
			Cli	ent Sam	ple ID.:	BH5	BH6	BH6	BH7	BH9	BH9	BH10
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep		2.0	2.0	4.0	1.0	1.0	2.0	1.0
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:		COVENTRY		COVENTRY	COVENTRY		COVENTRY
Determinand	HWOL Code	Accred.	SOP									
Aliphatic VPH >C7-C8	HS 2D AL	U	2780	mg/kg	0.05		< 0.05		< 0.05	< 0.05		< 0.05
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05		< 0.05	ì	< 0.05	< 0.05		< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25		< 0.25		< 0.25	< 0.25		< 0.25
Aliphatic EPH >C10-C12 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00		2.4		< 2.0	< 2.0		< 2.0
Aliphatic EPH >C12-C16 MC	EH AL 2D #1	М	2690	mg/kg	1.00		2.8		4.1	< 1.0		< 1.0
Aliphatic EPH >C16-C21 MC	EH AL 2D #1	М	2690	mg/kg	2.00		2.9	İ	7.1	< 2.0		< 2.0
Aliphatic EPH >C21-C35 MC	EH_AL_2D_#1	M	2690	mg/kg	3.00		4.0	İ	4.3	< 3.0		< 3.0
Aliphatic EPH >C35-C40 MC	EH AL 2D #1	N	2690	mg/kg	10.00		< 10		< 10	< 10		< 10
Total Aliphatic EPH >C10-C35 MC	EH AL 2D #1	М	2690	mg/kg	5.00		12		16	< 5.0		< 5.0
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg	0.05		< 0.05		< 0.05	< 0.05		< 0.05
Aromatic VPH >C7-C8	HS 2D AR	Ü	2780	mg/kg	0.05		< 0.05		< 0.05	< 0.05		< 0.05
Aromatic VPH >C8-C10	HS 2D AR	Ü	2780	mg/kg	0.05		< 0.05		< 0.05	< 0.05		< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25		< 0.25		< 0.25	< 0.25		< 0.25
Aromatic EPH >C10-C12 MC	EH AR 2D #1	Ü	2690	mg/kg	1.00		< 1.0		< 1.0	< 1.0		< 1.0
Aromatic EPH >C12-C16 MC	EH AR 2D #1	Ü	2690	mg/kg	1.00		< 1.0		< 1.0	< 1.0		< 1.0
Aromatic EPH >C16-C21 MC	EH AR 2D #1	Ü	2690	mg/kg	2.00		9.5		17	9.9		4.4
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00		19		57	9.1		4.5
Aromatic EPH >C35-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	1.00		1.6		2.3	< 1.0		< 1.0
Total Aromatic EPH >C10-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	5.00		29		74	19		8.9
Total VPH >C5-C10	HS 2D Total	Ü	2780	mg/kg	0.50		< 0.50		< 0.50	< 0.50		< 0.50
Total EPH >C10-C35 MC	EH_Total_2D_#1	Ü	2690	mg/kg	10.00		41		90	22		13
Total Organic Carbon		M	2625	%	0.20		14		5.3	4.4		1.6
Mineral Oil EPH	EH AL 2D #1	N	2670	mg/kg	10		12		16	< 10		< 10
Benzene		М	2760	μg/kg	1.0		< 1.0		< 1.0	< 1.0		< 1.0
Toluene		М	2760	µg/kg	1.0		< 1.0		< 1.0	< 1.0		< 1.0
Ethylbenzene		М	2760	μg/kg	1.0		< 1.0		< 1.0	< 1.0		< 1.0
m & p-Xylene		М	2760	μg/kg	1.0		< 1.0		< 1.0	< 1.0		< 1.0
o-Xylene		М	2760	µg/kg	1.0		< 1.0		< 1.0	< 1.0		< 1.0
Methyl Tert-Butyl Ether		M	2760	µg/kg	1.0		< 1.0		< 1.0	< 1.0		< 1.0
Naphthalene		M	2800	mg/kg	0.10		< 0.10		0.15	< 0.10		< 0.10
Acenaphthylene		N	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10		< 0.10
Acenaphthene		M	2800	mg/kg	0.10		< 0.10	1	< 0.10	< 0.10		< 0.10
Fluorene		M	2800	mg/kg	0.10		< 0.10	 	< 0.10	< 0.10		< 0.10
Phenanthrene		M	2800	mg/kg	0.10		0.52	<u> </u>	1.7	1.5		< 0.10
Anthracene	1	M	2800	mg/kg	0.10		< 0.10	 	0.39	0.16		< 0.10
Fluoranthene		M	2800	mg/kg	0.10		0.49	<u> </u>	3.2	1.9		< 0.10
Pyrene	1	M	2800	mg/kg	0.10		0.42	 	2.8	1.5		< 0.10
Benzo[a]anthracene		M	2800		0.10		< 0.10		2.0	0.76		< 0.10
		. * 1	2000	9/119	0.10		10.10			0.70		

Client: IGSL			Cher	ntest J	ob No.:	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693		(st Sam		1763624	1763625	1763626	1763627	1763628	1763629	1763630
Order No.:			Clier	nt Samp	le Ref.:	BH5	BH6	BH6	BH7	BH9	BH9	BH10
			Clie	ent Sam	ple ID.:	BH5	BH6	BH6	BH7	BH9	BH9	BH10
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	2.0	2.0	4.0	1.0	1.0	2.0	1.0
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:		COVENTRY		COVENTRY	COVENTRY		COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chrysene		M	2800	mg/kg	0.10		< 0.10		2.2	0.81		< 0.10
Benzo[b]fluoranthene		M		mg/kg			< 0.10		3.4	1.2		< 0.10
Benzo[k]fluoranthene		M	2800	mg/kg	0.10		< 0.10		1.2	0.32		< 0.10
Benzo[a]pyrene		M	2800	mg/kg	0.10		< 0.10		2.5	0.73		< 0.10
Indeno(1,2,3-c,d)Pyrene		M	2800	mg/kg	0.10		< 0.10		1.8	0.56		< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10		< 0.10		0.33	< 0.10		< 0.10
Benzo[g,h,i]perylene		M	2800	mg/kg	0.10		< 0.10		1.9	0.52		< 0.10
Coronene		N	2800	mg/kg	0.10		< 0.10		< 0.10	< 0.10		< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0		1.4		24	10		< 1.0
PCB 28		U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010		< 0.010
PCB 52		U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010		< 0.010
PCB 101		U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010		< 0.010
PCB 118		U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010		< 0.010
PCB 153		U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010		< 0.010
PCB 138		U		mg/kg			< 0.010		< 0.010	< 0.010		< 0.010
PCB 180		U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010		< 0.010
Tot PCBs Low (7 Congeners)		N		mg/kg			< 0.05		< 0.05	< 0.05		< 0.05
Total Phenols		M	2920	mg/kg	0.10		< 0.10		< 0.10	< 0.10		< 0.10

Client: IGSL	1		Che	mtest J	ob No :	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693	+			st Sam		1763631	1763632	1763633	1763634	1763635	1763636	1763637
Order No.:	1			nt Samp		BH10	BH11	BH11	BH12	BH13	BH13	TP1
				ent Sam		BH10	BH11	BH11	BH12	BH13	BH13	TP1
					e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		3.0	1.0	2.5	1.0	1.0	2.0	0.7
					ampled:		02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:		COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
АСМ Туре		U	2192		N/A		-	-	-	-		-
Asbestos Identification		U	2192		N/A		No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected		No Asbestos Detected
Moisture		N	2030	%	0.020	17	14	16	12	11	6.6	19
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Roots and Stones	Stones	Stones	Stones	Stones	Roots and Stones
Soil Texture		N	2040		N/A	Clay	Clay	Clay	Clay	Loam	Clay	Loam
pH at 20C		М	2010		4.0		8.4	9.0	8.5	8.0	· ·	8.5
pH (2.5:1) at 20C		N	2010		4.0	9.0					9.1	
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40		0.63	0.44	1.3	0.69		1.9
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010					< 0.010	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010					< 0.010	
Total Sulphur		U	2175	%	0.010	0.020					0.043	
Sulphur (Elemental)		М	2180	mg/kg	1.0		2.8	1.8	1.9	4.3		6.3
Chloride (Water Soluble)		М	2220	g/l	0.010	< 0.010					< 0.010	
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010					< 0.010	
Cyanide (Total)		M	2300	mg/kg	0.50		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50		4.2	3.3	5.2	5.1		4.9
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01					< 0.01	
Sulphate (Total)		U	2430	%	0.010		0.25	0.29	0.15	0.37		0.25
Sulphate (Acid Soluble)		U	2430	%	0.010	0.060					0.047	
Arsenic		M	2455	mg/kg	0.5		44	18	12	20		24
Barium	ļ	M	2455	mg/kg	0		130	140	73	90		210
Cadmium	-	M	2455	mg/kg	0.10		1.2	1.8	1.5	1.2		1.0
Chromium		M	2455	mg/kg	0.5		27	26	23	19		33
Molybdenum		M	2455	mg/kg	0.5		3.0	5.1	4.9	4.5		4.9
Antimony	+	N M	2455 2455	mg/kg	2.0 0.50		2.0 47	2.7 41	3.4 29	3.1 52		10 89
Copper Mercury	+	M	2455	mg/kg mg/kg	0.05		0.26	0.47	0.20	0.82		0.94
Nickel		M	2455	mg/kg	0.50		41	43	40	44		44
Lead		M	2455	mg/kg	0.50		74	110	46	150		460
Selenium		M	2455	mg/kg	0.30		1.2	1.1	1.1	1.2		1.2
Zinc		M	2455	mg/kg	0.50		110	180	93	110		200
Chromium (Trivalent)	1	N	2490	mg/kg	1.0		27	26	23	19		33
Chromium (Hexavalent)	+	N	2490	mg/kg	0.50		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg	0.05		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	U	_	mg/kg	0.05		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05

Project: 25000 Croke Villas												
Client: IGSL				mtest Jo		24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763631	1763632	1763633	1763634	1763635	1763636	1763637
Order No.:			Clie	nt Samp	le Ref.:	BH10	BH11	BH11	BH12	BH13	BH13	TP1
			Cli	ent Sam	ple ID.:	BH10	BH11	BH11	BH12	BH13	BH13	TP1
				Sample	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	3.0	1.0	2.5	1.0	1.0	2.0	0.7
				Date Sa	mpled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:		COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Aliphatic VPH >C7-C8	HS 2D AL	U	2780	mg/kg	0.05		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg	0.25		< 0.25	< 0.25	< 0.25	< 0.25		< 0.25
Aliphatic EPH >C10-C12 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00		< 2.0	< 2.0	< 2.0	< 2.0		< 2.0
Aliphatic EPH >C12-C16 MC	EH AL 2D #1	М	2690	mg/kg	1.00		4.4	2.3	3.8	< 1.0		< 1.0
Aliphatic EPH >C16-C21 MC	EH AL 2D #1	M	2690	mg/kg	2.00		5.1	< 2.0	2.0	< 2.0		< 2.0
Aliphatic EPH >C21-C35 MC	EH_AL_2D_#1	M	2690	mg/kg	3.00		5.7	< 3.0	< 3.0	< 3.0		< 3.0
Aliphatic EPH >C35-C40 MC	EH AL 2D #1	N	2690	mg/kg	10.00		< 10	< 10	< 10	< 10		< 10
Total Aliphatic EPH >C10-C35 MC	EH AL 2D #1	M	2690	mg/kg	5.00	l	16	7.4	9.1	< 5.0		< 5.0
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg	0.05		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aromatic VPH >C7-C8	HS 2D AR	U	2780	mg/kg	0.05		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg	0.05		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780		0.05		< 0.25	< 0.05	< 0.05	< 0.05		< 0.05
		U		mg/kg								
Aromatic EPH > C10-C12 MC	EH_AR_2D_#1	U	2690	mg/kg	1.00		< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0		< 1.0
Aromatic EPH >C12-C16 MC	EH_AR_2D_#1		2690	mg/kg	1.00			< 1.0	< 1.0			< 1.0
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00		6.9	5.3	4.7	< 2.0		15
Aromatic EPH >C21-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00		12	7.7	6.4	< 2.0		5.2
Aromatic EPH >C35-C40 MC	EH_AR_2D_#1	N	2690	mg/kg	1.00		< 1.0	< 1.0	1.1	12		1.1
Total Aromatic EPH >C10-C35 MC	EH_AR_2D_#1	U	2690	mg/kg	5.00		19	13	11	< 5.0		20
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50
Total EPH >C10-C35 MC	EH_Total_2D_#1	U	2690	mg/kg	10.00		35	20	20	< 10		22
Total Organic Carbon		М	2625	%	0.20		2.3	2.0	1.9	4.7		7.6
Mineral Oil EPH	EH_AL_2D_#1	N	2670	mg/kg	10		16	< 10	< 10	< 10		< 10
Benzene		М	2760	μg/kg	1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Toluene		М	2760	μg/kg	1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Ethylbenzene		М	2760	μg/kg	1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
m & p-Xylene		М	2760	μg/kg	1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
o-Xylene		М	2760	μg/kg	1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Naphthalene		М	2800	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Acenaphthylene		N	2800	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Acenaphthene		М	2800	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Fluorene		М	2800	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Phenanthrene		М	2800	mg/kg	0.10		0.19	0.58	< 0.10	< 0.10		1.8
Anthracene		М	2800	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		0.39
Fluoranthene		М	2800	mg/kg	0.10		0.40	1.0	0.15	< 0.10		2.9
Pyrene		М	2800	mg/kg	0.10		0.37	0.87	0.13	< 0.10		2.4
Benzo[a]anthracene		М	2800	mg/kg	0.10		< 0.10	0.42	< 0.10	< 0.10		1.3

Client: IGSL			Che	mtest J	ob No.:	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656	24-03656
Quotation No.: Q20-21693		(Chemte	st Sam	ple ID.:	1763631	1763632	1763633	1763634	1763635	1763636	1763637
Order No.:			Clie	nt Samp	le Ref.:	BH10	BH11	BH11	BH12	BH13	BH13	TP1
			Cli	ent Sam	ple ID.:	BH10	BH11	BH11	BH12	BH13	BH13	TP1
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	3.0	1.0	2.5	1.0	1.0	2.0	0.7
				Date Sa	ampled:	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024	02-Feb-2024
				Asbest	os Lab:		COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chrysene		М	2800	mg/kg	0.10		< 0.10	0.44	< 0.10	< 0.10		1.1
Benzo[b]fluoranthene		М	2800	mg/kg	0.10		< 0.10	0.63	< 0.10	< 0.10		1.6
Benzo[k]fluoranthene		М	2800	mg/kg	0.10		< 0.10	0.24	< 0.10	< 0.10		0.54
Benzo[a]pyrene		М	2800	mg/kg	0.10		< 0.10	0.42	< 0.10	< 0.10		1.2
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10		< 0.10	0.34	< 0.10	< 0.10		0.81
Dibenz(a,h)Anthracene		N		mg/kg			< 0.10	< 0.10	< 0.10	< 0.10		0.15
Benzo[g,h,i]perylene		M	2800	mg/kg	0.10		< 0.10	0.36	< 0.10	< 0.10		0.80
Coronene		N	2800	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0		< 1.0	5.3	< 1.0	< 1.0		15
PCB 28		U	2815	mg/kg	0.010		< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 52		U	2815	mg/kg	0.010		< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 101		U	2815	mg/kg	0.010		< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 118		U			0.010		< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 153		U	2815	mg/kg	0.010		< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 138		U		mg/kg			< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
PCB 180		U		mg/kg			< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
Tot PCBs Low (7 Congeners)		N		mg/kg			< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Total Phenols		М	2920	mg/kg	0.10		< 0.10	< 0.10	< 0.10	< 0.10		< 0.10

Client: IGSL	T		Chai	mtest Jo	ob No :	24-03656
Quotation No.: Q20-21693		-		st Sam		1763638
Order No.:		 `		nt Samp		TP1
Order No	_			ent Sam		TP1
	_	+	Cile		e Type:	SOIL
		+		Top Der	71	1.3
				Date Sa	` '	
					os Lab:	02-Feb-2024 COVENTRY
Determinend	LIMOL Code	Assess	COD			COVENTRY
Determinand ACM Type	HWOL Code	Accred.	SOP 2192	Units	LOD N/A	-
ACIVI Type	+	+ -	2192		IN/A	No Asbestos
Asbestos Identification		U	2192		N/A	Detected
Moisture		N	2030	%	0.020	20
Soil Colour		N	2040		N/A	Brown
Other Material		N	2040		N/A	Stones
Soil Texture		N	2040		N/A	Clay
pH at 20C		М	2010		4.0	8.1
pH (2.5:1) at 20C		N	2010		4.0	
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	1.0
Magnesium (Water Soluble)		N	2120	g/l	0.010	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	
Total Sulphur		U	2175	%	0.010	
Sulphur (Elemental)		М	2180	mg/kg	1.0	3.7
Chloride (Water Soluble)		М	2220	g/l	0.010	
Nitrate (Water Soluble)		N	2220	g/l	0.010	
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	3.1
Ammonium (Water Soluble)		М	2220	g/l	0.01	
Sulphate (Total)		U	2430	%	0.010	0.11
Sulphate (Acid Soluble)		U	2430	%	0.010	
Arsenic		М	2455	mg/kg	0.5	19
Barium		М	2455		0	150
Cadmium		М	2455	mg/kg	0.10	1.8
Chromium		М	2455	mg/kg	0.5	24
Molybdenum		М	2455	mg/kg	0.5	6.0
Antimony		N	2455	mg/kg	2.0	9.0
Copper		М	2455	mg/kg	0.50	41
Mercury		М	2455		0.05	0.28
Nickel		М	2455	mg/kg	0.50	39
Lead		М	2455	mg/kg	0.50	110
Selenium		М	2455		0.25	1.1
Zinc		М	2455	mg/kg	0.50	150
Chromium (Trivalent)		N	2490	mg/kg	1.0	24
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	U	2780	mg/kg	0.05	< 0.05

Project. 25000 Croke Villas	1		Ol	44 1	- I- NI	04.00050
Client: IGSL				mtest Jo		24-03656
Quotation No.: Q20-21693		(st Sam		1763638
Order No.:				nt Samp		TP1
			Clie	ent Sam		TP1
					e Type:	SOIL
				Top Dep	` '	1.3
				Date Sa	•	02-Feb-2024
				Asbest	os Lab:	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
Aliphatic VPH >C7-C8	HS_2D_AL	J	2780			< 0.05
Aliphatic VPH >C8-C10	HS_2D_AL	J	2780	mg/kg	0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_AL_2D_#1	М	2690	mg/kg	2.00	< 2.0
Aliphatic EPH >C12-C16 MC	EH_AL_2D_#1	М	2690	mg/kg	1.00	< 1.0
Aliphatic EPH >C16-C21 MC	EH AL 2D #1	М	2690	mg/kg	2.00	< 2.0
Aliphatic EPH >C21-C35 MC	EH AL 2D #1	М	2690	0		< 3.0
Aliphatic EPH >C35-C40 MC	EH AL 2D #1	N	2690	0		< 10
Total Aliphatic EPH >C10-C35 MC	EH AL 2D #1	М	2690	mg/kg	5.00	< 5.0
Aromatic VPH >C5-C7	HS 2D AR	U	2780	mg/kg		< 0.05
Aromatic VPH >C7-C8	HS 2D AR	U	2780	mg/kg	0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780			< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	U	2780	mg/kg	0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH AR 2D #1	U	2690	mg/kg	1.00	< 1.0
Aromatic EPH >C12-C16 MC	EH AR 2D #1	U	2690	mg/kg	1.00	< 1.0
Aromatic EPH >C16-C21 MC	EH_AR_2D_#1	U	2690	mg/kg	2.00	< 2.0
Aromatic EPH >C21-C35 MC	EH AR 2D #1	U	2690			< 2.0
Aromatic EPH >C35-C40 MC	EH AR 2D #1	N	2690	mg/kg	1.00	< 1.0
Total Aromatic EPH >C10-C35 MC	EH AR 2D #1	U	2690	mg/kg	5.00	< 5.0
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50
Total EPH >C10-C35 MC	EH Total 2D #1	U	2690	mg/kg	10.00	< 10
Total Organic Carbon	LII_TO(ai_2D_#1	M	2625	%	0.20	2.0
Mineral Oil EPH	EH AL 2D #1	N	2670	mg/kg	10	< 10
Benzene	EH_AL_ZD_#1	M	2760		1.0	< 1.0
Toluene		M	2760	μg/kg μg/kg	1.0	< 1.0
		M	2760		1.0	< 1.0
Ethylbenzene		M	2760	μg/kg	1.0	< 1.0
m & p-Xylene				μg/kg		
o-Xylene	+	M	2760	μg/kg	1.0	< 1.0
Methyl Tert-Butyl Ether	+	M	2760	μg/kg	1.0	< 1.0
Naphthalene	+	M	2800	0 0	0.10	< 0.10
Acenaphthylene	+	N	2800	mg/kg	0.10	< 0.10
Acenaphthene		M	2800	mg/kg	0.10	< 0.10
Fluorene		M	2800	0 0	0.10	< 0.10
Phenanthrene		M	2800	mg/kg	0.10	< 0.10
Anthracene		M	2800	0 0	0.10	< 0.10
Fluoranthene		M	2800	0 0	0.10	< 0.10
Pyrene		M	2800	mg/kg	0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10

Client: IGSL			Che	mtest Jo	ob No.:	24-03656
Quotation No.: Q20-21693				st Sam		
Order No.:		1		nt Samp		TP1
0.44.1.10.1		1		ent Sam		TP1
					e Type:	SOIL
				Top Der		1.3
				Date Sa	. ,	
					os Lab:	COVENTRY
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
Chrysene		М	2800	mg/kg	0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10
Benzo[k]fluoranthene		M	2800	mg/kg	0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		M	2800	mg/kg	0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10
Coronene		N	2800	mg/kg	0.10	< 0.10
Total Of 17 PAH's Lower		N	2800	mg/kg	1.0	< 1.0
PCB 28		U	2815	mg/kg	0.010	< 0.010
PCB 52		U	2815	mg/kg	0.010	< 0.010
PCB 101		U	2815	5	0.010	< 0.010
PCB 118		U	2815	mg/kg	0.010	< 0.010
PCB 153		U	2815	mg/kg	0.010	< 0.010
PCB 138		U	2815	mg/kg	0.010	< 0.010
PCB 180		U	2815	mg/kg	0.010	< 0.010
Tot PCBs Low (7 Congeners)		N	2815	mg/kg	0.05	< 0.05
Total Phenols		M	2920	mg/kg	0.10	< 0.10

Project: 25000 Croke Villas								
Chemtest Job No:	24-03656					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1763617						Limits	
Sample Ref:	BH1						Stable, Non-	
Sample ID:	BH1						reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	1.9	3	5	6
Loss On Ignition	2610		M	%	4.1			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.6		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455		U	0.0021	0.021	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0013	0.013	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.015	0.15	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0027	0.027	0.06	0.7	5
Selenium	1455		U	0.0007	0.0068	0.1	0.5	7
Zinc	1455		U	0.038	0.38	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.11	1.1	10	150	500
Sulphate	1220		U	5.8	58	1000	20000	50000
Total Dissolved Solids	1020		N	48	480	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.2	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Project: 25000 Croke Villas								
Chemtest Job No:	24-03656					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1763618						Limits	
Sample Ref:	BH2						Stable, Non-	
Sample ID:	BH2						reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	5.2	3	5	6
Loss On Ignition	2610		M	%	5.8			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	0.32	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	780	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.017		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.0049	0.049	0.5	2	25
Barium	1455		U	0.015	0.15	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0014	0.014	0.5	10	70
Copper	1455		U	0.0038	0.038	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0023	0.024	0.5	10	30
Nickel	1455		U	0.0010	0.0095	0.4	10	40
Lead	1455		U	0.0064	0.065	0.5	10	50
Antimony	1455		U	0.0050	0.050	0.06	0.7	5
Selenium	1455		U	0.0007	0.0068	0.1	0.5	7
Zinc	1455		U	0.024	0.24	4	50	200
Chloride	1220		U	1.2	12	800	15000	25000
Fluoride	1220		U	0.23	2.3	10	150	500
Sulphate	1220		U	4.7	47	1000	20000	50000
Total Dissolved Solids	1020		N	62	620	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.6	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	17

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03656					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1763620						Limits	
Sample Ref:	BH3						Stable, Non-	
Sample ID:	BH3						reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	2.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	8.1	3	5	6
Loss On Ignition	2610		M	%	10			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	57	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455		U	0.017	0.17	0.5	2	25
Barium	1455		U	0.005	0.054	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0022	0.022	0.5	10	70
Copper	1455		U	0.0044	0.044	2	50	100
Mercury	1455		U	0.00017	0.0017	0.01	0.2	2
Molybdenum	1455		U	0.0065	0.065	0.5	10	30
Nickel	1455		U	0.0012	0.013	0.4	10	40
Lead	1455		U	0.0033	0.033	0.5	10	50
Antimony	1455		U	0.012	0.12	0.06	0.7	5
Selenium	1455		U	0.0016	0.016	0.1	0.5	7
Zinc	1455		U	0.022	0.22	4	50	200
Chloride	1220		U	2.4	24	800	15000	25000
Fluoride	1220		U	0.21	2.1	10	150	500
Sulphate	1220		U	51	510	1000	20000	50000
Total Dissolved Solids	1020		N	120	1200	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	3.1	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	20

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03656					Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1763621						Limits	
Sample Ref:	BH4						Stable, Non-	
Sample ID:	BH4						reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	8.5	3	5	6
Loss On Ignition	2610		M	%	15			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	230	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate		for compliance I	~
				mg/l	mg/kg	using B	3 10 l/kg	
Arsenic	1455		U	0.0046	0.046	0.5	2	25
Barium	1455		U	0.022	0.22	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0024	0.024	0.5	10	70
Copper	1455		U	0.0064	0.064	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0021	0.021	0.5	10	30
Nickel	1455		U	0.0013	0.013	0.4	10	40
Lead	1455		U	0.017	0.17	0.5	10	50
Antimony	1455		U	0.049	0.49	0.06	0.7	5
Selenium	1455		U	0.0005	0.0054	0.1	0.5	7
Zinc	1455		U	0.038	0.38	4	50	200
Chloride	1220		U	2.4	24	800	15000	25000
			U	0.34	3.4	10	150	500
Fluoride	1220							
Sulphate	1220		Ü	18	180	1000	20000	50000
Sulphate Total Dissolved Solids	1220 1020		U N	18 100	180 1000			
Sulphate	1220		Ü	18	180	1000	20000	50000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas									
Chemtest Job No:	24-03656					Landfill Waste Acceptance Criteria			
Chemtest Sample ID:	1763622						Limits		
Sample Ref:	BH4						Stable, Non-		
Sample ID:	BH4						reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	3.0					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		M	%	0.41	3	5	6	
Loss On Ignition	2610		M	%	2.1			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.7		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.018		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
				mg/l	mg/kg	using B	S 10 I/kg		
Arsenic	1455		U	0.0002	0.0021	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	0.0008	0.0079	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.021	0.21	0.5	10	30	
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	0.0007	0.0072	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.024	0.24	4	50	200	
Chloride	1220		U	1.0	10	800	15000	25000	
Fluoride	1220		U	0.25	2.5	10	150	500	
Sulphate	1220		U	11	110	1000	20000	50000	
Total Dissolved Solids	1020		N	64	640	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	< 2.5	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	9.9

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03656					Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1763623						Limits	
Sample Ref:	BH5						Stable, Non-	
Sample ID:	BH5						reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		М	%	12	3	5	6
Loss On Ignition	2610		M	%	10			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	780	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		10.2		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate		for compliance I	•
				mg/l	mg/kg	using B	3 10 l/kg	
Arsenic	1455		U	0.0038	0.038	0.5	2	25
Barium	1455		U	0.026	0.26	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0059	0.059	2	50	100
Mercury	1455		U	0.00028	0.0028	0.01	0.2	2
Molybdenum	1455		U	0.0059	0.059	0.5	10	30
Nickel	1455		U	0.0011	0.011	0.4	10	40
Lead	1455		U	0.021	0.21	0.5	10	50
Antimony	1455		U	0.25	2.5	0.06	0.7	5
Selenium	1455		U	0.0007	0.0066	0.1	0.5	7
Zinc	1455		U	0.023	0.23	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.29	2.9	10	150	500
Sulphate	1220		U	24	240	1000	20000	50000
Total Dissolved Solids	1020		N	86	860	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	_	-
Dissolved Organic Carbon	1610		U	4.6	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	18

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas									
Chemtest Job No:	24-03656					Landfill Waste Acceptance Criteria			
Chemtest Sample ID:	1763625						Limits		
Sample Ref:	BH6						Stable, Non-		
Sample ID:	BH6						reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	2.0					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		M	%	14	3	5	6	
Loss On Ignition	2610		M	%	14			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	61	500		-	
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.4		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.048		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
				mg/l	mg/kg	using B	6 10 l/kg		
Arsenic	1455		U	0.017	0.17	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	0.0005	0.0051	0.5	10	70	
Copper	1455		U	0.0031	0.031	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0031	0.031	0.5	10	30	
Nickel	1455		U	0.0014	0.014	0.4	10	40	
Lead	1455		U	0.0063	0.063	0.5	10	50	
Antimony	1455		U	0.043	0.42	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.023	0.23	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.31	3.1	10	150	500	
Sulphate	1220		U	1.4	14	1000	20000	50000	
Total Dissolved Solids	1020		N	65	640	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	3.0	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	19

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas									
Chemtest Job No:	24-03656					Landfill Waste Acceptance Criteria			
Chemtest Sample ID:	1763627						Limits		
Sample Ref:	BH7						Stable, Non-		
Sample ID:	BH7						reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units	1				
Total Organic Carbon	2625		M	%	5.3	3	5	6	
Loss On Ignition	2610		M	%	6.3			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	200	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.4		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.031		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test	
				mg/l	mg/kg using BS EN 12457 a			t L/S 10 l/kg	
Arsenic	1455		U	0.0059	0.060	0.5	2	25	
Barium	1455		U	0.015	0.15	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	0.0013	0.013	0.5	10	70	
Copper	1455		U	0.0039	0.039	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0014	0.014	0.5	10	30	
Nickel	1455		U	0.0010	0.0096	0.4	10	40	
Lead	1455		U	0.0075	0.075	0.5	10	50	
Antimony	1455		U	0.0055	0.055	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.026	0.26	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.19	1.9	10	150	500	
Sulphate	1220		U	4.3	43	1000	20000	50000	
Total Dissolved Solids	1020		N	62	620	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	26	260	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Project: 25000 Croke Villas									
Chemtest Job No:	24-03656					Landfill Waste Acceptance Criteria			
Chemtest Sample ID:	1763628						Limits		
Sample Ref:	BH9						Stable, Non-		
Sample ID:	BH9						reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		M	%	4.4	3	5	6	
Loss On Ignition	2610		M	%	5.0			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	54	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		8.5		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.011		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
			mg/l	mg/kg	using B	6 10 l/kg			
Arsenic	1455		U	0.011	0.11	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	0.0028	0.028	0.5	10	70	
Copper	1455		U	0.0027	0.027	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0054	0.055	0.5	10	30	
Nickel	1455		U	0.0009	0.0090	0.4	10	40	
Lead	1455		U	0.0018	0.018	0.5	10	50	
Antimony	1455		U	0.0027	0.027	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.021	0.21	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.18	1.8	10	150	500	
Sulphate	1220		U	8.5	85	1000	20000	50000	
Total Dissolved Solids	1020		N	62	620	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	6.9	69	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas									
Chemtest Job No:	24-03656					Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1763630						Limits		
Sample Ref:	BH10						Stable, Non-		
Sample ID:	BH10						reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		M	%	1.6	3	5	6	
Loss On Ignition	2610		M	%	3.6			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	30	500			
Total (of 17) PAHs						100			
pH at 20C	2010		M		9.5		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.0090		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test	
			mg/l		mg/kg	using BS EN 12457 at L/S 10 l/kg			
Arsenic	1455		U	0.013	0.13	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	0.0005	0.0052	0.5	10	70	
Copper	1455		U	0.0028	0.028	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0055	0.055	0.5	10	30	
Nickel	1455		U	0.0012	0.012	0.4	10	40	
Lead	1455		U	0.0011	0.011	0.5	10	50	
Antimony	1455		U	0.0023	0.023	0.06	0.7	5	
Selenium	1455		U	0.0010	0.0097	0.1	0.5	7	
Zinc	1455		U	0.021	0.21	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.21	2.1	10	150	500	
Sulphate	1220		U	8.6	86	1000	20000	50000	
Total Dissolved Solids	1020		N	71	710	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	8.8	88	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03656		Landfill \	e Criteria				
Chemtest Sample ID:	1763632						Limits	
Sample Ref:	BH11						Stable, Non-	
Sample ID:	BH11						reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		М	%	2.3	3	5	6
Loss On Ignition	2610		М	%	4.5			10
Total BTEX	2760		М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		М	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	М	mg/kg	40	500		
Total (of 17) PAHs						100		
pH at 20C	2010		М		8.4		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.013		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l		mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.018	0.18	0.5	2	25
Barium	1455		U	0.005	0.054	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0007	0.0065	0.5	10	70
Copper	1455		U	0.0041	0.041	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0070	0.070	0.5	10	30
Nickel	1455		U	0.0022	0.023	0.4	10	40
Lead	1455		U	0.0024	0.025	0.5	10	50
Antimony	1455		U	0.0019	0.019	0.06	0.7	5
Selenium	1455		U	0.0008	0.0081	0.1	0.5	7
Zinc	1455		U	0.023	0.23	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.28	2.8	10	150	500
Sulphate	1220		U	10	100	1000	20000	50000
Total Dissolved Solids	1020		N	72	720	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	
Dissolved Organic Carbon	1610		U	6.6	66	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03656					Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1763633						Limits	
Sample Ref:	BH11						Stable, Non-	
Sample ID:	BH11						reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	2.5					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units	1			
Total Organic Carbon	2625		M	%	2.0	3	5	6
Loss On Ignition	2610		M	%	4.2			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	37	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		9.0		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.015		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0053	0.053	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	0.0046	0.046	0.5	10	70
Copper	1455		U	0.0023	0.024	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.013	0.13	0.5	10	30
Nickel	1455		U	0.0013	0.013	0.4	10	40
Lead	1455		U	0.0014	0.014	0.5	10	50
Antimony	1455		U	0.0013	0.013	0.06	0.7	5
Selenium	1455		U	0.0006	0.0057	0.1	0.5	7
Zinc	1455		U	0.033	0.33	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.20	2.0	10	150	500
Sulphate	1220		U	4.7	47	1000	20000	50000
Total Dissolved Solids	1020		N	68	680	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	12	120	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03656					Landfill \	e Criteria	
Chemtest Sample ID:	1763634						Limits	
Sample Ref:	BH12						Stable, Non-	
Sample ID:	BH12						reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	1.9	3	5	6
Loss On Ignition	2610		M	%	3.7			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.5		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.017		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
				mg/l	mg/kg	using B	S EN 12457 at L/S	3 10 l/kg
Arsenic	1455		U	0.0009	0.0093	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0008	0.0083	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0043	0.043	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	0.0010	0.0099	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.025	0.25	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.081	< 1.0	10	150	500
Sulphate	1220		U	6.1	61	1000	20000	50000
Total Dissolved Solids	1020		N	44	440	4000	60000	100000
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610		U	4.2	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas								
Chemtest Job No:	24-03656					Landfill V	e Criteria	
Chemtest Sample ID:	1763635						Limits	
Sample Ref:	BH13						Stable, Non-	
Sample ID:	BH13						reactive	
Sample Location:							hazardous	Hazardous
Top Depth(m):	1.0					Inert Waste	waste in non-	Waste
Bottom Depth(m):						Landfill	hazardous	Landfill
Sampling Date:	02-Feb-2024						Landfill	
Determinand	SOP	HWOL Code	Accred.	Units				
Total Organic Carbon	2625		M	%	4.7	3	5	6
Loss On Ignition	2610		М	%	7.5			10
Total BTEX	2760		M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1		
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500		
Total (of 17) PAHs						100		
pH at 20C	2010		M		8.0		>6	
Acid Neutralisation Capacity	2015		N	mol/kg	0.011		To evaluate	To evaluate
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	eaching test	
			mg/l		mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455		U	0.0015	0.015	0.5	2	25
Barium	1455		U	< 0.005	< 0.050	20	100	300
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455		U	0.0012	0.012	2	50	100
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455		U	0.0011	0.011	0.5	10	30
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455		U	0.023	0.23	4	50	200
Chloride	1220		U	< 1.0	< 10	800	15000	25000
Fluoride	1220		U	0.079	< 1.0	10	150	500
Sulphate	1220		U	36	360	1000	20000	50000
<u> </u>								
Total Dissolved Solids	1020		N	70	700	4000	60000	100000
<u> </u>	1020 1920 1610		N U U	70 < 0.030 3.1	700 < 0.30 < 50	4000 1 500	60000 - 800	100000 - 1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	11

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas										
Chemtest Job No:	24-03656	24-03656					Landfill Waste Acceptance			
Chemtest Sample ID:	1763637						Limits			
Sample Ref:	TP1						Stable, Non-			
Sample ID:	TP1						reactive			
Sample Location:							hazardous	Hazardous		
Top Depth(m):	0.7					Inert Waste	waste in non-	Waste		
Bottom Depth(m):						Landfill	hazardous	Landfill		
Sampling Date:	02-Feb-2024						Landfill			
Determinand	SOP	HWOL Code	Accred.	Units	1					
Total Organic Carbon	2625		M	%	7.6	3	5	6		
Loss On Ignition	2610		M	%	11			10		
Total BTEX	2760		M	mg/kg	< 0.010	6				
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1				
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	57	500				
Total (of 17) PAHs						100				
pH at 20C	2010		M		8.5		>6			
Acid Neutralisation Capacity	2015		N	mol/kg	< 0.0020		To evaluate	To evaluate		
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test		
				mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg				
Arsenic	1455		U	0.0043	0.043	0.5	2	25		
Barium	1455		U	0.006	0.061	20	100	300		
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5		
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70		
Copper	1455		U	0.0023	0.023	2	50	100		
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2		
Molybdenum	1455		U	0.0007	0.0074	0.5	10	30		
Nickel	1455		U	0.0008	0.0084	0.4	10	40		
Lead	1455		U	0.0035	0.035	0.5	10	50		
Antimony	1455		U	0.0024	0.024	0.06	0.7	5		
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7		
Zinc	1455		U	0.037	0.37	4	50	200		
Chloride	1220		U	< 1.0	< 10	800	15000	25000		
Fluoride	1220		U	0.11	1.1	10	150	500		
Sulphate	1220		U	2.9	29	1000	20000	50000		
Total Dissolved Solids	1020		N	35	340	4000	60000	100000		
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-		
Dissolved Organic Carbon	1610		U	5.4	54	500	800	1000		

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	19

Waste Acceptance Criteria

Project: 25000 Croke Villas

Project: 25000 Croke Villas									
Chemtest Job No:	24-03656					Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1763638	1763638				Limits			
Sample Ref:	TP1						Stable, Non-		
Sample ID:	TP1						reactive		
Sample Location:							hazardous	Hazardous	
Top Depth(m):	1.3					Inert Waste	waste in non-	Waste	
Bottom Depth(m):						Landfill	hazardous	Landfill	
Sampling Date:	02-Feb-2024						Landfill		
Determinand	SOP	HWOL Code	Accred.	Units					
Total Organic Carbon	2625		M	%	2.0	3	5	6	
Loss On Ignition	2610		M	%	6.4			10	
Total BTEX	2760		M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815		M	mg/kg	< 0.10	1			
TPH Total WAC	2670	EH_CU_1D_Total	M	mg/kg	< 10	500			
Total (of 17) PAHs						100		-	
pH at 20C	2010		M		8.1		>6		
Acid Neutralisation Capacity	2015		N	mol/kg	0.015		To evaluate	To evaluate	
Eluate Analysis				10:1 Eluate	10:1 Eluate	Limit values for compliance leaching tes			
				mg/l	mg/kg	using B	S EN 12457 at L/S	3 10 l/kg	
Arsenic	1455		U	0.0004	0.0044	0.5	2	25	
Barium	1455		U	< 0.005	< 0.050	20	100	300	
Cadmium	1455		U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455		U	< 0.0005	< 0.0050	0.5	10	70	
Copper	1455		U	0.0007	0.0071	2	50	100	
Mercury	1455		U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455		U	0.0018	0.018	0.5	10	30	
Nickel	1455		U	< 0.0005	< 0.0050	0.4	10	40	
Lead	1455		U	< 0.0005	< 0.0050	0.5	10	50	
Antimony	1455		U	< 0.0005	< 0.0050	0.06	0.7	5	
Selenium	1455		U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455		U	0.026	0.26	4	50	200	
Chloride	1220		U	< 1.0	< 10	800	15000	25000	
Fluoride	1220		U	0.079	< 1.0	10	150	500	
Sulphate	1220		U	1.8	18	1000	20000	50000	
Total Dissolved Solids	1020		N	19	190	4000	60000	100000	
Phenol Index	1920		U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610		U	3.4	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	20

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
1010	pH Value of Waters	pH at 20°C	pH Meter	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	pH at 20°C	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p- phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2690	EPH A/A Split		Acetone/Heptane extraction / GCxGC FID detection	
	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10		
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge	

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
T	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of UKAS accreditation

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water

GW - Ground Water

LE - Land Leachate

NA - Not Applicable

PL - Prepared Leachate

PW - Processed Water

Report Information

RE - Recreational Water

SA - Saline Water

SW - Surface Water

TE - Treated Effluent

TS - Treated Sewage

UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up

MC - Mathematical Clean Up

FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix 9

Geotechnical Laboratory Results (Rock)

Contract: Social Hou - Croke Contract no. 25 RC No. Dept m RC02 20.6	Villas 2000 n D (Diameter) mm	Sample Type: Date of test: P (failure load) kN	Core 26/2/24 F					(IGSL)
m	mm	` /	F					
RC02 20.6	78	1014	·	Is (index strength) Mpa	ls(50) (index strength) Mpa	*UCS MPa	Туре	Orienation
20.8 21.0 21.9 22.7 22.9 23.7	78 78 78 78 78 78	22.0 19.0 17.0 8.0 28.0 16.0 26.0 12.0	1.222 1.222 1.222 1.222 1.222 1.222 1.222	3.62 3.12 2.79 1.31 4.60 2.63 4.27 1.97	4.42 3.81 3.41 1.61 5.62 3.21 5.22 2.41	88 76 68 32 112 64 104 48	8 8 8 8 8 8 8	// // // // // //
Statistical Summary Data Number of Samples Tested Minimum Average Maximum Standard Dev. Upper 95% Confidence Limit Lower 95% Confidence Limit Comments: *UCS taken as k x Point Load Is(50): k=		Is(50) 8 1.61 3.71 5.62 1.36 6.38 1.05	8 32 74 112 27 127.50 21.07	0.14	Distribution Cun	300	i a b d appro to weak U	breviations irregular axial block diametral ax. orientation planes of ness/bedding unknown perpendicular

Appendix 10

Exploratory Hole Location Plans

