

Contact us +353 1 5242060 info@ors.ie www.ors.ie

Social Housing Bundle 4, Development at Church of Annunciation Finglas

Resource Waste Management Plan (RWMP)

Dublin City Council

Church of the Annunciation, Finglas, Dublin. Resource Waste Management Plan (RWMP)

Document Control Sheet

Client:	Malone O'Regan
Document No:	231879-ORS-XX-XX-RP-EN-13d-011

Revision	Status	Author:	Reviewed by:	Approved By:	Issue Date
P01	Draft	KS	SB	LM	13/03/2024
P02	Draft	KS	SB	LM	02/04/2024
P03	S2	KS	SB	LM	04/04/2024
P04	S2	SB	LM	LM	07/06/2024

Table of Contents

1 Int	troduction	1
1.1	Background and Purpose	1
1.2	Supporting Documentation, Policies, and Legislation	2
1.3	Dublin City Development Management Standard	2
1.4	RWMP Review	3
2 Pr	oject Description	4
2.1	Site Location	4
2.2	Site Characteristics	4
2.2.1	Topography	4
2.2.2	Site Access	5
2.2.3	Historical Maps	5
2.3	Environmental Sensitivities	5
2.3.1	Geology, Hydrology & Hydrogeology	5
2.3.2	Groundwater Vulnerability	6
2.3.3	Contaminated Land	7
2.3.4	Flood Risk	9
2.3.5	Archaeology	10
2.3.6	Ecological Receptors	11
2.4	Phasing of the Development	11
2.5	Pre-Construction Activities	13
2.5.1	Site Set-Up and Hoarding	13
2.6	Construction Sequence of New Structures	14
2.7	Asbestos-Containing Materials	14
2.8	Design Changes	15
3 Rc	bles and Responsibilities	16
3.1	Contractor (TBC)	16
3.2	Communication	16
4 De	esign Approach	17
4.1	Reuse and Recycling	17
4.2	Green Procurement	17
4.3	Off-Site Construction	18
4.4	Materials Optimisation	18
4.5	Flexibility and Deconstruction	18
5 Ke	ey Materials and Quantities	19
5.1	Waste Register	20
5.2	Waste Removal Contractors	20
5.3	Estimated Construction Waste Generated	20
5.4	Onsite Waste Reuse and Recycling Management	21
5.5	Material Removal and Excavations	21
6 Sit	te Management	22
6.1	Resource and Waste Manager	22
6.2	Site Induction and Toolbox Talks	22
6.3	Identifying Waste Collectors and Licensed Facilities	23
6.4	Resource-Efficient Supply Chains	23
6.5	Record Keeping	23
6.6	Communication with Local Authority/Stakeholders	24
6.7	Inspections and Audits	24

7 \$	Site Infrastructure	25
7.	.1 Signage	25
7.	.2 Resource Storage	25
App	pendix A: Waste Register	
App	pendix B: Licensed Waste Facilities	
App	pendix C: GII Waste Classification Report	
App	pendix D: WAC Tested Areas And Classification Results	

1 Introduction

This report is prepared on behalf of Dublin County Council to accompany a Part 8 proposal for the development of 110 no. residential units at the site of the former Church of Annunciation on Cardiffsbridge Road, Finglas, Dublin 11.

The proposed development includes:

- i. One apartment block ranging from 4 to 5-storeys, containing:
 - o 110 residential units (106 no. 1-bed and 4 no. 2 bed); and
 - o 434 sq.m. of community, arts and cultural facilities.
- ii. 15 no. car parking spaces and 87 no. cycle spaces.
- iii. 935 sq.m. of public open space and 609 sq.m. of communal open space
- iv. One vehicular and pedestrian access and one dedicated pedestrian access off Cardiffsbridge Road
- v. Boundary treatments, public lighting, site drainage works. Internal road surfacing and footpath, ESB meter rooms, plant rooms, stores, bin and bicycle storage, landscaping; and
- vi. All ancillary site services and development works above and below ground.

1.1 Background and Purpose

Waste created during Construction and Demolition (C&D) work is the largest waste stream in the EU, accounting for one third of all waste generated. It is therefore pertinent to outline proper management procedures for construction and demolition (C&D) waste and resources that are in line with policies that fit a circular economic model. Several steps can be taken regarding material and waste management to adhere to the circular economic model, such as:

- Reducing the use of virgin resources.
- Keeping materials in the economy as long as possible.
- Maintaining intrinsic value/quality as high as possible.
- Reducing hazardous substances in products and waste.

This Resource & Waste Management Plan (RWMP) for the proposed development will address the following points:

- Analysis of waste arisings / material surpluses, to be recorded in the Waste Register (see Appendix A)
- Methods proposed for prevention, reuse and recycling of waste materials
- Waste handling procedures
- Waste storage procedures
- Waste disposal procedures
- Waste auditing
- Record keeping

1.2 Supporting Documentation, Policies, and Legislation

The principles and objectives to deliver sustainable waste management for this project have been incorporated in the preparation of this report and are based on the following strategic objectives:

- Environmental Protection Agency Act 1992
- Waste Management Acts 1996 to 2005
- Waste Management (Collection Permit) Regulations 2007 (SI No. 820 of 2007)
- Waste Management (Collection Permit) Amendment Regulations 2008 (SI No. 87 of 2008), as amended.
- The Waste Framework Directive (Directive 2008/98/EC)
- Department of the Environment, Heritage and Local Government Best Practice Guidelines on the Preparation of Waste Management Plans for Construction and Demolition Projects – July 2006
- A Waste Action Plan for a Circular Economy 2020-2025
- Environmental Protection Agency Best Practice Guidelines for the Preparation of Resource & Waste Management Plans for Construction & Demolition Projects 2021
- Construction Environmental Management Plan (CEMP)
- Relevant Planning Conditions

In reference to the above legislation, the below hierarchy has been adapted for this site:

- Reduction of the amount of waste generated by the construction process.
- Segregation of waste will be implemented during the construction phase of the development to enable easy re-use and recycling, wherever possible.
- Recycle waste material where feasible, including the use of excess excavations as fill material, recycling of various waste fractions such as metals, packaging, etc.

1.3 Dublin City Development Management Standard

The development management standards for Dublin City are outlined in the Dublin City Development Plan 2022-2028. Of relevance to this report is **Chapter 9 – Sustainable Environmental Infrastructure and Flood Risk** which outlines policies in line with Dublin City Council waste management objectives. The policies relevant to the proposed development include:

- **SI 27:** Sustainable Waste Management: To support opportunities in the circular resource efficient economy in accordance with the National Policy Statement on Bioeconomy (2018).
- SI 28: Sustainable Waste Management: To prevent and minimise waste generation and disposal, and to prioritise prevention, recycling, preparation for reuse and recovery in order to develop Dublin as a circular city and safeguard against environmental pollution.
- SI 30: Waste Management in Apartment Schemes: To require that the storage and collection of mixed dry recyclables, organic and residual waste materials within proposed apartment schemes have regard to the Sustainable Urban Housing: Design Standards for New Apartments Guidelines for Planning Authorities 2020 (or and any future updated versions of these guidelines produced during the lifetime of this plan).

Additionally, **Section 15.18.2 – Waste Management** outlines the overall approach of Dublin City Council with regards to waste generated during development. It states:

"All planning applications in excess of 30 or more residential units and / or 1,000 sq. m. of commercial development shall be accompanied by both and Construction and Operational Waste Management Plan...The operational waste management plan shall set out the strategy for waste collection, storage and recycling. All applications shall clearly identify the waste storage and collection points and detail the anticipated waste collection schedule having regard to the impact on road users both within the development and the surrounding area"

1.4 RWMP Review

This RWMP report serves as a live document and will be reviewed regularly to assess whether waste management practices are being adhered to. Likewise, it will be continuously updated as appropriate. Following completion of the project the RWMP will be updated with the final waste levels generated by the project. It is proposed that a review of waste management practices will form part of regular site inspection audits to be carried out by the construction contractor. This information should be forwarded to the RWM to assist in determining the best methods for waste minimisation, reduction, re-use, recycling, and disposal as the works progress.

2 **Project Description**

2.1 Site Location

The proposed site is located on Cardiffsbridge Road in Finglas, Co. Dublin. It is the site of the former church as shown in **Figure 2.1** below. The proposed development is located within land zoned as Z1 and Z15 by the Dublin City Council. The site is within a developed residential area in Finglas, Dublin. The site's current access point is through the carpark located on the northwestern border of the site, accessible via a gate.

The site is bounded by the Coláiste Eoin secondary school and St Brigid's Infant National School to the northeast and southeast, respectively. Leisure Point, a recreational centre, is directly south of the site, with residential area's bounding the southwest and northwest localities of the site. Kildonan Park is situated north of the site.

An approximate outline of the subject site and its environs is provided in Figure 2.1 below.

Figure 2.1: Site location and environs (Source: Google Maps)

2.2 Site Characteristics

2.2.1 Topography

The proposed residential development is to be constructed on the site of the Church of Annunciation which is currently a vacant site. The topography ranges from 62.6m OD to the southeastern corner of the site, to 64.8m OD to centre of the site.

2.2.2 Site Access

The site's current access point is through the carpark located on the northwestern border of the site, accessible via a gate.

2.2.3 Historical Maps

The GeoHive Historic map viewer was consulted to assess previous land uses or developments within or in the vicinity of the proposed site boundaries. According to the First Edition 6" maps developed between 1829-1841, the location of the proposed site previously consisted of farmland which was adjacent to King William's Rampart. From black and white aerial survey maps generated in 1995, the structures of the Church of Annunciation can be seen alongside Coláiste Eoin, St. Fergal's Boys National School and St Brigid's Infant National School. From these 1995 aerial survey maps the area can be seen to be well developed in terms of residential units and urban fabric. area was already quite developed in terms of residential units. The surrounds of the proposed sites have remained relatively unchanged since the 1995 aerial survey maps, with minor density increases in housing estates and residential areas.

2.3 Environmental Sensitivities

2.3.1 Geology, Hydrology & Hydrogeology

Maps generated by the Environmental Protection Agency (EPA) and featuring data from the EU Water Framework Directive (WFD) were consulted to assess the extent and quality of waterbodies present in the vicinity of the proposed development. The closest waterbody to the site consists of the Scribblestown Stream which is ca. 680m southwest of the proposed site. The Bachelors Stream is ca. 780m east of the site, the Tolka River runs ca. 1.1km south of the site and the Finglaswood Steam runs ca. 1.2km southeast of the site.

Taking the scale and nature of the proposed development into consideration, only waterbodies within a 1.5km radius of the site were considered as potential receptors, and as such, only these waterbodies were included in this analysis. A summary of the nearest waterbodies can be found in **Table 2.1** below.

Table 2.1: Waterbodies in Proximity to Proposed Site						
Waterbody	WFD Sub-basin Name	Code	Distance from Site	Direction from Site		
Scribblestown Stream	TOLKA_050	IE_EA_09T011100	680 m	Southwest		
Bachelor's Stream	TOLKA_050	IE_EA_09T011100	780 m	East		
Tolka River	TOLKA_050	IE_EA_09T011100	1100 m	South		
Finglaswood Stream	TOLKA_050	IE_EA_09T011100	1200 m	Southeast		

The WFD runs in 6-year cycles with the most recent data being generated between 2016-2021. The Directive takes rivers, lakes, estuaries, groundwater and coastal waters into consideration and each waterbody can be assigned one of five statuses: High, Good, Moderate, Poor, and

ORS

Bad. Additionally, waterbodies can be assigned a risk level ("At Risk", "Not At Risk", "Review") which represents the risk of the waterbody of failing its WFD objectives by 2027.

The WFD Status of each of the waterbodies is in close proximity to the site is designated as "Poor" and have been assigned a risk level of "At Risk."

The Tolka River is the most significant waterbody in the Finglas area. The Tolka River rises east of Dunshaughlin, County Meath, and flows through Dunboyne, Mulhuddart, South Finglas and finally passes through North Dublin suburbs, Glasnevin and Drumcondra, following course directly into Dublin's North Bay. The river flows into Dublin Bay directly passed the North Bull Island Special Protection Area. The Tolka has many tributaries, including Castle Stream at Dunboyne and the Clonee Stream East of Clonee, which both fall within the borders of County Meath. Inside the Dublin border, it's estimated that there are at least fourteen tributaries flowing into the Tolka River before it discharges into the Irish Sea. 3 major tributaries are referenced in this RWMP – Scribblestown Stream, Bachelor's Stream and Finglaswood Stream.

The proposed site is located within WFD catchment 09, Liffey and Dublin Bay, and is located within sub-catchment "Tolka_SC_020". The 3rd Cycle Draft Liffey and Dublin Bay Catchment Report (HA 09) published in 2021 provides a summary of the quality assessment outcomes of waterbodies within the catchment. According to this report, The Liffey is deemed "At Risk" due to urban run-off and urban wastewater treatment agglomerations (combined sewer overflows). The closest waterbody consists of minor waterbodies within the perimeter of the Phoenix Park which are not considered to be lake waterbodies. The closest lake waterbody to the site development is the Leixlip Reservoir which is situated *ca.* 12.3km to the west. This is a heavily modified water body which serves dual purposes for power generation and drinking water supply. It possesses a WFD status of "Poor", and its risk level is currently "Under Review".

The site was cross-referenced with the Teagasc Soil Information System (SIS) soil profile map which states that the surface soil at the site location is classed as 'Urban'. Urban soils are formed from human construction and industrial activities along with fuel combustion, transport emissions and waste dumping and therefore contain manufactured materials and waste. The subsoil of the site is classed as "made". Subsoil classification within the confines of Dublin city is predominantly "made".

During the site investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Trial Pits were excavated, Cable Percussion and Rotary Boreholes were drilled, and the exploratory hole locations and logs were recorded in the full Waste Classification report by *Ground Investigations Ireland (GII)* in the **Appendix C** of this report.

2.3.2 Groundwater Vulnerability

According to the Geological Survey of Ireland map viewer, the site is underlain by a Locally Important Aquifer consisting of made ground bedrock which is moderate to poorly productive in local zones only. The groundwater vulnerability is classed as 'High'.

2.3.3 Contaminated Land

"Guidance on waste acceptance criteria at authorised soil recovery facilities" published by the EPA in 2020 outlines guidance applicable to all soil recovery facilities authorised under the Waste Management Act and the Waste Management Regulations. **Figure 2.2** provides a flowchart indicating the waste acceptance protocols for soil recovery facilities as per the EPA guidance document.

Figure 2.2: Waste acceptance criteria at soil recovery facilities. (Source: EPA)

The Waste Classification report by *GII* (**Appendix C**) assessed the suitability of the material sampled in line with the EPA 2020 Guidance on waste acceptance criteria at authorised soil recovery facilities. The waste classification was carried out in parallel with a wider geotechnical site investigation and was focused on a broad assessment of the subsoil quality across the site. The assessment did not extend to the identification of asbestos containing materials associated with any onsite structures, ground gases or groundwater.

Appendix D includes a map of areas where trial pits were dug and highlights the areas where WAC excavations were recorded. It is recommended that a colour-coded heatmap of the site is generated by the site engineer which can be used during the excavation process to properly identify and segregate each waste type to be removed to appropriately licensed waste facilities.

The final and most applicable waste category for each sample is summaried in Figure 2.3.

Sample ID	Sample Depth (m)	Material Type	Sample Date	LoW Code	Waste Category
TP-01	0.50	Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category B2 - Domain 2
TP-01	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
TP-02	0.50	Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category A - Domain 2
TP-02	1.00	Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category B1 - Domain 2
TP-03	0.50	Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category B1 - Domain 2
TP-03	2.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-01	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-02	1.00	Clay	22/11/2023	17 05 04	Category B1 - Domain 2
BH-02	2.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-03	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-04	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-04	2.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-05	0.50	Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category B1 - Domain 2
BH-06	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2

Figure 2.3: Individual Sample Waste Category

Based on the results of the HazWasteOnLineTM tool conducted by GII, the material sampled across the site, if being considered a waste, can be classified as non-hazardous. **Table 2.2** below outlines the categories of waste for removal as well as potential waste facilities capable for accepting said wastes. The site heatmap may follow a similar colour-coding to those presented in the table.

Tabl	Table 2.2: Waste Categories for Disposal or Recovery					
Waste Category Classification Criteria Waste Facility						
Category A – Unlined Facilities	Soil and Stone only which are free from anthropogenic materials such as concrete, brick, timber. Soil must be free from "contamination" e.g. PAHs, Hydrocarbons.	Any suitable landfill/waste facility, including but not limited to those listed in Appendix B				
Category B1 – Inert Landfill	Reported concentrations within inert waste limits, which are set out by the adopted EU Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 and Annex II of Directive 1999/31/EC (2002). Results also found to be non-hazardous using the HWOL application.	Any suitable landfill/waste facility, including but not limited to those listed in Appendix B				
Category B2 – Inert Landfill	Reported concentrations greater than Category B1 criteria but less than IMS Hollywood Landfill acceptance criteria, as set out in their Waste Licence W0129-02. Results also found to be non-hazardous using the HWOL application.	Any suitable landfill/waste facility, including but not limited to those listed in Appendix B				
Category C – Non- Haz Landfill	Reported concentrations greater than Category B2 criteria but within non-haz landfill waste acceptance limits set out by the adopted EU Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 and Annex II of Directive 1999/31/EC (2002). Results also found to be non-hazardous using the HWOL application.	Enva, Greenogue Facility				
Category C1 – Non-Haz Landfill	As Category C but containing <0.001% w/w asbestos fibres.	Not applicable to site				
Category C2 – Non-Haz Landfill	As Category C but containing >0.001% and <0.01% w/w asbestos fibres	Not applicable to site				
Category C3 – Non-Haz Landfill	As Category C but containing >0.01% and <0.1% w/w asbestos fibres.	Not applicable to site				
Category D – Hazardous Treatment	Results found to be hazardous using HWOL Application.	Not applicable to site				
Category D1 – Hazardous Disposal	Results found to be hazardous due to the presence of asbestos (>0.1%).	Not applicable to site				

2.3.4 Flood Risk

The OPW Floodinfo.ie website was consulted for high level information on any potential flood risk on or near the site. The nearest flood incident took place approximately 1.5km away from the planned location. This flood, which resulted in the accumulation of floodwaters in the

Glendhu Park vicinity, happened to the south of the site in October 2011. Additionally, another flood occurred in October 2011, approximately 1.7 kilometers to the east of the proposed site. **Table 2.3** summarises the sources of the nearest floods and their proximity to site.

Table 2.3: Flood Events in Proximity to Proposed Site						
Flood Event Code	Location	Date	Flood Source	Distance from Site		
ID-11602	Glendhu Park, Cabra	October 2011	Runoff from Surface Drainage Water	1500 m S		
ID-11674	Ballygall Crescent and Fairways Green, Finglas	October 2011	Runoff from Surface Drainage Water	1700 m E		
ID-5	Tolka Ballyboggan Road	November 2000	River	1800 m SE		
ID-236	Tolka and Finglas Rivers	August 1984	River	2000 m SE		

The proposed site itself is of sufficient distance from the projected flood risk area hence the fluvial flood risk is considered to be low. The site is not located within benefitting land associated with the Arterial Drainage or District Drainage Schemes. National Indicative Fluvial Mapping (NIFM) models the extent of land that might be flooded by rivers during a theoretical flood with an estimated probability of occurrence. The proposed site is ot within the range of a Medium Probability flood event (1 in 100 years) according to NIFM mapping. Based on current data available it is not foreseen that the development will present any significant increase in flooding risk either within the site or downstream of the site.

2.3.5 Archaeology

According to the Historic Environment map viewer there are no sites of archaeological importance within the proposed site boundaries nor in the nearby vicinity of the site. The nearest site of importance is Cardiff Castle, located *ca.* 300m east of the proposed site in ruins. Continuing east, there are several sites of historical and archaeological significance including a manor house, ritual site, section of 'King William's Rampart' and St. Canice's Church of Ireland. **Table 2.4** overleaf summarises the sources of historical and archaeological importance in a *ca.* 500m radius of the proposed site.

Table 2.4 Sites of Historical or Archaeological Significance					
Site Code	Site Name	Location	Distance from Site	Description	
DU014-066003	Cardiff Castle	Cappagh Road, Finglas	Ca. 340m E	Named on the 1st edition OS 6- inch map (1837) as 'Cardiff castle in ruins'.	
DU014-066005	Manor House	Patrickswell Place, Finglas	Ca. 480m E	A manor established by Archbishop Comyn in 1181.	
50130002	Post Box	Mellowes Road, Finglas	Ca. 200m NE	n/a	

An Archaeological Impact Assessment was completed by John Purcell Archaeological Consultancy in May 2024. The report is summarised as follows:

- The site does not contain any historic structures or archaeological remains.
- The potential for historic remains is low.
- Archaeological testing of the site is recommended for the development prior to commencement.

2.3.6 Ecological Receptors

According to the National Parks & Wildlife Service map viewer, the proposed site is located a sufficient distance (1.5km) from any designated sites such as Special Protection Areas (SPAs), Special Areas of Conservation (SACs) or Natural Heritage Areas (NHAs). The nearest designated sites consist of the Royal Canal proposed Natural Heritage Area (pNHA) located *ca.* 1.4km south of the proposed site. The next nearest designated site are oth over 4km from the proposed site. The Santry Demesne and Liffey Valley proposed NHA's are located *ca.* 4.2km NE and 4.5km SW of the site, respectively.

An Appropriate Assessment (AA) Screening Report was carried out by *NM Ecology Ltd.* on behalf of Dublin City Council and has determined that a Natura Impact Statement (Appropriate Assessment) is not required in respect of this proposed development.

A Preliminary Ecological Appraisal was also carried out by NM Ecology to assess whether any sensitive ecological receptors were present on site. Section 4 of this report summarises the relevant ecological assessment reports and outlines best practice measures for the mitigation of impacts to ecological receptors during the course of works. Given the scale and nature of the proposed development and its distance to ecological receptors, it is unlikely that any designated sites will be impacted as a result of the works.

2.4 Phasing of the Development

This RWMP will outline the intended sequence of works. A construction program of 12 - 18 months serves as the agreed estimated timeline for the project. A layout plan of the development is detailed in **Figure 2.2** below.

The proposed development includes the following sequence of works:

• One apartment block ranging from 4 to 5-storeys, containing:

- o 110 residential units (106 no. 1-bed and 4 no. 2 bed); and
- \circ 434 sq.m. of community, arts and cultural facilities.
- 15 no. car parking spaces and 87 no. cycle spaces.
- 935 sq.m. of public open space and 609 sq.m. of communal open space
- One vehicular and pedestrian access and one dedicated pedestrian access off Cardiffsbridge Road.
- Boundary treatments, public lighting, site drainage works. Internal road surfacing and footpath, ESB meter rooms, plant rooms, stores, bin and bicycle storage, landscaping; and
- All ancillary site services and development works above and below ground.

Access to the development is proposed along Cardiffsbridge Road near the northwestern most corner of the site. North of the site Mellowes Road runs from west to east connecting the locality to the Finglas Bypass. **Figure 2.4** shows the proposed site plan.

Figure 2.4: Site Plan (A refinement of this site layout may be circulated by the architect)

The project is to be divided into several distinct phases as follows:

Pre-Construction Phase – Site clearance and preliminary works

- Site set-up, temporary services, site hoarding/fencing, staff welfare facilities
- Removal of any remnants of the Church of Annunciation buildings to facilitate the works.
- Ground works and landscaping.

Phase 1 – Construction

• 110 no. residential units in apartment style buildings.

Ancillary works - which will consist of:

- Sustainable Drainage System (SuDS)
- Surface water and foul sewer network and associated attenuation
- Car and bicycle parking spaces
- Electrical and telecom services
- Mains water supply connections
- Wastewater drainage connections
- Pedestrian access routes
- Permeable paving and green roads
- Landscaping of public and communal open areas

2.5 **Pre-Construction Activities**

The main contractor will conduct enabling works to establish site setup, for appropriate signing, hoarding, security fencing and welfare facilities.

2.5.1 Site Set-Up and Hoarding

Perimeter hoarding will be provided around the site to provide a barrier against unauthorized access from the public areas. Controlled access points to the site, in the form of gates or doors, will be kept locked at any time that these areas are not monitored (e.g., outside working hours).

The hoarding will be well-maintained and may be painted. Any hoardings may contain graphics portraying project information. The site hoarding may be branded using the appointed Contractors logos, etc. Some marketing images or information boards may also be placed on the hoarding. Access to site will be controlled and monitored outside of site working hours. All personnel working on site must have a valid Safe Pass card and the relevant CSCS cards.

A suitably secure site compound will be set up, wherever the restricted confines of the site will allow and will facilitate the efficient delivery of materials and personnel to the site. This compound is to include material storage, site office and meeting room, and staff welfare facilities.

Generators or connection to electricity and water services will be set up to facilitate site works.

ENGINEERING A SUSTAINABLE FUTURE

13

2.6 Construction Sequence of New Structures

The exact construction specifications of the proposed residential units and associated infrastructure are yet to be finalised. This section of the RWMP will be updated once a main contractor is appointed and a definitive construction program is established, in advance of the commencement of the project.

A summary of operations for the construction phase is listed in **Table 2.5** below.

Table 2.5: Summary of Operations Expected				
External envelope will or may require the following operations:	Internal work will or may require the following operations:			
 Blockwork/Brickwork Sand & cement rendering Windows & doors Roof Coverings – Concrete, Green/Blue Roofing Flashing, Aprons and Tray – Leadwork/Powder coated metal Above ground external operations: Landscaping Installation of manholes Lamp posts Permeable paving and green roads Signs Car parking and mobility compliant car parking Below ground operations: Foul sewer, surface water, rainwater, and 	 Electrical installation Mechanical installation Fireproofing Partitions and ceilings – use of gypsum based products Painting Plastering Stairs Joinery Tiling Air Tightness sealing and testing Metal Work Sanitary-ware installation Vanity units Reinforcement works Insulation Plumbing Concreting/ floor slab 			
 potable water networks Stone water storage below permeable paving Electrical ducting 	 Carpet installation Green/Blue Roofing 			

2.7 Asbestos-Containing Materials

An Asbestos Survey Report was conducted by *Phoenix Environmental Safety Ltd*. on behalf of the NDFA and Dublin City Council for the Church of Annunciation demolition site with the aim of finding asbestos containing materials within the scope of the asbestos survey.

The scope of the survey was confined to all accessible areas of the Church of Annunciation which has now been demolished.

GII's Waste Classification Report, **Appendix C**, surveyed the external areas of the site surrounding the now demolished Church of Annunciation building. The report found that Asbestos fibres were not detected in any samples. The laboratory analysis of excavated samples did not identify asbestos containing materials in the samples.

2.8 Design Changes

This section shall be updated during the construction phase to reflect any changes in design or practice that have an impact on resource and waste management.

3 Roles and Responsibilities

The EPA Best Practice Guidelines for RWMP outline typical responsibilities involved in projects such as the one proposed at the old Church of Annunciation site. This section outlines the responsibilities for stakeholders to ensure an effective RWMP is implement over the course of development.

3.1 Contractor (TBC)

The Main Contractor, once employed, will undertake construction operations and is responsible for the following:

- Implementing and reviewing the RWMP throughout the construction phase.
- Designating a suitably qualified Resource and Waste Manager (RWM) who will be responsible for implementing the RWMP.
- Identifying and coordinating with waste removal contractors responsible for removing
- resources and waste off site. Hauliers should be in possession of valid Waste Collection Permits.
- Identifying suitably licensed waste facilities capable of receiving waste from the proposed site.
- Compile full records of resources and wastes accrued over the course of development.

3.2 Communication

Information regarding resource and waste management will be communicated by the Main Contractor and RWM who will ensure that staff and subcontractors are operating with best practice waste management procedures in place.

4 Design Approach

4.1 Reuse and Recycling

The national waste policy of Ireland, titled 'A Waste Action Plan for A Circular Economy – Ireland's National Waste Policy 2020 – 2025,' aims to transition the country towards a circular economy model. This model emphasizes reducing waste disposal by promoting circularity and sustainability. The policy focuses on enhancing material value through improved design, durability, repair, and recycling practices. By prolonging the circulation of resources within the local economy, the policy anticipates both environmental and economic benefits. The implementation of the policy involves several strategies, including reusing excavated soils and stones on-site, purchasing construction materials as needed to prevent oversupply and potential damage, segregating construction waste streams for maximum reusability, minimizing waste volume through design and adopting take-back schemes for items like pallets and packaging.

Figure 4.1: Circular Economic Model (Source: EPA Best Practice Guidelines)

4.2 Green Procurement

- The sourcing of goods and services should be conducted on an "as-needed" basis where possible which can reduce the need for packaging.
- Methods of waste prevention and minimisation shall be discussed with staff and subcontractors at an early stage of development, prior to procurement. Design solutions are to be agreed with an emphasis on sustainable practices.
- Project material specifications should consider allowing the use of reclaimed materials.

ENGINEERING A SUSTAINABLE FUTURE

17

• Ordering procedures should be conducted with waste minimisation in mind, i.e., avoid overordering, identify take-back schemes for material surpluses and offcuts.

4.3 Off-Site Construction

- The use of precast materials (walls, concrete slabs, stairs, etc.) should be implemented where possible. The use of precast materials can have the following benefits:
 - Material quality and accuracy can be superior as factory fabrication is standardised and negative impacts from weather and site conditions are negated.
 - Over-ordering can be avoided as materials can be ordered from the factory and do not need to be produced on site.
 - The use of precast materials can lead to quicker construction times as floor levels can be established in short periods of time and facades can be closed in quickly, meaning internal works can be conducted earlier.
 - Precast materials reduce the production of waste.
 - Quality of precast materials is often better as fabrication occurs in a sheltered environment mitigating any potential environmental effects that may occur onsite.
 - Environmental contamination is reduced, particularly when precast concrete is used, as the chance of spillages is eliminated.

4.4 Materials Optimisation

- The optimisation of material use during construction will be established during the design phase. A rigorous project design will ensure that reworking and waste generation is reduced during construction.
- Effective communication between the Contractor, staff, and subcontractors will ensure that works are carried out efficiently and the use of material is optimised.
- The design of the proposed residential units is somewhat standardised, meaning the need for virgin resources is minimise.

4.5 Flexibility and Deconstruction

As the proposed development incorporates residential units, plans for deconstruction are not envisaged for the foreseeable future. As such, the flexibility of the proposed development is seen as sustainable as it will service long-to-medium term residents for years to come.

5 Key Materials and Quantities

Typical waste materials anticipated to be generated throughout the course of the project are classified under Section 17 – Construction and Demolition Wastes – of the List of Waste (LoW) as detailed in Table 5.1 below.

Table 5.1: Description of Waste				
Description of Waste	EWC Code			
Concrete, Bricks, Tiles and Ceramics	17 01			
Concrete	17 01 01			
Bricks	17 01 02			
Tiles and Ceramics	17 01 03			
Mixture of concrete, bricks tiles & ceramics	17 01 07			
Wood, Glass and Plastic	17 02			
Wood	17 02 01			
Glass	17 02 02			
Plastic	17 02 03			
Bituminous mixtures, coal tar and products	17 03			
Bituminous mixtures containing other than those mentioned in 17 03 01	17 03 02			
Metals (including their alloys)	17 04			
Copper, Bronze, Brass	17 04 01			
Aluminium	17 04 02			
Lead	17 04 03			
Zinc	17 04 04			
Iron and Steel	17 04 05			
Tin	17 04 06			
Mixed Metals	17 04 07			
Cables containing oil, coal tar and other hazardous substances	17 04 10			
Cables other than those mentioned in 17 04 10	17 04 11			
Gypsum based construction Materials	17 08			
Other Construction and Demolition Materials	17 09			
Mixed Construction and Demolition Waste other than those mentioned in 17 09 01, 17 09 02, 17 09 03	17 09 04			
Sewage Screenings	19 08 01			
Paper and Cardboard	20 01 01			
Wood containing hazardous substances	20 01 37			
Wood other than that mentioned in 20 01 37	20.01 38			
Soil and Stones	17 05 04			
Mixed Municipal Waste	20 03 01			
Paint, inks, adhesives and resins containing hazardous substances	20 01 27			
WEEE	16 02			

Batteries	16 06
Liquid Fuels	13 07

5.1 Waste Register

A Template has been developed for summarising the names and permit numbers of the waste collectors and waste facilities which will be utilised for off-site disposal of the various waste-streams arising from the development. This document will also outline the projected weight of any waste that has to be transported off-site as well as any wight destined for reuse or recycling. This templated is included in Appendix A and a digital copy has been sent in addition to this report.

5.2 Waste Removal Contractors

Appendix B includes a list of licenced waste facilities in the Dublin region which are capable of hauling the primary C&D waste streams associated with the development. Coordinating with the licenced waste facilities will be the responsibility of the Main Contractor. Waste facilities shall confirm he acceptance of waste prior to the removal from site, ensuring that the facility is suitable and that it has sufficient capacity. This is not an exhaustive list, and liaison with other suitable waste facilities will be conducted by the Contractor as the need arises.

5.3 Estimated Construction Waste Generated

Table 5.2 below includes a breakdown of the estimated percentages of construction and demolition waste expected to be generated from a typical site such as this. Additionally, **Table 5.3** outlines a list of estimated quantities of materials expected during development of apartment complex units such as the Church of Annunciation site.

It should be noted final quantities of materials and construction methodologies have yet to be confirmed so it is therefore difficult to estimate the exact materials and quantities generated with a high degree of accuracy. These materials and quantities will most likely be subject to change during the construction process.

Table 5.2: Estimated Waste Generated (Based on Typical Irish Construction Site)						
Waste Type	%					
Soil & Stones	83					
Concrete, Bricks, Tiles, Plastics, etc	13					
Asphalt, Tar/Tar products	1					
Metals	1					
Other	2					
Total Waste	100					

Taking the above estimation into account, **Table 5.3** below outlines target values for waste management at the site. The tonnage values for each waste type should be inputted by the contractor prior to starting on site once quantities are accurately measured.

Table 5.3: Estimated construction waste targets for the development										
Waste	Waste	Reuse/Re	cover	Rec	ycle	Disposal				
Types	m ³	%	m ³	%	m ³	%	Tonnes			
Soil & Stones	857	20	171	0	0	80	686			
Concrete, Bricks, Tiles, Plastics, etc	134	0	0	80	107	20	27			
Asphalt, Tar/Tar Products	10	0	0	20	2	80	8			
Metals	10	5	0.5	90	9	5	0.5			
Other	21	10	0.21	40	8.4	50	11			
Total	1033	-	172	-	116	-	731			

5.4 Onsite Waste Reuse and Recycling Management

The national target for preparing for reuse, recovery, and recycling of C&D waste (excluding soil and stone) is 70%, and the waste industry in Ireland as of 2019 was achieving 84%. The proposed development should aim to exceed the national target of 70% regarding the reuse, recovery, and recycling of C&D waste (excluding soil and stone). The main contractor will be made aware of this target and will liaise with suitably permitted / licensed waste contractors that are able to commit to achieving, or exceeding, this target.

5.5 Material Removal and Excavations

It is understood that as part of the proposed development there may be an excavation to accommodate foundations, services, pavements and carparking and as such the material which may be excavated and removed from site needs to be assessed in terms of waste disposal outlets.

The waste classification exercise conducted by *GII* and available in **Appendix C** is reflective of and applicable to the ground conditions on site at the time of the site investigation and sampling. Alterations to the ground conditions or any further excavations carried out on site following the investigation are not reflected in this report.

In order to assess materials, which may be excavated and removed from site, in terms of waste classification, a selection of samples collected were analysed for a suite of parameters which allows for the assessment of the soils in terms of total pollutant content for classification of materials as hazardous or non-hazardous. As outlined in **Section 2.2.3** all samples visible on the map in **Appendix D**, were classified as non-hazardous.

6 Site Management

6.1 Resource and Waste Manager

The Construction Project Manager will take on the role of RWM and shall take primary responsibility for the minimisation and prevention of waste generation. The following initiatives should be considered to assist in this task:

- Materials to be ordered on an "as needed" basis to prevent oversupply and material build up on site.
- Appropriate storage facilities should be provided to ensure materials are correctly handled and stored thus reducing damage to materials.
- Material ordering shall coincide with the program of works to reduce the need to store materials on site. However, given current industry issues with regards to labour and material shortages there may be incidents of materials needing to be stored on site to ensure continuate of materials and to streamline labour productivity.
- Sub-contractors will be responsible for the management of their wastes.
- Assess existing materials that will be recycled for use on site and estimate quantities, e.g., the use of roof tile and/or brick offcuts as a crushed rock sub-base under driveways.
- Specify materials with a lower environmental impact and specify new materials that contain a recommended percentage of recycled content, provided they meet functional, performance and regulatory requirements.
- Utilise the existing topography to minimise excavation and reuse any excavated materials on site where possible, e.g., rock for drainage layers, landscape fill, planting features or levelling spoil.
- Standardise design details and specified materials and reduce the number of materials specified where appropriate to facilitate process repeatability and minimise the number of variables and bespoke elements to enable manufacturing and installation efficiencies.
- Deliver training in relation to resource management, i.e., inductions and toolbox talks.
- Update the RWMP as required to reflect new resource streams, work practices, suppliers or resource management options.

Waste Auditing should be carried out at regular intervals by the Project Manager or Resident Engineer. This process will involve monitoring waste management practices and highlighting and correcting any instances of non-compliance.

6.2 Site Induction and Toolbox Talks

The Contractor will communicate with relevant stakeholders throughout the construction phase, as required. This may include:

- Communicating waste statistics to the Client, management team, and subcontractors to monitor targets and objectives.
- Engaging with the local authority on any site inspection or audits required on site. Reports of any corrective actions, if necessary, will be provided to the local authority.
- Engagement with other stakeholders (public, EPA, etc.) where appropriate on matters relating to resource and waste management.

 A post-project RWMP will be compiled at project completion summarising the resource management procedures adopted, reuse and recovery figures and final destination of resources taken off site.

6.3 Identifying Waste Collectors and Licensed Facilities

- As mentioned previously, the Main contractor is responsible for coordinating waste removal with suitable waste collectors and licensed waste facilities.
- Waste facilities must issue a letter of acceptance to the contractor indicating acceptance and sufficient capacity for waste arising.
- A list of authorised waste collectors can be found on the following website: <u>https://www.nwcpo.ie/permitsearch.aspx</u>
- Waste facility permits and Certificate of Registrations can be found on the following website: https://facilityregister.nwcpo.ie

6.4 Resource-Efficient Supply Chains

The Contractor will ensure that supply chain is organised in line with resource and waste best management practices. This will involve:

- Ensuring that contractors have sufficient resources to ensure supply chain competence (i.e., environmental policies and procedures, supervision, access to advice).
- Early collaboration with supply chain to avoid waste generation i.e., no over-ordering, implementing take-back schemes for pallets, packaging, etc.
- Implementing a 'continuous improvement' strategy on site by maintaining good communication with contractors in relation resource and waste management.

6.5 Record Keeping

It is the responsibility of the Construction Project Manager or his/ her delegate that a written record of all quantities and natures of wastes, including reused/ recycled, during the project are maintained in a waste file at the Project office. Details to be included are as follows:

- Contractors and subcontractors on Site every day.
- All visitors (including Health and Safety procedures) and any associated reports.
- Invoices showing standard of material installed adheres to specifications.
- Date of waste removal.
- List of Wastes and associated codes.
- Waste haulage details (name, address, permit no., vehicle registration).
- Waste Treatment contractor certificate of registration.
- Confirmation of waste removal.
- Final destination of waste.
- Safety statement and safety file.
- Site programme.

Much of the information outlined above will be included in the Waste Register (**Appendix A**) throughout development.

6.6 Communication with Local Authority/Stakeholders

The Contractor will communicate with relevant stakeholders throughout the construction phase, as required. This may include:

• Communicating waste statistics to the Client, management team, and subcontractors to monitor targets and objectives.

• Engaging with the local authority on any site inspection or audits required on site. Reports of any corrective actions, if necessary, will be provided to the local authority.

• Engagement with other stakeholders (public, EPA, etc.) where appropriate on matters relating to resource and waste management.

• A post-project RWMP will be compiled at project completion summarising the resource management procedures adopted, reuse and recovery figures and final destination of resources taken off site.

6.7 Inspections and Audits

- Daily checks shall be carried out by Contractor's management team to ensure compliance with the RWMP. This will involve checking waste storage areas, waste segregation measures, signage, subcontractor compliance, and review of waste documentation.
- Movement of waste transport vehicles will be monitored to ensure transfer note is signed and waste carrier is authorised.
- Formal EHS audits will be carried out by the Contractor on a regular basis.
- Findings from inspections and audits will be summarised in a monthly environmental report.

7 Site Infrastructure

7.1 Signage

It is the responsibility of the Contractor to ensure staff are aware of segregation by installing clear signage identifying waste collection areas and bins. Verbal instruction via training and toolbox talks will inform staff of proper housekeeping and waste management practices.

7.2 Resource Storage

A waste storage area will be established in the designated site compound (as detailed in the CEMP). The storage will provide adequate space for storage and handling of waste, with sign-posted bins/skips indicating where waste should be disposed of.

Non-Hazardous Waste

Dedicated bins/skips will be established, and potentially colour-coded, to provide storage of typical waste arising from construction including but not limited to:

- Mixed/General waste
- Bulky waste
- Metal
- Dry mixed waste
- Wood

Excavated soil material will be reused where possible. In the event of soil removal off site, the material shall be classified as inert, non-hazardous, or hazardous in accordance with the EPA's Waste Classification Guidance. It will then be transferred by an appropriately permitted waste collector and brought to a licensed waste facility for treatment or disposal. Burning or burial of waste will not be permitted on site.

Hazardous Waste

Hazardous materials may include:

- Fuel
- Oil
- WEEE
- Construction chemicals (cement, sealant, paints, etc.)
- Sewage
- Contaminated soil (resulting from fuel or oil spills)

Chemicals will be stored in bunded areas well away from surface water sources or gullies/surface water drainage leading off site. Hazardous waste will be removed from site by a permitted waste collector.

ORS

Appendix A: Waste Register

Resource & Waste Management Register

Waste Details		Resource & Waste Management							Waste Transfer Details				
Description of Waste	LoW Code	Volume Generated	Prevention (non-waste)	Reused (non waste)	Recycled (waste)	Recovered (Waste)	Disposed (Waste)	Unit Cost Rate	Total Cost	Waste 0	Collector	Waste	Facility
Ormanata Deiska Tilas and Oseanias	47.04	(Tonnes)	(Tonnes)	(Tonnes)	(Tonnes)	(Tonnes)	(Tonnes)	(€ /Tonne)	(€)	Name	NWCP	Name	WFP/ WL No.
Concrete, Bricks, Tiles and Ceramics	17 01												
Brieko	17 01 01												
Tilos and Caramias	17 01 02												
	17 01 03			-									+
containing hazardous substances	17 01 06*												
Mixture of concrete, bricks tiles & ceramics	17 01 07												1
Wood, Glass, and Plastic	17 02												
Wood	17 02 01												
Glass	17 02 02												1
Plastic	17 02 03												
Glass, plastic and wood containing or contaminated with hazardous substances	17 02 04*												
Bituminous Mixtures, Coal Tar and Products	17 03												
Bituminous mixtures containing coal tar	17 03 01												
Bituminous mixtures containing other than those mentioned in 17 03 01	17 03 02												
Metals (including their Alloys)	17 04												
Copper, Bronze, Brass	17 04 01												
Aluminium	17 04 02												
Lead	17 04 03												
Zinc	17 04 04												
Iron and Steel	17 04 05												
Tin	17 04 06												
Mixed Metals	17 04 07												
Metal waste contaminated with hazardous substances	17 04 09*												
Cables	17 04 11												
Soil (including excavated soil from contaminated sites, stones and dredging spoil)	17 05												
Soil and Stones	17 05 04												
Soil and Stones containing hazardous substances	17 05 03*												
Insulation and Asbestos-Containing Construction Materials	17 06												
Insulation Material	17 06 04												
Construction Materials Containing Asbestos	17 06 05*												
Gypsum based Construction Materials	17 08												
Gypsum	17 08 02												
Other Construction and Demolition Materials	17 09												
Mixed Construction and Demolition Waste other than those mentioned in 17 09 01, 17 09 02, 17 09 03	17 09 04												
Wastes of Liquid Fuels	13 07												
Fuel Oil & Diesel	13 07 01*												
Petrol	13 07 02*												
Other Fuels	13 07 03*												
Wastes from the Manufacture, Formulation. Supply and Use of Coatings	08 01												
Waste Paint & Varinish containing Organic Solvents or other Hazardous Materials	08 01 11*												
Waste Paint & Varinish other than those mentioned in 18 01 11	08 01 12												
Waste from waste water treatment plants	19 08												
Sewage Screenings	19 08 01												
Municipal Wastes	20 01												
Paper and Cardboard	20 01 01												
Wood other than that mentioned in 20 01 37	20.01 38												
Paint, inks, adhesives, and resins containing hazardous substances	20 01 27												
Electrical and electronic components	20 01 35-36												

Batteries and accumulators	20 01 33-34						
Chemicals (solvents, pesticides, paints, adhesives, detergents etc.)	20 01 13/19/27-30						
Other Municipal Wastes	20 03						
Mixed Municipal Waste	20 03 01						

ORS

Appendix B: Licensed Waste Facilities

Licensed Waste Facilities											
Waste Type	Waste Code	Licensed Waste Facility/Collector	Facility Code	Facility Address							
	17 05 04	Everyday Hire Limited	WFP-DC-20-0051-01	Finglas Business Park, Tolka Valley Road, Finglas, Dublin 11							
Soil & Stones		Integrated Materials DC Ltd	WFP-DC-22-0056-01	Kylemore Business Park 2, Kylemore Way, Inchicore, Dublin 8							
		Hegarty Demolition Ltd - Mobile Plant	WFP-DC-17-0038-02	Harcourt Square, Harcourt Street/ Charlotte way, Dublin2							
		Everyday Hire Limited	WFP-DC-20-0051-01	Finglas Business Park, Tolka Valley Road, Finglas, Dublin 11							
Concrete	17 01 01	Integrated Materials DC Ltd	WFP-DC-22-0056-01	Kylemore Business Park 2, Kylemore Way, Inchicore, Dublin 8							
		Hegarty Demolition Ltd - Mobile Plant	WFP-DC-17-0038-02	Harcourt Square, Harcourt Street/ Charlotte way, Dublin2							
		Everyday Hire Limited	WFP-DC-20-0051-01	Finglas Business Park, Tolka Valley Road, Finglas, Dublin 11							
Bricks	17 01 02	Integrated Materials DC Ltd	WFP-DC-22-0056-01	Kylemore Business Park 2, Kylemore Way, Inchicore, Dublin 8							
		Hegarty Demolition Ltd - Mobile Plant	WFP-DC-17-0038-02	Harcourt Square, Harcourt Street/ Charlotte way, Dublin2							
		Everyday Hire Limited	WFP-DC-20-0051-01	Finglas Business Park, Tolka Valley Road, Finglas, Dublin 11							
Tiles and Ceramics	17 01 03	Integrated Materials DC Ltd	WFP-DC-22-0056-01	Kylemore Business Park 2, Kylemore Way, Inchicore, Dublin 8							
		Hegarty Demolition Ltd - Mobile Plant	WFP-DC-17-0038-02	Harcourt Square, Harcourt Street/ Charlotte way, Dublin2							
	17 02 01	Everyday Hire Limited	WFP-DC-20-0051-01	Finglas Business Park, Tolka Valley Road, Finglas, Dublin 11							
Wood		Integrated Materials DC Ltd	WFP-DC-22-0056-01	Kylemore Business Park 2, Kylemore Way, Inchicore, Dublin 8							
		Everyday Waste & Skiphire	WFP-DC-10-0020-03	84E Pigeon House Road, Ringsend, Dublin 4, D04 R7N0							
	17 02 02	Everyday Hire Limited	WFP-DC-20-0051-01	Finglas Business Park, Tolka Valley Road, Finglas, Dublin 11							
Glass		Integrated Materials DC Ltd	WFP-DC-22-0056-01	Kylemore Business Park 2, Kylemore Way, Inchicore, Dublin 8							
		Everyday Waste & Skiphire	WFP-DC-10-0020-03	84E Pigeon House Road, Ringsend, Dublin 4, D04 R7N0							
		Everyday Hire Limited	WFP-DC-20-0051-01	Finglas Business Park, Tolka Valley Road, Finglas, Dublin 11							
Plastic	17 02 03	Integrated Materials DC Ltd	WFP-DC-22-0056-01	Kylemore Business Park 2, Kylemore Way, Inchicore, Dublin 8							
		Everyday Waste & Skiphire	WFP-DC-10-0020-03	84E Pigeon House Road, Ringsend, Dublin 4, D04 R7N0							
		GMC Utilities Group Ltd	COR-FG-21-0001-01	GMC House Millennium Business Park, Ballycoolin, Dublin 11							
Bituminous mixtures	17 03 02	Breffni Building & Civil Engineering Ltd	COR-FG-21-0003-01	Ballyhack Farm, Ballyhack, Kilsallaghan, Co.Dublin							
		~	~	~							
Mixed Metals		Integrated Materials DC Ltd	WFP-DC-22-0056-01	Kylemore Business Park 2, Kylemore Way, Inchicore, Dublin 8							
	17 04 07	Everyday Waste & Skiphire	WFP-DC-10-0020-03	84E Pigeon House Road, Ringsend, Dublin 4, D04 R7N0							
		G & T McGoverns Ltd	WFP-DC-08-0002-03	9 - 12 Prices Lane Rear 31, Ranelagh Road, Ranelagh, Dublin 6							
		Integrated Materials DC Ltd	WFP-DC-22-0056-01	Kylemore Business Park 2, Kylemore Way, Inchicore, Dublin 8							
Mixed Construction and Demolition Wastes	17 09 04	Everyday Waste & Skiphire	WFP-DC-10-0020-03	84E Pigeon House Road, Ringsend, Dublin 4, D04 R7N0							
		McManus Crushing Ltd - Mobile Plant	WFP-DC-19-0049-01	Castleforbes Business Park, Sheriff Street Upper, Dublin 1							

ORS

Appendix C: GII Waste Classification Report

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

Housing Bundle 4 & 5 - Lot 2 – Church of the Annunciation Finglas

National Development Finance Agency

Waste Classification Report

March 2024

Directors: Fergal McNamara (MD), Conor Finnerty, Aisling McDonnell, Barry Sexton, Stephen Kealy & Michael Sutton Ground Investigations Ireland Limited | Registered in Ireland Company Regsitration No.: 405726

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Housing Bundle 4 & 5 - Lot 2 – Church of the Annunciation Finglas
Engineer	Malone O'Regan Consulting Engineers
Client	National Development Finance Agency
Project No	13061-08-23
Document Title	Waste Classification Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Final	B Sexton	J Cashen	B Sexton	Dublin	25 March 2024

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

1.0	Preamble1
2.0	Purpose & Scope1
3.0	Limitations2
4.0	Site Location and Layout
5.0	Site History
6.0	Subsurface Exploration
6.1.	General
6.2.	Trial Pits3
6.3.	Cable Percussion Boreholes4
6.4.	Rotary Boreholes4
6.5.	Surveying5
7.0	Ground Conditions
7.1.	General5
8.0	Laboratory Analysis
8.1.	Analysis Suite
8.2.	Asbestos7
9.0	Waste Classification7
10.0	Soil Recovery Facility Suitability9
11.0	Conclusions & Recommendations11
11.1.	Conclusions
11.1.1	. Waste Classification12
11.1.2	Asbestos12
11.1.3	. Waste Categories
11.2.	Recommendations12
11.2.1	. Waste Transfer12
12.0	References

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

LIST OF TABLES

Table 1 Potential Waste Categories for Disposal/Recovery	8
Table 2 Individual Sample Waste Category	.10
Table 3 Geochemical Domain Suitability	.11

APPENDICES

Appendix 1	Figures
Appendix 2	Trial Pit Records
Appendix 3	Cable Percussion Borehole Records
Appendix 4	Rotary Core Records
Appendix 5	Laboratory Testing
Appendix 6	HazWasteOnLine [™] Report
Appendix 7	Waste Category Data Summary

1.0 Preamble

Ground Investigations Ireland (GII) was appointed by Malone O'Regan Consulting Engineers on behalf of the National Development Finance Agency to carry out a Waste Classification Assessment for a proposed residential development in Finglas, Dublin 11. All site investigation works were carried out under the supervision of a GII Geo-Environmental Engineer. The site investigation works were completed between November 2023 and February 2024.

2.0 Purpose & Scope

It is understood that as part of the proposed development there may be an excavation to accommodate foundations, services, pavements and carparking and as such the material which may be excavated and removed from site needs to be assessed in terms of waste disposal outlets. The waste classification was carried out in parallel with a wider geotechnical site investigation.

The purpose of the waste classification exercise was as follows.

- Assess the site in terms of historical use;
- Classification, in terms of waste management and final disposal outlets, of material that may require disposal following excavation during the construction phase; and
- Assessment of material against Soil Recovery Facility (SRF) criteria.

The scope of the work undertaken to facilitate the waste classification exercise included the following:

- Site walkover;
- Historical desk study;
- Excavation of six (6 No.) trial pits;
- Boring of six (6 No.) cable percussion boreholes;
- Boring of two (2 No.) follow on rotary core boreholes;
- Collection of subsoil samples for chemical analysis;
- Environmental laboratory testing;
- Waste classification; and
- SFR suitability.

The additional scope of the geotechnical investigation included the following:

- Carry out two (2 No.) soakaways to determine a soil infiltration value to BRE digest 365;
- Carry out one (1 No.) slit trench to identify existing services;
- Installation of three (3 No.) groundwater monitoring wells; and

• Geotechnical Laboratory testing.

The geotechnical site investigation is discussed in the GII Ground Investigation Report Dated March 2024.1

3.0 Limitations

This report is based on the waste classification regulatory requirements at the time of writing this report and the conclusions and recommendations may not be applicable where there have been amendments to these requirements subsequent to writing the report.

In all cases the reader of this report shall confirm that the waste categories are acceptable to the various waste facilities to which the material may be sent. The quantification of disposal costs shall not be completed prior to confirmation with the relevant waste facilities of the waste categories. It should be noted that the environmental regulator (in this case the EPA) and the waste acceptor (in this case a landfill operator) shall decide whether a waste is hazardous or non-hazardous and or suitable for disposal at their facility.

GII has prepared this report for the sole use of the National Development Finance Agency. No other warranty, express or implied, is made as to the professional advice included in this report or other services provided by GII.

The conclusions and recommendations contained in this report are based upon information provided by others and the assumption that all relevant information has been provided by those bodies from whom it has been requested. Information obtained from third parties has not been independently verified by GII, unless otherwise stated in this report.

This report has been prepared in line with best industry standards and within the project's budgetary and time constraints. The methodology adopted and the sources of information used by GII in providing its services are outlined in this report.

The work described was undertaken between November 2023 and February 2024, this report is based on the conditions encountered and the information available during that period. The scope of this Report and the services are accordingly factually limited by these circumstances.

Site investigation locations were selected by the consultant engineer.

GII disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to GII's attention after the date of the Report.

The conclusions presented in this report represent GII's best professional judgement based on review of site conditions observed during any site visit and the relevant information available at the time of writing. The opinions and conclusions presented are valid only to the extent that the information provided was accurate and complete.

¹ Ground Investigations Ireland, Housing Bundle 4 & 5 - Lot 2 – Church of the Annunciation Finglas, Ground Investigation Report, March 2024.

The investigation was focused on a broad assessment of the subsoil quality across the site. The assessment did not extend to the identification of asbestos containing materials associated with any on-site structures, ground gases or groundwater.

The waste classification exercise is reflective of and applicable to the ground conditions on site at the time of the site investigation and sampling. Alterations to the ground conditions or any further excavations carried out on site following the investigation are not reflected in this report.

4.0 Site Location and Layout

The site is located at the site of the former Church of the Annunciation in Finglas, Dublin 11. The site had been cleared of the church and left level prior to the site assessment.

5.0 Site History

GII reviewed the aerial photographs and historical maps maintained by the Ordnance Survey of Ireland (OSI) and the google imagery records. These included the 6-inch maps that were produced between 1829 and 1842, the 25-inch maps that were produced between 1888 and 1913 and the 6-inch Cassini Maps that were produced between the 1830's and 1930's. The site is undeveloped on all historical maps reviewed. Based on a review of the OSI and Google Imagery aerial photograph records the site had been occupied by the Church of the Annunciation until 2021 when it was demolished and the debris removed from site.

6.0 Subsurface Exploration

6.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

6.2. Trial Pits

The trial pits were excavated using a JCB 3CX excavator at the locations shown in Figure 4. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater

encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

6.3. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled, at the locations shown in Figure 4, using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata.

Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 3 of this Report.

6.4. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown in Figure 4. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 4 of this Report.

6.5. Surveying

The exploratory hole locations have been recorded using a KQGeo M8 GNSS System which records the coordinates and elevation of the locations to ITM as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

7.0 Ground Conditions

7.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report. For full geotechnical descriptions of the ground conditions refer to the geotechnical site investigation report referenced in Section 2.0.

The sequence of strata encountered was consistent across the site and generally comprised;

- Topsoil/Surfacing
- Made Ground
- Granular Deposits
- Cohesive Deposits
- Bedrock

TOPSOIL: Topsoil was encountered in several of the exploratory holes and was present to a maximum depth of 0.50m BGL. Tarmacadam surfacing was present typically to a depth of 0.08m to 0.18m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil/Surfacing and were present to variable depths of between 0.50m and 1.70m BGL. These deposits were described generally as grey brown or brown slightly sandy slightly gravelly Clay with cobbles and boulders and contained occasional fragments of concrete, red brick and plastic or grey slightly sandy clayey fine to coarse subangular to subrounded Gravel or Crushed Rock Fill.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *yellowish brown* or *brown slightly sandy slightly gravelly CLAY with occasional cobbles and boulders* overlying a *stiff dark grey or black slightly sandy slightly gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. These deposits had some, occasional or frequent cobble and boulder content, where noted on the exploratory hole logs.

GRANULAR DEPOSITS: Granular deposits were encountered within the cohesive deposits and were typically described as dark grey *medium to coarse angular clayey GRAVEL*. The secondary sand/gravel and silt/clay constituents varied across the site and with depth while occasional or frequent cobble and boulder content also present, where noted on the exploratory hole logs.

BEDROCK: The rotary core boreholes recovered *medium strong to strong dark grey fine grained massive LIMESTONE*. This is typical of the Lucan Formation, which is noted on the geological mapping underlying the site.

The depth to rock varies from 9.58m BGL in BH02 to a maximum of 10.50m BGL in BH01. The total core recovery is good, typically 100% with some of the uppermost runs dropping to 80 or 90%. The SCR and RQD both are relatively poor in the upper weathered zone, often recovered as non-intact, however both indices show an increase with depth in each of the boreholes.

8.0 Laboratory Analysis

8.1. Analysis Suite

In order to assess materials, which may be excavated and removed from site, in terms of waste classification, a selection of samples collected were analysed for a suite of parameters which allows for the assessment of the soils in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous* (RILTA Suite). The suite also allows for the assessment of the soils in terms of suitability for placement at various categories of landfill. The parameter list for the RILTA suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The RILTA suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are pH, total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

In line with the requirement of Council Decision 2003/33/EC a leachate was generated from the solid samples which was in turn analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

The laboratory testing was completed by Element Materials Technology (EMT) in the UK; EMT is a UKAS accredited laboratory. The full laboratory reports are included in Appendix 5.

8.2. Asbestos

Asbestos fibres were not detected in the samples. The laboratory did not identify asbestos containing materials (ACMs) in the samples.

9.0 Waste Classification

GII understands that any materials which may be excavated and removed from site would meet the definition of waste under the Waste Framework Directive. Due to the varying levels of anthropogenic materials encountered in the made ground there are potentially two sets of List of Waste (LoW)² codes with "mirror" entries which may be applied to excavated materials to be removed from site.

- 1. 17-05-03* (soil and stone containing dangerous substances, classified as hazardous) or 17-05-04 (soil and stone other than those mentioned in 17-05-03, not hazardous); or
- 17-09-03* (other construction and demolition wastes (including mixed wastes) containing hazardous substances) or 17-09-04 (mixed construction and demolition wastes other than those mentioned in 17 09 01, 17 09 02 and 17 09 03).

Where waste is a mirror entry in the LoW, it can be classified via a process of analysis against standard criteria set out in the Waste Framework Directive. The assessment process is described in detail in guidance published by the Irish (EPA Waste Classification, List of Waste & Determining if Waste is Hazardous or Non-Hazardous, June 2015) and UK regulatory authorities (Guidance on the Classification and Assessment of Waste: Technical Guidance WM3, 2015). The assessment involves comparison of the concentration of various parameters against defined threshold values.

The specific LoW code which should be applied to the material at each sample location is summarised in Table 2 below. These codes are only applicable where the material is being removed from a site as a waste.

GII use HazWasteOnline[™], a web-based commercial waste classification software tool which assists in the classification of potentially hazardous materials. This tool was used to determine whether the materials sampled are classified as hazardous or non-hazardous. The use of the online tool is accepted by the EPA (EPA 2014).

The conclusions presented in the report are based on GII's professional opinion. It should be noted that the environmental regulator (in this case the EPA) and the waste acceptor (in this case a landfill

² Formerly European Waste Catalogue Codes (EWC Codes)

operator) shall decide whether a waste is hazardous or non-hazardous and suitable for disposal at their facility.

9.1. HazWasteOnLineTM Results

In total, fourteen (14 No.) samples were assessed using the HazWasteOnLine[™] Tool. All samples were classified as being non-hazardous. The complete HazWasteOnLine[™] report for all samples is included in Appendix 6. The specific LoW code which should be applied to the material at each SI location is summarised in Table 2 below. The assigning of the LoW code is based on observations recorded in the trial pits and boreholes, an estimation of the % of anthropogenic material present and the results of the HazWasteOnline[™] output. The final LoW codes applied at the time of disposal may vary due to variations in % of anthropogenic material observed in the excavation phase. Where there is in excess of 2%³ anthropogenic material observed the LoW code 17 09 04 may be applied.

9.2. Landfill Waste Acceptance Criteria

Waste Acceptance Criteria (WAC) have been agreed by the EU (Council Decision 2003/33/EC) and are only applicable to material if it is to be disposed of as a waste at a landfill facility. Each individual member state and licensed operators of landfills may apply more stringent WAC. <u>WAC limits and the associated laboratory analysis are not suitable for use in the determination of whether a waste is hazardous or non-hazardous</u>. The data have been compared to the WAC limits set out in Council Decision 2003/33/EC as well as the specific increased WAC which the EPA have applied to a selection of EPA licenced landfills. These landfills have higher limits for a range of parameters while still operating under an inert landfill licence. The WAC data considered in combination with the waste classification outlined in Section 9.1 allows the most suitable waste category to be applied to the material tested. The potentially applicable waste categories are summarised in Table 1. A summary of the WAC data is presented in Appendix 7. The waste category assigned to each sample is summarised in Table 2.

Waste Category	Classification Criteria
Category A	Soil and Stone only which are free from ⁴ anthropogenic materials such
Unlined Facilities	as concrete, brick, timber. Soil must be free from "contamination" e.g.
	PAHs, Hydrocarbons ⁵ .
Category B1	Reported concentrations within inert waste limits, which are set out by
Inert Landfill	the adopted EU Council Decision 2003/33/EC establishing criteria and
	procedures for the acceptance of waste at landfills pursuant to Article
	16 and Annex II of Directive 1999/31/EC (2002).

Table 1	Potential	Waste	Categories	for	Disposal/Recovery
---------	-----------	-------	------------	-----	--------------------------

³ EPA (2020) - Guidance on Waste Acceptance Criteria at Authorised Soil Recovery Facilities.

⁴ Free from equates to less than 2%.

⁵ Total BTEX 0.05mg/kg, Mineral Oil 50mg/kg, Total PAHs 1mg/kg, Total PCBs 0.05mg/kg and Asbestos No Asbestos Detected – EPA Guidance on Waste Acceptance Criteria at Authorised Soil Recovery Facilities, 2020.

Waste Category	Classification Criteria
	Results also found to be non-hazardous using the HWOL ⁶ application.
Category B2	Reported concentrations greater than Category B1 criteria but less
Inert Landfill	than IMS Hollywood Landfill acceptance criteria, as set out in their
	Waste Licence W0129-02.
	Results also found to be non-hazardous using the HWOL application.
Category C	Reported concentrations greater than Category B2 criteria but within
Non-Haz Landfill	non-haz landfill waste acceptance limits set out by the adopted EU
	Council Decision 2003/33/EC establishing criteria and procedures for
	the acceptance of waste at landfills pursuant to Article 16 and Annex II
	of Directive 1999/31/EC (2002).
	Results also found to be non-hazardous using the HWOL application.
Category C 1	As Category C but containing < 0.001% w/w asbestos fibres.
Non-Haz Landfill	
Category C 2	As Category C but containing >0.001% and <0.01% w/w asbestos
Non-Haz Landfill	fibres
Category C 3	As Category C but containing >0.01% and <0.1% w/w asbestos fibres.
Non-Haz Landfill	
Category D	Results found to be hazardous using HWOL Application.
Hazardous Treatment	
Category D 1	Results found to be hazardous due to the presence of asbestos
Hazardous Disposal	(>0.1%).

9.3. Final Waste Categorisation

All samples were assessed in terms of waste classification using the HazWasteOnLine[™] tool and also the WAC set out in Council Decision 2003/33/EC and the EPA's increased WAC to give a final waste categorisation to determine the most appropriate disposal route for any waste generated. The final and most applicable waste category for each sample is summarised in Table 2.

10.0 Soil Recovery Facility Suitability

GII assessed the suitability of the material sampled in line with the EPA 2020 Guidance on waste acceptance criteria at authorised soil recovery facilities⁷.

The guidance outlines a summary of Maximum Concentrations and/or Trigger Levels in Soil & Stone for SRFs based on the location of the facility or site in the country (Geochemical Domains).

⁶ HazWasteOnLine[™] Tool.

⁷ Guidance on waste acceptance criteria at authorised soil recovery facilities 2020 - ENVIRONMENTAL PROTECTION AGENCY

The subject site is located within Domain 2 and as such the samples collected have been assessed against the SRF criteria for Domain 2. The waste categories assigned to each sample are based on the material being disposed of within Domain 2.

In the event that the material is disposed of outside of Domain 2 refer to Table 3 which assesses the suitability of each individual sample to be disposed of in each Domain.

In terms of their chemical properties one of the samples of the made ground material encountered on the site may be acceptable at a Domain 2 SRF following excavation and a visual assessment of the percentage of anthropogenic material contained within it. If there is less than 2% anthropogenic material present then it may be accepted by an SRF. This assessment is at the discretion of the SRF.

Sample ID	Sample Depth (m)	Material Type	Sample Date	LoW Code	Waste Category
TP-01	0.50	Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category B2 - Domain 2
TP-01	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
TP-02 0.50		Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category A - Domain 2
TP-02 1.00		Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category B1 - Domain 2
TP-03	0.50	Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category B1 - Domain 2
TP-03	2.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-01	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-02	1.00	Clay	22/11/2023	17 05 04	Category B1 - Domain 2
BH-02	2.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-03	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-04	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-04	2.00	Clay	22/11/2023	17 05 04	Category A - Domain 2
BH-05	0.50	Made Ground <2% Anthropogenic Material	22/11/2023	17 05 04	Category B1 - Domain 2

Table 2 Individual Sample Waste Category

Sample ID	Sample Depth (m)	Material Type	Sample Date	LoW Code	Waste Category
BH-06	1.00	Clay	22/11/2023	17 05 04	Category A - Domain 2

Table 3 Geochemical Domain Suitability

ID	Depth	Material	Domain 1	Domain 2	Domain 3	Domain 4	Domain 5	Domain 6	Domain 7
TP-01	0.50	Made Ground <2% Anthropogenic Material	×	×	×	×	×	×	×
TP-01	1.00	Clay	×	~	~	×	×	×	×
TP-02	0.50	Made Ground <2% Anthropogenic Material	×	~	~	~	~	~	×
TP-02	1.00	Made Ground <2% Anthropogenic Material	×	×	×	×	×	×	×
TP-03	0.50	Made Ground <2% Anthropogenic Material	×	×	×	×	×	×	×
TP-03	2.00	Clay	~	~	~	×	\checkmark	~	×
BH-01	1.00	Clay	~	~	~	~	~	~	×
BH-02	1.00	Clay	×	×	×	×	×	×	×
BH-02	2.00	Clay	~	~	~	×	~	~	×
BH-03	1.00	Clay	×	~	~	×	×	×	×
BH-04	1.00	Clay	×	~	~	×	×	×	×
BH-04	2.00	Clay	~	~	~	×	~	~	×
BH-05	0.50	Made Ground <2% Anthropogenic Material	×	×	×	×	×	×	×
BH-06	1.00	Clay	~	\checkmark	~	×	\checkmark	×	×

* - not suitable for disposal in this domain

suitable for disposal in this domain

11.0 Conclusions & Recommendations

The conclusions and recommendations given and opinions expressed in this report are based on the findings of the site investigation works and laboratory testing undertaken. Where any opinion is expressed on the classification of material between site investigation locations, this is for guidance only and no liability

can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the findings at the site investigation locations.

11.1. Conclusions

11.1.1. Waste Classification

Based on the results of the HazWasteOnLine[™] tool the material sampled across the site if being considered a waste can be classified as non-hazardous.

11.1.2. Asbestos

Asbestos was not detected in the soil samples.

11.1.3. Waste Categories

The most applicable waste categories for each of the samples if being considered a waste to be disposed of within Domain 2 have been presented in Table 2.

Where material is to be disposed of outside of the Geochemical Domain within which the site is located refer to Table 3 within this report.

11.2. Recommendations

11.2.1. Waste Transfer

In the event that material is excavated for removal from site, any firm engaged to transport waste material from site and the operator of any waste facility that will accept subsoils excavated from this site should be furnished with, at a minimum, copies of the **full unabridged** laboratory reports and HazWasteOnLine[™] report for all samples presented in this report.

The non-hazardous material across the site if excavated should be removed from site to an appropriate facility under either the LoW codes 17 05 04 or 17 09 04. Where during excavation there is noted to be in excess of 2% anthropogenic material the appropriate LoW code which should be applied is 17 09 04.

12.0 References

Environment Agency (2013). Waste Sampling and Testing for Disposal to Landfill.

Environment Agency (2015). *Technical Guidance WM3 - Guidance on the classification and assessment of waste (1st edition 2015) Technical Guidance WM3.*

Environmental Protection Agency (EPA) (2014). Letter to Licences *Re: Waste Classification & Haz Waste On-Line™*.

Environmental Protection Agency (EPA) (2015). Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous.

Environmental Protection Agency (EPA) (2020). *Guidance on Waste Acceptance Criteria at Authorised Soil Recovery Facilities*.

Association of Geotechnical and Geoenvironmental Specialists (2019). *Waste Classification for Soils – A Practitioners Guide.*

APPENDIX 1 - Figures

712300E

712200E

712290E

712320E

APPENDIX 2 – Trial Pit Records

Example Number Processor Dimensions (2.23) Product Level (mOD) Cleant (MOD) Cleant (MOD) Product (MOD) Cleant (MOD) Product (MOD)	Ground Investigations Irel			eland	Ltd	Site Housing Bundle 4&5- Lot	2- Finglas Church	Trial Pit Number SA01	
Location Date Final Records Engineer State State <th>Excavation Trial Pit</th> <th>Method</th> <th colspan="3">Dimensions 2.30m x 0.50m x 1.90m (L x W x D)</th> <th>Level (mOD) 62.52</th> <th colspan="2">Client National Development Finance Agency</th> <th>Job Number 13061-08-23(2</th>	Excavation Trial Pit	Method	Dimensions 2.30m x 0.50m x 1.90m (L x W x D)			Level (mOD) 62.52	Client National Development Finance Agency		Job Number 13061-08-23(2
Prim Sample / Tests King Field Records And/S Description Lagrent Mail Image: Sample / Tests Imag			Locatio	9 n 18860.4 E 712261 N	Dates 17	7/10/2023	Engineer		Sheet 1/1
Plan .	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
Plan Remarks . <t< td=""><td></td><td></td><td></td><td>Slow(1) at 1.80m.</td><td>62.02 61.22 60.62</td><td>(0.50) (0.50) (0.80) (0.80) (0.60) (0.60) (0.60) (0.60) (0.60) (0.60)</td><td>MADE GROUND grey slig sub angular to sub rounded Firm greyish brown slightly occasional sub angular to Firm to stiff brown slightly Complete at 1.90m</td><td>htly sandy clayey fine to coa sandy gravelly CLAY with sub rounded cobbles sandy gravelly CLAY</td><td></td></t<>				Slow(1) at 1.80m.	62.02 61.22 60.62	(0.50) (0.50) (0.80) (0.80) (0.60) (0.60) (0.60) (0.60) (0.60) (0.60)	MADE GROUND grey slig sub angular to sub rounded Firm greyish brown slightly occasional sub angular to Firm to stiff brown slightly Complete at 1.90m	htly sandy clayey fine to coa sandy gravelly CLAY with sub rounded cobbles sandy gravelly CLAY	
Groundwate encountered at 1.80m BGL Trial pit side walls stable Stable Trial pit side walls stable Trial pit side walls stable Trial pit side walls stable Trial pit side walls stable Trial pit side walls stable Trial pit side walls stable Trial pit side walls stable T	Plan .	· ·		· · ·		· · · ·	Remarks		
. .							Groundwater encountered a Trial pit side walls stable Trial pit backfilled upon com	at 1.80m BGL Ipletion	
. .									
					•				
						<u>.</u>	Scale (approx)	Logged By	Figure No.

S	Grou	nd In	vestigations Ire	land	Ltd	Site Housing Bundle 4&5- Lot 2	2- Finglas Church	Trial Pit Number SA02
Excavation Trial Pit	n Method	Dimens 2.80m	ions x 0.50m x 1.90m (L x W x D)	Ground	Level (mOD) 63.86	Client National Development Fin	ance Agency	Job Number 13061-08-23(2)
		Locatio	n 8901.1 E 712337.2 N	Dates 17	/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Kater Sater
					(0.30)	Brown slightly sandy slight and rootlets	ly gravelly TOPSOIL with gr	ass
				63.56	0.30	Soft to firm brown slightly	sandy slightly gravelly CLAY	
				63.06	- (0.50) 0.80	Firm brown slightly sandy	gravelly CLAX with accession	
					- - - - -	sub angular to sub rounde	d cobbles	
					 (1.10)			
					- - - -			
				61.96	1.90	Complete at 1.90m		
					- - - -			
					- - - - -			
					 - - - -			
					 - - -			
					- - - - -			
Plan						Remarks		
· ·						No groundwater encountere Trial pit side walls stable Trial pit backfilled upon com	d pletion	
				· ·				
					s	Scale (approx)	Logged By	Figure No.
						1:25	GGR 1	3061-08-23(2).SA0

	Grou	nd In	vestigations Ir www.gii.ie	eland	Ltd	Site Housing Bundle 4&5- Lot	Site Housing Bundle 4&5- Lot 2- Finglas Church		
Excavation Trial Pit	Method	Dimens 3.80m	sions x 1.00m x 3.00m (L x W x D) Ground	Level (mOD) 64.45	Client National Development Fin	Xient National Development Finance Agency		(2)
		Locatio	n 8921.9 E 712300.3 N	Dates	7/10/2023	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
					 (0.50)	MADE GROUND grey slig fragments of red brick and	htly sandy very gravelly Cla I concrete	y with	
0.50	B1		Slow(1) at 0.70m.	63.95	0.50	Soft to firm grey slightly sa	indy slightly gravelly CLAY	<u>,</u>	Z1
1.00	B2			63.55	0.90	Firm brown slightly sandy sub angular to sub rounde	gravelly CLAY with occasior d cobbles	nal	
					(0.80)				
2.00	ВЗ			62.75	- 1.70 	Soft to firm brown slightly occasional sub angular to	sandy gravelly CLAY with sub rounded cobbles		
					- (0.90) 				
			Slow(2) at 2.60m.	61.85	2.60	Firm to stiff dark grey sligh occasional sub angular to	ntly sandy gravelly CLAY with sub rounded cobbles	n • • • • • • • • • • • • • • • • • • •	¹ 2
3.00	В4			61.45	3.00 	Complete at 3.00m			
Plan						Remarks			
						Groundwater encountered a Trial pit side walls stable Trial pit backfilled upon com	t 0.70m and 2.60m BGL pletion		
· ·	· ·		· · ·		· · ·				
		•			s	Scale (approx) 1:25	Logged By GGR	Figure No.	-0

	Grou	nd In	vestigations Ir www.gii.ie	eland	Ltd	Site Housing Bundle 4&5- Lot	2- Finglas Church	Trial Pit Number TP02
Excavation Trial Pit	Method	Dimens 5.00m	sions x 1.00m x 3.10m (L x W x D) Ground	Level (mOD) 64.47	Client National Development Fin	ance Agency	Job Number 13061-08-23(2)
		Locatio	n 8881.1 E 712276.4 N	Dates	7/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
0.50	81					MADE GROUND brown s many fragments of red bri	lightly sandy gravelly Clay v ck, slab and concrete	with
1.00	B2				- (1.70) - (1.70)			
			Slow(1) at 1.70m.	62.77	- 1.70	Firm to stiff dark grey sligh occasional sub angular to	itly sandy gravelly CLAY wi sub rounded cobbles	th
2.00	B3				- - - - - - - - - - - - - - - - - - -			
3.00	B4			61.37	- - - - - - - - - - - - - - - - - - -	Complete at 3.10m		
Plan					· · · '	Remarks	st 1 70m P.Cl	
						Trial pit side walls stable Trial pit backfilled upon com	pletion	
		•						
		•						
					•••			
					<mark>.</mark>	Scale (approx) 1:25	Logged By GGR	Figure No. 13061-08-23(2).TP0

	Grou	nd In	vestigations Ire www.gii.ie	land	Ltd	Site Housing Bundle 4&5- Lot 2- Finglas Church		Trial Pit Number TP03
Excavation Trial Pit	Method	Dimensi 3.30m x	ons : 0.90m x 3.00m (L x W x D)	Ground	Level (mOD) 62.80	Client National Development Fin	ance Agency	Job Number 13061-08-23(2)
		Location 738	ו 3860.8 E 712324.4 N	Dates 17	7/10/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
0.50	B1			62.50	(0.30) 0.30 0.30	Brown slightly sandy slight and rootlets MADE GROUND dark bro with occasional angular to fragments of red brick and	ly gravelly TOPSOIL with gr wn slightly sandy gravelly C sub angular cobbles and plastic	ass ass and a second seco
1.00	B1			62.00		Soft to firm brown slightly s occasional sub angular to	sandy gravelly CLAY with sub rounded cobbles	
2.00	ВЗ			61.50	1.30 	Firm brown slightly sandy angular to sub rounded co	gravelly CLAY with some su bbles	b
				60.10	2.70	Very stiff dark grey slightly sub angular to sub rounde	sandy gravelly CLAY with s d cobbles	ome
3.00	B4					Complete at 3.00m		
Plan .				-		Remarks	d	
						Trial pit side walls stable Trial pit backfilled upon com	pletion	
· ·	· ·		· · ·		· · ·			
						Scale (approx) 1:25	Logged By GGR	Figure No. 13061-08-23(2).TP0;

APPENDIX 3 – Cable Percussion Borehole Records

S	Grou	nd In	vesti ww	gations Ire /w.gii.ie	land	Ltd	Site Housing Bundle 4&5- Lot 2- Finglas Church		Borehole Number BH01	
Machine : Da	ando 2000 able Percussion	Casing	Diamete	r ed to 6 20m	Ground	Level (mOD)	Client National Development Finance Agency	Jol Nu	b mber	
							······································	13061	-08-23((2)
		Locatio	n 3927.6 E	712347.6 N	Dates 03 06	6/11/2023- 6/11/2023	Engineer	Sh	eet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Lege	end st	Water
1.00-1.45 1.00	SPT(C) N=23 B1			Water strike(1) at 0.60m, rose to 0.45m in 20 mins. 5,4/6,4,6,7	63.80 63.68 63.38 62.88	0.08 0.20 (0.30) 0.50 (0.50)	MADE GROUND: Tarmac MADE GROUND: Grey brown sandy gravelly CLAY MADE GROUND: Grey sandy fill with concrete fragments Stiff yellowish brown slightly sandy gravelly CLAY. Gravel fine to coarse sub-angular to sub-rounded. Stiff grey slightly sandy slightly gravelly CLAY gravel is fin to coarse sub-angular to sub-rounded.	is • • • • • • • • • • • • • • • • • • •		11 11
2.00-2.41 2.00	SPT(C) 50/260 B2			6,7/8,12,16,14 Water strike(2) at 2.20m, rose to 1.70m in 20 mins.					₩	2
3.00-3.45 3.00	SPT(C) N=50 B3			6,8/13,14,15,8	60.88	3.00	Very stiff dark grey slightly sandy slightly gravelly CLAY GRavel is sub-angular to sub-rounded.			
4.00-4.45 4.00	SPT(C) N=50 B4			4,9/12,16,16,6		(2.90)				
5.00-5.45 5.00	SPT(C) N=50 B5			8,9/14,16,20	57.98				<u> </u>	13 73
6.00	B6 SPT(C) N=50			5.90m, rose to 5.80m in 20 mins. 10,13/50	57.68		Jense grey coarse sub-rounded to very angular GRAVEL with medium cobble content. Terminated at 6.20m		2 ¢	
Remarks Cable percus Borehole terr Borehole bac	ssion boring techniq minated at 6.2m bGl ckfilled on completio	ues carrie _ due to ol n.	d out fror ostruction	n ground level to 6.2n - possible boulder or	n bGL. ⁻ bedrock.		Sca (appro	le Log ox) By	gged	
	,						1:50) Ji	& JC	
							Figu 13061	1-08-23(2).BH0	1

SI	Ground Investigations www.gii.ie					Ltd		Site Housing Bundle 4&5- Lot 2- Finglas Church			orehole umber 3H02
Machine : Da Method : Ca	ando 2000 able Percussion	Casing 20	Diamete 0mm cas	r ed to 6.30m	Ground	Leve 64.05	l (mOD)	Client National Development Finance Agency		J N 130	ob umber 61-08-23(2)
		Locatio	n 8925.9 E	712265.4 N	Dates 08 09	8/11/2 9/11/2	023- 023	Engineer		s	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	D (Thi	epth (m) ckness)	Description	Legend	Water	Instr
1.00-1.45 1.00 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.45 4.00 5.00-5.45 5.10 6.00-6.45 6.00	SPT(C) N=18 B1 SPT(C) N=31 B2 SPT(C) N=35 B3 SPT(C) N=48 B4 SPT(C) N=50 B5 SPT(C) N=50 B6			2,3/4,5,5,4 4,5/6,8,8,9 3,4/7,9,9,10 Water strike(1) at 3.20m, rose to 3.10m in 20 mins. 5,7/8,12,13,15 6,11/13,17,20 10,20/50	63.97 63.75 62.05 58.05 57.75		0.08 (0.22) 0.30 (1.70) 2.00 (4.00) 6.00 (0.30) 6.30	MADE GROUND Blue grey crushed rock fill (804) MADE GROUND: Angular cobbles with concrete bricks Stiff yellowish brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded. Very stiff black/dark grey slightly sandy slightly gravelly CLAY gravel is fine to coarse sub-angular to sub-rounded. Dense dark grey medium to coarse angular to very angular clayey GRAVEL Terminated at 6.30m		₹1	
Remarks Cable percus Borehole terr	ssion boring techniq minated at 6.3m bGL	ues carrie _ due to ol	d out fror ostructior	n ground level to 6.3n - possible boulder or	n bGL. bedrock.	_			Scale (approx) 1:50 Figure N 13061-08	No.	JC (2).BH02

	Grou	vesti wv	gations Ire	land	Ltd		Site Housing Bundle 4&5- Lot 2- Finglas Church	Borehole Number BH03		
Machine : Da Method : Ca	ando 2000 able Percussion	Casing 20	Diamete 0mm cas	r ed to 6.20m	Ground	l Level 63.29	(mOD)	Client National Development Finance Agency	Job Numb 13061-08-)er -23(2)
		Locatio	9 n 8887.9 E	712349.8 N	Dates	1/11/20 2/11/20	23- 23	Engineer	Sheet 1/1	: 1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De ((Thic	epth m) kness)	Description	Legenc	Water
1.00-1.45 1.00 2.00-2.45 2.30 3.00-3.40 3.00 4.00-4.40 4.00 5.00-5.35 5.00 6.00-6.18	SPT(C) N=8 B1 SPT(C) N=35 B2 SPT(C) 50/250 B4 SPT(C) 50/250 B5 SPT(C) 50/200 SPT(C) 50/30			1,1/1,2,2,3 2,3/6,7,10,12 6,11/14,16,18,2 Water strike(1) at 3.40m, rose to 3.35m in 20 mins. 4,8/12,14,19,5 6,7/15,15,20 Water strike(2) at 5.60m, rose to 5.40m in 20 mins. 7,13/50	62.79 61.29		(0.50) 0.50 (1.50) 2.00 (4.20) 6.20	TOPSOIL Soft to firm yellowish brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded. Very stiff dark grey/black slightly sandy slightly gravelly CLAY. Gravel is fine to medium angular to very angular. Terminated at 6.20m		
Remarks Cable percus Borehole tern Borehole bar Chiselling fro	ssion boring techniq minated at 6.2m bGl ckfilled on completio om 6.20m for 0.417 l	ues carrie _ due to o n. nours.	d out fror bstructior	n ground level to 6.2r n - possible boulder or	n bGL. r bedrock.			Scale (approx 1:50 Figure 13061-0) Logge By JI No. 08-23(2).B	∍d

	Grou	nd In	vesti ww	gations Ire /w.gii.ie	land	Ltc	1	Site Housing Bundle 4&5- Lot 2- Finglas Church		Boreho Numbe BH04	ole er 4
Machine : Da Method : Ca	ando 2000 able Percussion	Casing 20	Diamete Omm cas	ed to 5.60m	Ground	Leve 63.07	el (mOD)	Client National Development Finance Agency		Job Numbe 13061-08-2	⊧r ?3(2)
		Locatio	n 8884.4 E	712263.1 N	Dates 07 08	7/11/2 8/11/2	023- 023	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	C (Thi	Depth (m) ckness)	Description		Legend	Water
1.00-1.45 1.00 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.45 4.00 5.00-5.45 5.00 5.60-6.05	SPT(C) N=22 B1 SPT(C) N=34 B2 SPT(C) N=50 B3 SPT(C) N=50 B5 SPT(C) N=50 B6 SPT(C) N=50	(m)	(m)	3,34/6,5,5,6 2,3/5,7,10,12 5,11/13,14,16,7 6,7/19,21,10 4,10/20,30 20,20/50	62.89 62.32 62.07 60.07 57.47		ckness) (0,18) 0.18 (0.57) 0.75 (0.25) 1.00 (2.00) 3.00 (2.60) 5.60	MADE GROUND: Crushed rock fill (804) MADE GROUND: Large angular stone fill MADE GROUND: Dark grey slightly sandy slightly gravelly CL Gravel is fine to coarse angular. Stiff yellowish brown slightly sandy slightly gravelly CL Gravel is fine to coarse sub-angular to sub-rounded w low cobble content.	avelly LAY. vith		
Remarks Borehole terr Cable percus Borehole bac Chiselling fro	minated at 5.6m bGI ssion boring techniq ckfilled on completio om 5.60m to 5.60m fr	due to ol ues carrie n. or 0.3 hou	ostruction d our fror rs.	- possible boulder or n ground level to 5.6n	bedrock. n bGL.			S (ap	Scale pprox) 1:50 Figure N	Loggec By JC o.	d
								13	3061-08-	23(2).BH	104

	Grou	nd In	vesti	gations Ire	land	Lto	t	Site Housing Bundle 4&5- Lot 2- Finglas Church	Borehole Number BH05
Machine : D	ando 2000	Casing	Diamete	r	Ground	Leve	el (mOD)	Client	Job
Method : C	able Percussion	20	0mm cas	ed to 6.80m		62.8	2	National Development Finance Agency	Number 13061-08-23(2
		Locatio	n 8862 E 7	12333.1 N	Dates 02 03	2/11/2 3/11/2	2023- 2023	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Th	Depth (m) ickness)	Description	Legend Safe
					62 42		(0.40)	Brown sandy TOPSOIL	
0.50	B1				62.02		(0.40) 0.80	MADE GROUND: Brown clay with fragments of red brick	
1.00-1.45	SPT(C) N=11			1,3/2,2,3,4				is fine to coarse sub-angular to sub-rounded.	
1.50	B2						(1.20)		
2.00-2.45	SPT(C) N=15			2,2/4,3,4,4	60.82	lululululu	2.00	Stiff dark grey to black slightly sandy gravelly CLAY. Grave is fine to coarse angular to very angular.	• •
2.70 3.00-3.45	B3 SPT(C) N=29			3,5/5,6,8,10			(1.50)		
3.50	B4				59.32		3.50	Very stiff dark grey to black slightly sandy gravelly CLAY. Gravel is fine to coarse angular to very angular.	
4.00-4.41	SPT(C) 53/260			6,7/11,14,17,11					
4.50	B5								
5.00-5.33 5.50	SPT(C) 50/180 B6			Water strike(1) at 5.00m, rose to 4.90m in 20 mins. 5,9/12,16,22			(3.10)		
6.00-6.25	SPT(C) 50/100			7,12/20,30					* • • • • • • • • • • • • • • • • • • •
6.60 6.80-6.88	B7 SPT(C) 50*/75 50/0			50/50	56.22 56.02		6.60 (0.20) 6.80	Dense dark grey coarse angular very clayey GRAVEL. Terminated at 6.80m	
Bomarka									
Remarks Cable percu Borehole ba Borehole ter	ssion boring techniq ckfilled on completio minated at 6.8m bGI	ues carrie n. _ due to o	d out fror bstructior	n ground level to 6.8n ı - possible boulder or	n bGL. ⁻ bedrock.			Scale (appro	x) Logged By
Chiselling fro	om 6.80m for 0.5 hou	urs.						1:50 Figure	JI e No.
								13061-	08-23(2).BH05

SI	Grou	nd In	vesti ww	gations Irel /w.gii.ie	land	Ltd	Site Housing Bundle 4&5- Lot 2- Finglas Church		Borehole Number BH06
Machine : Da	ando 2000	Casing	Diamete	r	Ground	Level (mOD)	Client		Job
Method : Ca	able Percussion	20	0mm cas	ed to 5.10m		64.40	National Development Finance Agency		Number 13061-08-23(2)
		Locatio	n 8884.1 E	712277.7 N	Dates 08	/11/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S
1.00-1.45 1.00 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.30 4.00	SPT(C) N=9 B1 SPT(C) N=15 B2 SPT(C) N=22 B3 SPT(C) 53/150 B4			1,1/2,2,2,3 2,3/3,3,5,4 3,3/3,4,6,9 5,7/13,17,23	63.40 62.80 62.40 60.40	(1.00) (0.60) (0.60) (0.40) (0.40) (2.00) (2.00)	Pit excavated prior to drilling. Soft to firm yellowish brown slightly sandy slightly of CLAY. Gravel is fine to coarse sub-angular to sub r Firm to stiff black/dark grey slightly sandy slightly g CLAY. Gravel is fine to coarse angular to very angu low cobble content. Stiff black/dark grey slightly sandy slightly gravelly Gravel is fine to coarse angular to very angular wit cobble content.	gravelly rounded. gravelly ular with CLAY. th low	
4.00 5.00-5.00 5.00 Remarks Cable percus Borehole terr	B4 SPT(C) 50*/0 50/0 B5		d out from	50/50	59.30		CLAY. Gravel is the to coarse angular to very	Scale (approx)	Logged
Borehole terr Chiselling fro	minated due to obstr om 4.90m to 5.10m f	or 1 hour.	ossible bo	ouider or bedrock.				1:50	JI
								Figure N 13061-08-	o. -23(2).BH06

APPENDIX 4 - Rotary Borehole Records

		Grou	nd In	vesti	gations Ire	land	Ltd	Site Housing Bundle 4&5- Lot 2- Finglas Church	Borehole Number BH01		
Machine : D) 2000 2000) and	Casing	Diamoto	r.gillic	Ground) Client	loh		
Method : P	Baretha T-4	1 with	20 63	0mm cas .5mm cas	ed to 6.20m sed to 16.00m	Ground	63.88	National Development Finance Agency	Number 13061-08-23(2)		
F	ollow-on		Locatio	n 8927.6 E	712347.6 N	Dates 03 30	8/11/2023- 0/01/2024	Engineer	Sheet 1/2		
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) Description	Legend S		
1.00-1.45 1.00	SPT(C) B1	N=23			Water strike(1) at 0.60m, rose to 0.45m in 20 mins. 5,4/6,4,6,7	63.80 63.68 63.38 62.88		MADE GROUND: Tarmac MADE GROUND: Grey brown sandy gravelly CLAY MADE GROUND: Grey sandy fill with concrete fragments Stiff yellowish brown slightly sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded. Stiff grey slightly sandy slightly gravelly CLAY gravel is fine to coarse sub-angular to sub-rounded.	¥1		
2.00-2.41 2.00	SPT(C) B2	50/260			6,7/8,12,16,14 Water strike(2) at 2.20m, rose to 1.70m in 20 mins.		(2.00)		$\nabla_{\underline{a}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=$		
3.00-3.45 3.00	SPT(C) B3 100	N=50 0	0		6,8/13,14,15,8	60.88	3.00	Very stiff dark grey slightly sandy slightly gravelly CLAY GRavel is sub-angular to sub-rounded.			
4.00-4.45 4.00	SPT(C) B4	N=50			4,9/12,16,16,6		(2.90)		•••••••• •••••• •••••• ••••• •••••• ••••• ••		
5.00-5.45 5.00	SPT(C) B5	N=50		0	8,9/14,16,20						
6.00 6.00-6.45	B6 SPT(C)	N=50			Water strike(3) at 5.90m, rose to 5.80m in 20 mins. 10,13/50	57.98 57.68	5.90 (0.30) 6.20	Dense grey coarse sub-rounded to very angular GRAVEL with medium cobble content. Dark grey slightly sandy very gravelly CLAY with occasional sub angular to sub rounded cobbles	× • • • • • • • • • • • • • • • • • • •		
7 00 7 45	TCR	SCR	RQD	FI	7,9/11,12,14,13				× • • • • • • • • • • • • • • • • • • •		
8.50-8.95	63	0	0		9,12/15,18,17 SPT(C) N=50				x = x =		
10.00	59	0	0						y y y y y y		
Remarks	Ission horir	na technia	ues carrie	d out from	n around level to 6 20	m BGI		, Scale	Logged		
Rotary Corir No groundw Borehole ba	ng techniqu vater encou lickfilled on	ies carried intered completio	n.	.00m BG				(approx) 1:50 J Figure N 13061-08	by & JC & GGR o. -23(2).BH01		
		Grou	nd In	vesti	gations Ire	land I	Ltd		Site	Boreho Numbe	le r
---	-------------------------	----------------------	--	----------------------	------------------------------	----------------	---------------------------	----------	---	---------------------------	-----------------
			und Investigations Ireland Ltd www.gii.ie							BH01	1
Machine : Da	ando 2000 aretha T-4	and 1	Casing	Diamete	r	Ground	Level (mO	D)	Client	Job Numbe	r
Flush :			20 63	0mm cas .5mm cas	ed to 6.20m sed to 16.00m		63.88		National Development Finance Agency	13061-08-23	3(2)
Core Dia: m	nm ercussion	with	Locatio	n		Dates	/11/2023-		Engineer	Sheet	
Riethod . Fo	otary Core ollow-on	with i	73	8927.6 E	712347.6 N	30	/01/2024			2/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thicknes	ss)	Description	Legend	Water
10.00-10.45 11.50 13.00 14.50 16.00	89 100 100	26 80 67 44	7 53 52 33	24 23 32 26	SPT(C) N=50 8,15/24,26	53.88		0) 0)	Medium strong massive grey fine grained LIMESTONE with clay smearing moderately weathered 10.00m to 13.00m BGL: Sequence consists of two fracture sets. F1: Dipping 0-30 degrees, close to wide spaced, planar smooth with clay smearing. F2: Dipping 70-90 Degrees, medium to wide spaced, planar smooth with clay smearing Strong to very strong massive dark grey fine grained LIMESTONE slightly weathered 13.00m to 16.00m BGL: Sequence consists of two fracture sets. F1: Dipping 0-30 degrees, close to medium spaced, planar to undulating smooth. F2: Dipping 70-90 Degrees, medium to wide spaced, planar rough Terminated at 16.00m		
Remarks	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		Scale (approx) 1:50	Logged By	i GGF
									Figure 13061-08	vo. 3-23(2).BH(01

		Grou	nd In	vesti wv	gations Ire /w.gii.ie	land	Ltd	Site Housing Bundle 4&5- Lot 2- Finglas Church	Borehole Number BH02				
Machine : D Bi Method : C	ando 2000 aretha T-4) and 1 ussion	Casing 20 63	Diamete 0mm cas .5mm cas	r ed to 6.30m sed to 13.00m	Ground	Level (mOE 64.05	D) Client National Development Finance Agency					
			Locatio	n 8925.9 E	712265.4 N	Dates 08 31	8/11/2023- /01/2024	Engineer		Sł	1/2	2	
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) Description	Legend	Water	Ins	str	
1.00-1.45 1.00	SPT(C) B1	N=18			2,3/4,5,5,4	63.97 63.75		MADE GROUND Blue grey crushed rock fill (804) MADE GROUND: Angular cobbles with concrete bricks Stiff yellowish brown slightly sandy slightly gravell CLAY. Gravel is fine to coarse sub-angular to sub-rounded.	y				
2.00-2.45 2.00	SPT(C) B2	N=31			4,5/6,8,8,9	62.05		Very stiff black/dark grey slightly sandy slightly gravelly CLAY gravel is fine to coarse sub-angula to sub-rounded.					
3.00-3.45 3.00	SPT(C) B3 100	0 N=35	0	0	3,4/7,9,9,10 Water strike(1) at 3.20m, rose to 3.10m in 20 mins.					∑ 1			
4.00-4.45 4.00	SPT(C) B4	N=48			5,7/8,12,13,15		(4.00				2.2 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 or one of the or one of the or or set of the or of the or of the or or set of the or of the or of the or of the or of the or of the or of the or of the or of the or	
5.00-5.45 5.10	SPT(C) B5	N=50			6,11/13,17,20						80, 2, 40, 40, 40, 40, 50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 4	3.00 m/ 000 m/ 000 m/ 000 m/ 000 m/ 000 m/	
6.00-6.45 6.00	SPT(C) B6	N=50			10,20/50	58.05 57.75	6.00 (0.30 6.30	Dense dark grey medium to coarse angular to ver angular clayey GRAVEL Very stiff grey slightly sandy very gravelly CLAY	y				
7.00-7.45 7.00	TCR	SCR	RQD	FI	9,12/15,20,15 SPT(C) N=50			cobbles	**************************************				
8.50-8.95	90	0	0	0	10,14/20,30 SPT(C) N=50		(3.28		× • • • • • • • • • • • • • • • • • • •		9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	<u></u>	
10.00	93	27	20	6		54.47		Strong to very strong massive dark grey fine grained LIMESTONE slightly weathered			2 400 400 400 400 400 400 400 400 400 40	<u>or vice and a crashe water and a crashe water and a crashe water </u>	
Remarks Cable percus Rotary coring	ssion borir g techniqu	ng techniq es carried	ues carrie out to 13	d out fror 00m BGI	n ground level to 6.30)m BGL.			Scale (approx)	Lc By)gg∉ ∕	∍d	
No groundwa Borehole bao	ater encou ckfilled upo	intered on comple	tion						1:50	JC	& G	GR	
									13061-08	-23(2	2).BI	H02	

S		Grou	nd In	vest	igations Ire	land	Ltd	Site Housing Bundle 4&5- Lot 2- Finglas Church		B N E	orehole umber 3H02
Machine : D Bi Flush :	ando 2000 aretha T-4	and 1	Casing 20 63	Diamete 0mm cas .5mm ca	ed to 6.30m sed to 13.00m	Ground	Level (mOD) 64.05	Client National Development Finance Agency		Jo N 130	ob umber 61-08-23(2)
Method : C	nm able Percu	ission	Locatio	n 8925.9 E	712265.4 N	Dates 08 31	/11/2023- /01/2024	Engineer		S	heet 2/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
11.50	100	71	55	22			(3.42)			· · · · · · · · · · · · · · · · · · ·	
	100	89	67	18				9.58m to 13.00m BGL: Sequence consists of two fracture sets. F1: Dipping 0-30 degrees, close to medium spaced, planar smooth with clay smearing. F2: Dipping 60-80 degrees, medium to wide spaced,undulating rough to planar smooth.		-	
13.00						51.05		Terminated at 13.00m			
Remarks	1	L	1	I	1	1	<u> </u>	1	Scale (approx)	B	ogged Y
									1:50	JC	& GGR
									13061-08	3-23(2).BH02

	Grou	nd In	vesti wv	gations Ire	land	Ltd		Site Housing Bundle 4&5- Lot 2- Finglas Church	Borehole Number BH03		
Machine : Da Method : Ca	ando 2000 able Percussion	Casing 20	Diamete 0mm cas	r ed to 6.20m	Ground	Client National Development Finance Agency	Job Numb 13061-08-)er -23(2)			
		Locatio	9 n 8887.9 E	712349.8 N	Dates	1/11/20 2/11/20	23- 23	Engineer	Sheet 1/1	: 1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De ((Thic	epth m) kness)	Description	Legenc	Water	
1.00-1.45 1.00 2.00-2.45 2.30 3.00-3.40 3.00 4.00-4.40 4.00 5.00-5.35 5.00 6.00-6.18	SPT(C) N=8 B1 SPT(C) N=35 B2 SPT(C) 50/250 B4 SPT(C) 50/250 B5 SPT(C) 50/200 SPT(C) 50/30			1,1/1,2,2,3 2,3/6,7,10,12 6,11/14,16,18,2 Water strike(1) at 3.40m, rose to 3.35m in 20 mins. 4,8/12,14,19,5 6,7/15,15,20 Water strike(2) at 5.60m, rose to 5.40m in 20 mins. 7,13/50	62.79 61.29		(0.50) 0.50 (1.50) 2.00 (4.20) 6.20	TOPSOIL Soft to firm yellowish brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded. Very stiff dark grey/black slightly sandy slightly gravelly CLAY. Gravel is fine to medium angular to very angular. Terminated at 6.20m			
Remarks Cable percus Borehole tern Borehole bar Chiselling fro	ssion boring techniq minated at 6.2m bGl ckfilled on completio om 6.20m for 0.417 l	ues carrie L due to o n. hours.	d out fror bstructior	n ground level to 6.2r n - possible boulder or	n bGL. r bedrock.			Scale (approx 1:50 Figure 13061-0) Logge By JI No. 08-23(2).B	∍d	

	Grou	nd In	vesti ww	gations Ire /w.gii.ie	land	Lto	ł	Site Housing Bundle 4&5- Lot 2- Finglas Church		Borehole Number BH04		
Machine : Da Method : Ca	ando 2000 able Percussion	Casing 20	Diamete 0mm cas	r ed to 5.60m	Ground	Leve 63.07	e l (mOD) 7	Client National Development Finance Agency		Job Numbe 13061-08-2	≱r 23(2)	
		Locatio	n 8884.4 E	712263.1 N	Dates 07 08	7/11/2 8/11/2	2023- 2023	Engineer		Sheet 1/1		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	נ (Th	Depth (m) ickness)	Description		Legend	Water	
1.00-1.45 1.00 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.45 4.00 5.00-5.45 5.00 5.60-6.05	SPT(C) N=22 B1 SPT(C) N=34 B2 SPT(C) N=50 B3 SPT(C) N=50 B5 SPT(C) N=50 B6 SPT(C) N=50	(m)	(m)	3,34/6,5,5,6 2,3/5,7,10,12 5,11/13,14,16,7 6,7/19,21,10 4,10/20,30 20,20/50	62.89 62.32 62.07 60.07 57.47		(0,18) (0,18) (0.57) 0.75 (0.25) 1.00 (2.00) 3.00 (2.60) 5.60	MADE GROUND: Crushed rock fill (804) MADE GROUND: Large angular stone fill MADE GROUND: Dark grey slightly sandy slightly gravelly Cl Gravel is fine to coarse angular. Stiff yellowish brown slightly sandy slightly gravelly Cl Gravel is fine to coarse sub-angular to sub-rounded v low cobble content.	avelly ELAY. with			
Remarks Borehole terr Cable percus Borehole bac Chiselling fro	minated at 5.6m bGI ssion boring techniq ckfilled on completio om 5.60m to 5.60m fo	_ due to ol ues carrie n. or 0.3 hou	bstruction d our fror ırs.	- possible boulder or n ground level to 5.6n	bedrock.			(a	Scale approx) 1:50 Figure N	Loggee By JC	d	
								1:	3061-08-	23(2).BH	104	

	Grou	nd In	vesti	gations Ire	land	Lto	t	Site Housing Bundle 4&5- Lot 2- Finglas Church	Borehole Number BH05		
Machine : D	ando 2000	Casing	Diamete	r	Ground	Leve	el (mOD)	Client	Job		
Method : C	able Percussion	20	0mm cas	ed to 6.80m		62.8	2	National Development Finance Agency	Number 13061-08-23(2		
		Locatio	n 8862 E 7	12333.1 N	Dates 02 03	2/11/2 3/11/2	2023- 2023	Engineer	Sheet 1/1		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Th	Depth (m) ickness)	Description	Legend Safe		
					62 42		(0.40)	Brown sandy TOPSOIL			
0.50	B1				62.02		(0.40) 0.80	MADE GROUND: Brown clay with fragments of red brick			
1.00-1.45	SPT(C) N=11			1,3/2,2,3,4				is fine to coarse sub-angular to sub-rounded.			
1.50	B2						(1.20)				
2.00-2.45	SPT(C) N=15			2,2/4,3,4,4	60.82	lululululu	2.00	Stiff dark grey to black slightly sandy gravelly CLAY. Grave is fine to coarse angular to very angular.	• •		
2.70 3.00-3.45	B3 SPT(C) N=29			3,5/5,6,8,10							
3.50	B4										
4.00-4.41	SPT(C) 53/260			6,7/11,14,17,11							
4.50	B5										
5.00-5.33 5.50	SPT(C) 50/180 B6			Water strike(1) at 5.00m, rose to 4.90m in 20 mins. 5,9/12,16,22			(3.10)				
6.00-6.25	SPT(C) 50/100			7,12/20,30					* • • • • • • • • • • • • • • • • • • •		
6.60 6.80-6.88	B7 SPT(C) 50*/75 50/0			50/50	56.22 56.02		6.60 (0.20) 6.80	Dense dark grey coarse angular very clayey GRAVEL. Terminated at 6.80m			
Bomarka											
Remarks Cable percu Borehole ba Borehole ter	ssion boring techniq ckfilled on completio minated at 6.8m bGI	ues carrie n. _ due to o	d out fror bstructior	n ground level to 6.8n ı - possible boulder or	n bGL. ⁻ bedrock.			Scale (appro	x) Logged By		
Chiselling fro	om 6.80m for 0.5 hou	hours. 1:50 Figure No.									
								13061-	08-23(2).BH05		

SI	Grou	nd In	vesti ww	gations Irel /w.gii.ie	land	Ltd	Site Housing Bundle 4&5- Lot 2- Finglas Church		Borehole Number BH06
Machine : Da	ando 2000	Casing	Diamete	r	Ground	Level (mOD)	Client		Job
Method : Ca	able Percussion	20	0mm cas	ed to 5.10m		64.40	National Development Finance Agency		Number 13061-08-23(2)
		Locatio	n 8884.1 E	712277.7 N	Dates 08	/11/2023	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	pth n) Description (ness)		Kater Kater
1.00-1.45 1.00 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.30 4.00	SPT(C) N=9 B1 SPT(C) N=15 B2 SPT(C) N=22 B3 SPT(C) 53/150 B4			1,1/2,2,2,3 2,3/3,3,5,4 3,3/3,4,6,9 5,7/13,17,23	63.40 62.80 62.40 60.40	(1.00) (1.00) (0.60) (0.60) (0.40) (0.40) (2.00) (2.00) (2.00)	Pit excavated prior to drilling. Soft to firm yellowish brown slightly sandy slightly of CLAY. Gravel is fine to coarse sub-angular to sub Firm to stiff black/dark grey slightly sandy slightly of CLAY. Gravel is fine to coarse angular to very ang low cobble content. Stiff black/dark grey slightly sandy slightly gravelly Gravel is fine to coarse angular to very angular wit cobble content.	gravelly rounded. gravelly ular with CLAY. th low	
4.00 5.00-5.00 5.00 Remarks Cable percus Borehole terr	B4 SPT(C) 50*/0 50/0 B5	ues carrie	d out from	50/50	59.30		CLAY, Gravel is the to coarse angular to very ang low cobble content.	Scale (approx)	Logged
Chiselling fro	om 4.90m to 5.10m f	or 1 hour.		Server of DearOok.				1:50	JI
								Figure N 13061-08-	o. -23(2).BH06

BH01

BH02

APPENDIX 5 – Laboratory Testing

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland D22 K5P8		
		Соятияю
Attention :	Diarmaid MagLochlainn	
Date :	21st March, 2024	
Your reference :	13061-08-23	
Our reference :	Test Report 23/19933 Batch 1	
Location :	Housing Bundle- Finglas Church	
Date samples received :	27th November, 2023	
Status :	Final Report	
Issue :	202403211254	

Fourteen samples were received for analysis on 27th November, 2023 of which fourteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon - Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 65.739 kg of CO2

Scope 1&2&3 emissions - 155.359 kg of CO2

Authorised By:

6 June

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933

Report : Solid

EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40				
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	BH-01	BH-02	BH-02	BH-03				
Depth	0.50	1.00	0.50	1.00	0.50	2.00	1.00	1.00	2.00	1.00	Please se abbrevi	Please see attached notes for abbreviations and acronym		
COC No / misc												und und und und of only		
Containers	VJT													
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023				
Sample Type	Soil													
Batch Number	1	1	1	1	1	1	1	1	1	1		l la ita	Method	
Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	LOD/LOR	Units	No.	
Antimony	2	2	1	3	3	2	<1	1	1	3	<1	mg/kg	TM30/PM15	
Arsenic [#]	16.5	12.8	8.3	17.5	17.3	12.3	5.6	10.6	8.6	11.2	<0.5	mg/kg	TM30/PM15	
Barium [#]	135	92	61	140	139	45	39	52	53	310	<1	mg/kg	TM30/PM15	
Cadmium [#]	2.7	2.3	0.7	2.2	2.8	1.9	1.2	1.9	1.5	2.4	<0.1	mg/kg	TM30/PM15	
Chromium #	31.3	17.4	32.0	30.2	26.6	15.3	12.5	15.5	19.5	20.2	<0.5	mg/kg	TM30/PM15	
Copper [#]	52	37	24	49	52	27	13	28	21	30	<1	mg/kg	TM30/PM15	
Lead [#]	91	19	92	241	113	20	13	15	15	18	<5	mg/kg	TM30/PM15	
Mercury [#]	0.2	<0.1	<0.1	0.3	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15	
Molybdenum [#]	3.4	3.5	1.0	4.0	4.6	3.8	1.6	2.7	2.9	7.8	<0.1	mg/kg	TM30/PM15	
Nickel [#]	49.3	51.0	18.1	50.7	61.0	38.9	14.9	36.1	34.6	45.2	<0.7	mg/kg	TM30/PM15	
Selenium [#]	2	<1	<1	2	2	1	<1	<1	3	5	<1	mg/kg	TM30/PM15	
Zinc [#]	103	89	59	124	135	75	49	66	62	76	<5	mg/kg	TM30/PM15	
PAH MS														
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8	
Acenaphthene [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8	
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Phenanthrene [#]	0.15	<0.03	0.08	<0.03	0.18	<0.03	<0.03	<0.03	0.06	<0.03	<0.03	mg/kg	TM4/PM8	
Anthracene [#]	<0.04	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Fluoranthene [#]	0.14	<0.03	0.10	<0.03	0.43	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8	
Pyrene [#]	0.13	<0.03	0.09	<0.03	0.35	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8	
Benzo(a)anthracene [#]	0.10	<0.06	0.08	<0.06	0.26	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8	
Chrysene [#]	0.10	<0.02	0.06	<0.02	0.28	<0.02	<0.02	<0.02	0.05	<0.02	<0.02	mg/kg	TM4/PM8	
Benzo(bk)fluoranthene [#]	0.13	<0.07	0.09	<0.07	0.44	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8	
Benzo(a)pyrene [#]	0.08	<0.04	0.04	<0.04	0.27	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	0.17	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Dibenzo(ah)anthracene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Benzo(ghi)perylene *	<0.04	<0.04	<0.04	<0.04	0.16	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
PAH 6 Total"	0.35	<0.22	0.23	<0.22	1.47	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	mg/kg	TM4/PM8	
PAR 1/ IOTAI	0.83	<0.64	<0.64	<0.64	2.60	<0.64	<0.64	<0.05	<0.64	<0.64	<0.05	mg/kg		
	0.09	<0.05	0.00	<0.05	0.32	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg		
Benzo(k)iluoranthene	0.04	<0.02	0.03	<0.02	0.12	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg		
	104	105	104	68	90	08	84	95	96	07	<0	//////////////////////////////////////		
PAIT Sundyate // Recovery	104	105	104	00	90	90	04	35	30	57	~0	70	11014/1-1010	
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30	<30	321	<30	<30	<30	mg/kg	TM5/PM8/PM16	

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933

Report : Solid

EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	BH-01	BH-02	BH-02	BH-03			
Depth	0.50	1.00	0.50	1.00	0.50	2.00	1.00	1.00	2.00	1.00	Please see attached notes f		otoo for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VIT	VIT											
Oceanda Data	001				001	001		001		001			
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023			
Sample Type	Soil	Soil											
Batch Number	1	1	1	1	1	1	1	1	1	1		Unite	Method
Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	LODILOIR	Onita	No.
TPH CWG													
Aliphatics													
>C5-C6 (HS_1D_AL) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1 ^{SV}	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	12.0	0.8	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL) [#]	<4	<4	<4	<4	<4	<4	<4	75	6	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL) [#]	<7	<7	<7	<7	<7	<7	<7	174	11	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	60	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH_CU+HS_1D_AL)	<26	<26	<26	<26	<26	<26	<26	321	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_CU_1D_AL)	<10	<10	<10	<10	<10	<10	<10	312	18	<10	<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_CU_1D_AL)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
Aromatics									sv				
>C5-EC7 (HS_1D_AR)"	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 sv	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)"	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	mg/kg	TM5/PM8/PM16
>EC10-EC12 (EH_CU_ID_AR)	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	17	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)*	<7	<7	<7	<7	<7	<7	<7	76	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)*	38	<7	<7	<7	<7	<7	<7	29	<7	<7	<7	ma/ka	TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR)	10	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	ma/ka	TM5/PM8/PM16
Total aromatics C5-40 (EH_CU+HS_1D_AR)	48	<26	<26	<26	<26	<26	<26	122	<26	<26	<26	ma/ka	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH_CU+HS_1D_Total)	<52	<52	<52	<52	<52	<52	<52	443	<52	<52	<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS 1D AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_CU_1D_AR)	<10	<10	<10	<10	<10	<10	<10	120	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_CU_1D_AR)	38	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}	<5	<5	ug/kg	TM36/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5 ^{sv}	<5	<5	ug/kg	TM36/PM12
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}	<5	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}	<5	<5	ug/kg	TM36/PM12
m/p-Xylene [#]	15	<5	<5	<5	<5	<5	<5	6	<5 ^{\$V}	<5	<5	ug/kg	TM36/PM12
o-Xylene [#]	10	<5	<5	<5	<5	<5	<5	<5	<5 ^{\$V}	<5	<5	ug/kg	TM36/PM12
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933

Report : Solid

EMT Sample No.	1.4	E 9	0.12	12.16	17.20	21.24	25.29	20.22	22.26	27.40	1			
EMIT Sample NO.	1-4	5-0	5-12	13-10	17-20	21-24	23-20	29-32	33-30	37-40				
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	BH-01	BH-02	BH-02	BH-03				
Depth	0.50	1.00	0.50	1.00	0.50	2.00	1.00	1.00	2.00	1.00	Please se	Please see attached notes for		
COC No / misc											abbievi	allons and a	Jonyms	
Containers	VJT													
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023				
Sample Type	Soil													
Batch Number	1	1	1	1	1	1	1	1	1	1				
Data of Bassint		27/11/2022			27/11/2022	27/11/2022		27/11/2022	27/11/2022	27/11/2022	LOD/LOR	Units	Method No.	
Date of Receipt	27/11/2023	27/11/2023	21/11/2023	27/11/2023	27/11/2023	27/11/2023	21/11/2023	27/11/2023	7.0	21/11/2023	-0.1	0/		
Natural Moisture Content	27.6	20.1	11.3	32.5	29.3	13.4	6.0	13.3	7.3	14.4	<0.1	%	PM4/PM0	
Moisture Content (% Wet Weight)	21.6	16.7	10.1	24.5	22.6	11.8	5.6	11.8	6.8	12.6	<0.1	%	PM4/PM0	
Hexavalent Chromium [#]	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	<0.3	<0.3	ma/ka	TM38/PM20	
Sulphate as SO4 (2:1 Ext)#	0.0735	-	0.0399	0.0209	-	0.0057	-	0.0151	-	0.0049	<0.0015	g/l	TM38/PM20	
Chromium III	31.3	17.4	32.0	30.2	26.6	15.3	12.5	15.5	19.5	20.2	<0.5	ma/ka	NONE/NONE	
												33		
Total Organic Carbon [#]	3.75	0.47	0.32	1.87	1.39	0.46	0.28	0.27	0.48	0.69	<0.02	%	TM21/PM24	
Organic Matter	6.5	-	0.6	-	-	0.8	-	0.5	-	1.2	<0.2	%	TM21/PM24	
pH [#]	7.67	8.68	11.35	8.76	8.57	8.74	9.45	8.44	8.24	8.65	<0.01	pH units	TM73/PM11	
Ashestos Type*	NAD		None	Subcontracted										
Assestos Type	NAD	INAD	NAD	NAD	NAD .	NAD	NAD .	INAD	NAD.	NAD		None	Gabcontracted	

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933 Report : Solid

EMT Sample No.	41-44	45-48	49-52	53-56						
Sample ID	BH-04	BH-04	BH-05	BH-06						
Depth	1.00	2.00	0.50	1.00				Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT						
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023						
Oumpie Date	22/11/2020	22/11/2020	22/11/2020	22/11/2020						
Sample Type	Soil	Soil	Soil	Soil						1
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023						NO.
Antimony	2	2	3	2				<1	mg/kg	TM30/PM15
Arsenic [#]	13.4	9.9	15.1	13.6				<0.5	mg/kg	TM30/PM15
Barium [#]	69	51	124	91				<1	mg/kg	TM30/PM15
Cadmium [#]	2.4	2.1	1.9	1.8				<0.1	mg/kg	TM30/PM15
Chromium #	18.2	17.3	22.8	42.0				<0.5	mg/kg	TM30/PM15
Copper"	41	27	61	35				<1	mg/kg	TM30/PM15
Lead"	18	16	133	23				<5	mg/kg	TM30/PM15
Melvhdenum [#]	×0.1	3.1	3.3	3.0				<0.1	mg/kg	TM30/PM15
Nickel [#]	50.8	39.9	42.1	54.7				<0.7	mg/kg	TM30/PM15
Selenium [#]	1	1	1	1				<1	ma/ka	TM30/PM15
Zinc [#]	95	75	114	98				<5	mg/kg	TM30/PM15
PAH MS										
Naphthalene [#]	<0.04	<0.04	0.05	<0.04				<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05				<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03	0.17	<0.03				<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	< 0.04	< 0.04				<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	<0.03	< 0.03	0.31	< 0.03				< 0.03	mg/kg	TM4/PM8
Pyrene "	<0.03	<0.03	0.27	<0.03				<0.03	mg/kg	
Chrysone [#]	<0.00	<0.00	0.19	<0.00				<0.00	mg/kg	
Benzo(bk)fluoranthene [#]	<0.02	<0.02	0.30	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04	< 0.04	0.19	< 0.04				<0.04	ma/ka	TM4/PM8
Indeno(123cd)pyrene [#]	<0.04	<0.04	0.11	<0.04				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	0.11	<0.04				<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
PAH 6 Total [#]	<0.22	<0.22	1.02	<0.22				<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	1.90	<0.64				<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	0.22	<0.05				<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	0.08	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1				<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	97	75	97	90				<0	%	TM4/PM8
Minoral Oil (C10 C40) (EH, CU, 1D, AL)	<30	<30	<30	sv				<30	ma/ka	
(CT_CU_ID_AL)	~30	~30	~30	<30				~30	iiig/kg	ING/FINO/PINTO

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933

Report : Solid

EMT Sample No.	41-44	45-48	49-52	53-56						
Sample ID	BH-04	BH-04	BH-05	BH-06						
Depth	1.00	2.00	0.50	1.00				Please se	e attached n	otes for all
COC No / misc								abbievi		cionyma
Containers	VJT	VJT	VJT	VJT						
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1						Mathad
Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023				LOD/LOR	Units	No.
TPH CWG	2171112020	2171112020	2171112020	2171112020						
Aliphatics										
>C5-C6 (HS 1D AL)#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL) [#]	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL) [#]	<0.2	<0.2	<0.2	<0.2 ^{SV}				<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL) [#]	<4	<4	<4	<4 ^{SV}				<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL) [#]	<7	<7	<7	<7 ^{SV}				<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)*	<7	<7	<7	<7 ^{SV}				<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7	<7	<7	<7 ^{SV}				<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH_CU+HS_1D_AL)	<26	<26	<26	<26 ³				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_CU_ID_AL)	<10	<10	<10	<10 ⁻¹			 	<10	mg/kg	TM5/PM8/PM16
Aromatics	<10			<10					ilig/kg	
>C5-EC7 (HS 1D AR)#	<0.1	<0.1	<0.1	<0.1				<0.1	ma/ka	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS 1D AR)#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2 ^{sv}				<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4 ^{SV}				<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR) [#]	<7	<7	<7	<7 ^{SV}				<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)*	<7	<7	<7	35 ^{sv}				<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR)	<7	<7	<7	12 ^{SV}				<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH_CU+HS_1D_AR)	<26	<26	<26	47 ^{SV}				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH_CU+HS_1D_Total)	<52	<52	<52	<52 ^{SV}				<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)*	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_CU_1D_AR)	<10	<10	<10	<10°°				<10	mg/kg	TM5/PM8/PM16
2020-2030 (EH_CU_ID_AR)	<10			35				<10	mg/kg	TWO/FWIO/FWIO
MTBE [#]	<5	<5	<5	<5				<5	ua/ka	TM36/PM12
Benzene [#]	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
Toluene [#]	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
m/p-Xylene [#]	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
o-Xylene #	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
PCB 28 [#]	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 118"	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 153 [#]	~5	~0	~0	~D <5				>> <5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35				<35	ug/kg	TM17/PM8

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933 Report : Solid

EMT Sample No.	41-44	45-48	49-52	53-56						
Sample ID	BH-04	BH-04	BH-05	BH-06						
Depth	1.00	2.00	0.50	1.00				Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT						
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1						
Date of Bassint	27/11/2022	27/11/2022	27/11/2022	27/11/2022				LOD/LOR	Units	Method No.
Natural Moisture Content	14.2	12.0	27/11/2023	21/11/2023				<0.1	%	
	14.2	12.0	20.0	21.0				-0.1	70	
Moisture Content (% Wet Weight)	12.4	10.7	19.2	17.9				<0.1	%	PM4/PM0
Hexavalent Chromium [#]	<0.3	<0.3	<0.3	<0.3				<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	0.0129	-	0.0036	-				<0.0015	g/l	TM38/PM20
Chromium III	18.2	17.3	22.8	42.0				<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	0.41	0.37	2.59	0.75				<0.02	%	TM21/PM24
Organic Matter	0.7	-	4.5	-				<0.2	%	TM21/PM24
-11#	9 5 4	0.64	0.25	9.40				<0.01	nH unito	TM72/DM11
рн	8.94	8.04	8.35	8.40				<0.01	pH units	11017 3/ P10111
Asbestos Type*	NAD	NAD	NAD	NAD					None	Subcontracted

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933

Report : CEN 10:1 1 Batch

EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	BH-01	BH-02	BH-02	BH-03			
Depth	0.50	1.00	0.50	1.00	0.50	2.00	1.00	1.00	2.00	1.00			
COC No / misc											abbrevi	e attached n ations and a	otes for all cronyms
Containara	VIT	V 1 T	VIT	VIT	VIT	N/IT	VIT	N/ I T	VIT	VIT			
Containers	VJI												
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1		Unito	Method
Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	LOD/LOR	Units	No.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium [#]	0.029	0.004	0.026	0.007	0.007	<0.003	<0.003	0.010	0.026	0.003	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) [#]	0.29	0.04	0.26	0.07	0.07	<0.03	<0.03	0.10	0.26	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) [#]	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium [#]	<0.0015	<0.0015	0.0236	0.0084	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) [#]	<0.015	<0.015	0.236	0.084	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) [#]	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum [#]	0.008	0.006	<0.002	0.012	0.007	0.010	0.023	0.015	0.021	0.008	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) [#]	0.08	0.06	<0.02	0.12	0.07	0.10	0.23	0.15	0.21	0.08	<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)*	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.033	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)*	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.33	< 0.03	< 0.03	mg/kg	TM30/PM17
Dissolved Zinc"	<0.003	0.003	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)"	< 0.03	0.03	<0.03	0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/i	
Mercury Dissolved by CVAF	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phonel	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenoi	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PMU
Fluoride	<0.3	0.3	<0.3	0.6	0.4	<0.3	<0.3	0.3	<0.3	<0.3	<0.3	mg/l	TM173/PM0
Fluoride	<3	3	<3	6	4	<3	<3	3	<3	<3	<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	18.7	1.9	19.7	5.9	<0.5	0.6	6.5	5.1	30.7	<0.5	<0.5	mg/l	TM38/PM0
Sulphate as SO4 [#]	187	19	197	59	<5	6	65	51	307	<5	<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1201	0.1078	0.1074	0.1321	0.1198	0.1026	0.1049	0.1099	0.1004	0.1047		kg	NONE/PM17
											-	-	
Chloride"	3.7	1.0	0.6	<0.3	<0.3	<0.3	0.4	0.5	9.5	0.5	<0.3	mg/l	TM38/PM0
Chloride "	37	10	6	<3	<3	<3	4	5	95	5	<3	mg/kg	1M38/PM0
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17
Dissolved Organic Carbon	Δ	<2	Λ	<2	<2	57	<2	3	<2	<2	<2	ma/l	TM60/PM0
Dissolved Organic Carbon	40	<20	40	<20	<20	<20	<20	30	<20	<20	~∠ <20	ma/ka	TM60/PM0
рН	8.23	8.18	- 11.14	8.40	8.30	8.11	8.09	8.09	8.03	8.11	<0.01	pH units	TM73/PM0

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933

Report : CEN 10:1 1 Batch

Sense b First First First First First First Bute	EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Dep 100 <th>Sample ID</th> <th>TP-01</th> <th>TP-01</th> <th>TP-02</th> <th>TP-02</th> <th>TP-03</th> <th>TP-03</th> <th>BH-01</th> <th>BH-02</th> <th>BH-02</th> <th>BH-03</th> <th></th> <th></th> <th></th>	Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	BH-01	BH-02	BH-02	BH-03			
Octo Orac	Depth	0.50	1.00	0.50	1.00	0.50	2.00	1.00	1.00	2.00	1.00			
Contained VJT VJT <	COC No / misc											Please se abbrevi	e attached ne ations and ac	otes for all pronyms
Contained Ort O	Containara	VIT	N/IT	VIT	V 1 T	VIT	N/IT	VIT	N/IT	VIT	N/ I T			
Sample Use 2011/000 2011/000 2011/000 2011/000 2011/000 2011/000 2011/000 Samt Samt <th>Containers</th> <th>VJI</th> <th></th> <th></th> <th></th>	Containers	VJI												
Sample Type Sol Sol <th< th=""><th>Sample Date</th><th>22/11/2023</th><th>22/11/2023</th><th>22/11/2023</th><th>22/11/2023</th><th>22/11/2023</th><th>22/11/2023</th><th>22/11/2023</th><th>22/11/2023</th><th>22/11/2023</th><th>22/11/2023</th><th></th><th></th><th></th></th<>	Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023			
Batch Numer 1	Sample Type	Soil			1									
Date of Receite 221112023 22111203 4300 4300 4300 4300 4300 4300 4300 4301 <t< th=""><th>Batch Number</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>LOD/LOR</th><th>Units</th><th>Method</th></t<>	Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Total Decolved Solids* 131 40 140 83 74 44 47 81 107 45 <55	Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023			No.
Total Dissolved Solids* 1309 490 1400 830 740 440 470 810 1070 450 <380	Total Dissolved Solids [#]	131	49	140	83	74	44	47	81	107	45	<35	mg/l	TM20/PM0
	Total Dissolved Solids [#]	1309	490	1400	830	740	440	470	810	1070	450	<350	mg/kg	TM20/PM0
Image: state I														
Image: sector of the sector														
Image: Section of the section of t														
Image: sector of the sector														
Image: state I														
Image: state I														
Image: state in the state into the state inthe state into the state into the state into the state into the st														
Image: state in the state into the state inthe state into the state into the state into the state into the st														
Image: Section of the section of t														
Image: state in the state interface into the state into the stat														
Image: stateImage: state </th <th></th>														
Image: state in the state into the state interm intent into the state interm into the state into the state in														
Image: state in the state interval of the state i														
Image: state in the state interval of the state i														
Image: state in the state interpretation of the state i														
Image: state s														
Image: state in the state interpretation of the state interpretation o														
Image: state s														
Image: state in the state interval of the state i														
Image: state in the state interval in the state interval i														
Image: state														
Image: state s														
Image: state s														
Image: state s														
Image: state														
Image: state														

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933

Report : CEN 10:1 1 Batch

EMT Sample No.	41-44	45-48	49-52	53-56								
Sample ID	BH-04	BH-04	BH-05	BH-06								
Depth	1.00	2.00	0.50	1.00						Disease		
COC No / misc										abbrevi	ations and a	cronyms
Containers	VJI	VJI	VJI	VJI								
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023								
Sample Type	Soil	Soil	Soil	Soil								
Batch Number	1	1	1	1								Method
Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023						 LOD/LOR	Units	No.
Dissolved Antimonv [#]	<0.002	<0.002	<0.002	<0.002						<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) [#]	<0.02	<0.02	<0.02	<0.02						 <0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	<0.0025	<0.0025	<0.0025	<0.0025						<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025	<0.025						<0.025	mg/kg	TM30/PM17
Dissolved Barium#	0.005	0.004	0.007	0.015						<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	0.05	0.04	0.07	0.15						<0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005						<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) [#]	<0.005	<0.005	<0.005	<0.005						<0.005	mg/kg	TM30/PM17
Dissolved Chromium [#]	<0.0015	<0.0015	<0.0015	<0.0015						<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) [#]	<0.015	<0.015	<0.015	<0.015						<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	<0.007	<0.007						<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) [#]	<0.07	<0.07	<0.07	<0.07						<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005						<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) [#]	<0.05	<0.05	<0.05	<0.05						<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum [#]	0.025	0.018	0.007	0.014						 <0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) [#]	0.25	0.18	0.07	0.14						 <0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	<0.002	<0.002	<0.002	0.002						<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) [#]	<0.02	<0.02	<0.02	0.02						<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	< 0.003	<0.003	<0.003	<0.003						<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) [#]	<0.03	<0.03	<0.03	<0.03						<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	<0.003	<0.003	<0.003	<0.003						 <0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	<0.03	< 0.03						<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001						<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF *	<0.0001	<0.0001	<0.0001	<0.0001						<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01						<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1						 <0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	0.5	<0.3						<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	5	<3						<3	mg/kg	TM173/PM0
Sulphate as SO4 "	2.1	2.0	0.6	1.4						<0.5	mg/l	TM38/PM0
Sulphate as SO4 "	21	20	6	14						<5	mg/kg	TM38/PM0
Mana of new toot northern	0.4045	0.4024	0.4400	0.444							lin.	
mass of raw test portion	0.1015	0.1034	0.1138	0.114							кд	INONE/PMIT
Chlorido [#]	0.8	0.0	0.6	0.8						<0.3	ma/l	TM39/DM0
Chlorido [#]	8	0.9 9	6	8						<0.5	ma/ka	TM38/PM0
Gillolide		3	Ŭ							-0		
Mass of dried test portion	0.09	0.09	0.09	0.09							kg	NONE/PM17
	_	_	-	-						-		-
Dissolved Organic Carbon	<2	<2	3	2						<2	mg/l	1M60/PM0
	\$20	<20 0.00	30	20						<2U	ng/kg	
P''	0.02	0.03	0.00	0.10	1	1	1	1	1	 ~0.01	pri unitsi	1 1111/3/1711/10

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn 23/19933 Report : CEN 10:1 1 Batch

								I		
EMT Sample No.	41-44	45-48	49-52	53-56						
Sample ID	BH-04	BH-04	BH-05	BH-06						
Depth	1.00	2.00	0.50	1.00				Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT						
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023						
Sample Type	Soil	Soil	Soil	Soil						
	301	301	301	301						
Batch Number	1	1	1	1		 	 	LOD/LOR	Units	Method No.
Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023						
Total Dissolved Solids*	56	46	81	88				<35	mg/l	TM20/PM0
Total Dissolved Solids	000	460	810	880				<350	mg/kg	TIVIZU/PIVIU

23/19933

Client Name:GReference:13Location:HeContact:Di

EMT Job No:

Ground Investigations Ireland 13061-08-23 Housing Bundle- Finglas Church Diarmaid MagLochlainn

Report : EN12457_2

EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40						
Sample ID	TP-01	TP-01	TP-02	TP-02	TP-03	TP-03	BH-01	BH-02	BH-02	BH-03						
Depth	0.50	1.00	0.50	1.00	0.50	2.00	1.00	1.00	2.00	1.00				Please se	e attached r	otes for all
COC No / misc														abbrev	iations and a	cronyms
Containers	VJT															
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023						
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023						
Sample Type	501	501	501	501	501	501	501	501	501	501						1
Batch Number	1	1	1	1	1	1	1	1	1	1	Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023		reactive				NU.
Solid Waste Analysis																
Total Organic Carbon	3.75	0.47	0.32	1.87	1.39	0.46	0.28	0.27	0.48	0.69	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025**	<0.025	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs	<30	<30	<30	<30	<30	<30	<30	321	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 [#]	0.35	<0.22	0.23	<0.22	1.47	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	ma/ka	TM4/PM8
PAH Sum of 17	0.83	<0.64	<0.64	<0.64	2.60	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic #	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.29	0.04	0.26	0.07	0.07	<0.03	<0.03	0.10	0.26	<0.03	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	0.236	0.084	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper*	<0.07	<0.07	<0.07	< 0.07	<0.07	<0.07	<0.07	<0.07	<0.07	< 0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury"	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum "	0.08	0.06	<0.02	0.12	0.07	0.10	0.23	0.15	0.21	0.08	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickei	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	50	<0.02	ma/ka	TM30/PM17
Antimonv [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	0.06	0.7	5	<0.02	ma/ka	TM30/PM17
Selenium #	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.33	< 0.03	0.1	0.5	7	< 0.03	mg/kg	TM30/PM17
Zinc [#]	<0.03	0.03	< 0.03	0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	1309	490	1400	830	740	440	470	810	1070	450	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	40	<20	40	<20	<20	<20	<20	30	<20	<20	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1201	0.1078	0.1074	0.1321	0.1198	0.1026	0.1049	0.1099	0.1004	0.1047	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	74.7	83.3	83.6	68.1	74.9	87.6	86.2	82.3	89.8	86.1	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.869	0.882	0.882	0.858	0.87	0.887	0.886	0.881	0.89	0.885	-	-	-		1	NONE/PM17
Moisture Content 105C (% Dry Weight)	33.9	20.0	19.7	46.8	33.4	14.1	16.0	21.5	11.4	16.2	-	-	-	<0.1	%	PM4/PM0
рН#	7.67	8.68	11.35	8.76	8.57	8.74	9.45	8.44	8.24	8.65	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	3	<3	6	4	<3	<3	3	<3	<3	10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	187	19	197	59	<5	6	65	51	307	<5	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	37	10	6	<3	<3	<3	4	5	95	5	800	15000	25000	<3	mg/kg	TM38/PM0

Client Name: Reference:	Ground In 13061-08	vestigatior -23	ns Ireland			Report :	EN12457	_2		plastic tub					
Location: Contact:	Housing E Diarmaid	3undle- Fin MagLochla	iglas Churc ainn	ch		Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p						
EMT Job No:	23/19933														
EMT Sample No.	41-44	45-48	49-52	53-56											
Sample ID	BH-04	BH-04	BH-05	BH-06											
Depth	1.00	2.00	0.50	1.00									Please se	e attached n	otes for all
COC No / misc													abbrevi	ations and ad	cronyms
Containers	VJT	VJT	VJT	VJT											
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023											
Sample Type	Soil	Soil	Soil	Soil											
Batch Number	1	1	1	1						Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt	27/11/2023	27/11/2023	27/11/2023	27/11/2023											
Solid Waste Analysis		0.07	0.50	0.75							-		10.00	<u>0</u> (THOUDHOU
Total Organic Carbon " Sum of BTEX	0.41	<0.37	<0.025	0.75 <0.025						6	-	-	<0.02	% mg/kg	TM21/PM24 TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035						1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30 ^{sv}						500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22	<0.22	1.02	<0.22						-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	1.90	<0.64						100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate	<0.025	<0.025	<0.025	<0.025						0.5	2	25	<0.025	malka	TM30/PM17
Arsenic Borium #	0.025	0.025	0.025	0.025						20	100	300	<0.025	mg/kg	TM30/PM17
Cadmium#	<0.005	<0.04	<0.005	<0.005						0.04	1	5	<0.00	ma/ka	TM30/PM17
Chromium [#]	<0.015	<0.015	<0.015	<0.015						0.5	10	70	< 0.015	ma/ka	TM30/PM17
Copper [#]	<0.07	<0.07	<0.07	<0.07						2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001	<0.0001	<0.0001						0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.25	0.18	0.07	0.14						0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel [#]	<0.02	<0.02	<0.02	0.02						0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05	<0.05						0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony [#]	<0.02	<0.02	<0.02	<0.02						0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03						0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	<0.03	<0.03	<0.03	< 0.03						4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids	560	460	810	880						4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	<20	30	20						500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1015	0.1034	0.1138	0.114						-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	89.0	87.1	78.8	78.6						-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.889	0.887	0.876	0.876						-	-	-		I	NONE/PM17
Moisture Content 105C (% Dry Weight)	12.4	14.8	26.8	27.2						-	-	-	<0.1	%	PM4/PM0
рН #	8.54	8.64	8.35	8.40						-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1						1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	5	<3						10	150	500	<3	mg/kg	1M173/PM0
Sulphate as SO4 #	21	20	6	14						1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	8	9	6	8						800	15000	25000	<3	mg/kg	TM38/PM0
	1	1	1	1	1	1	1	1	1	1	1	1	1 1		1

Client Name:	Ground Investigations Ireland
Reference:	13061-08-23
Location:	Housing Bundle- Finglas Church
Contact:	Diarmaid MagLochlainn

Matrix : Solid

EPH Interpretation Report

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
23/19933	1	TP-01	0.50	1-4	possible Naturally Occurring Compounds
23/19933	1	TP-01	1.00	5-8	No interpretation possible
23/19933	1	TP-02	0.50	9-12	No interpretation possible
23/19933	1	TP-02	1.00	13-16	No interpretation possible
23/19933	1	TP-03	0.50	17-20	No interpretation possible
23/19933	1	TP-03	2.00	21-24	No interpretation possible
23/19933	1	BH-01	1.00	25-28	No interpretation possible
23/19933	1	BH-02	1.00	29-32	Degraded Diesel
23/19933	1	BH-02	2.00	33-36	No interpretation possible
23/19933	1	BH-03	1.00	37-40	No interpretation possible
23/19933	1	BH-04	1.00	41-44	No interpretation possible
23/19933	1	BH-04	2.00	45-48	No interpretation possible
23/19933	1	BH-05	0.50	49-52	No interpretation possible
23/19933	1	BH-06	1.00	53-56	trace of possible Naturally Occurring Compounds

Client Name:Ground Investigations IrelandReference:13061-08-23Location:Housing Bundle- Finglas ChurchContact:Diarmaid MagLochlainn

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 23/19933									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/19933

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

Age of Diesel

The age of release estimation is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al., (1996).

Age estimation should be treated with caution as it can be influenced by site specific factors of which the laboratory are not aware.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 23/19933

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Elfra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.			AD	Yes

EMT Job No: 23/19933

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

EMT Job No: 23/19933

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
Subcontracted	See attached subcontractor report for accreditation status and provider.					AR	

APPENDIX 6 – HazWasteOnLine[™] Report

HazWasteOnline[™]

Waste Classification Report

HazWasteOnline [™] classifies waste as either hazardous or non-hazardous based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to: a) understand the origin of the waste b) select the correct List of Waste code(s) c) confirm that the list of determinands, results and sampling plan are fit for purpose d) select and justify the chosen metal species (Appendix B) e) correctly apply moisture correction and other available correctionss f) add the meta data for their user-defined substances (Appendix A) g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C) To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.							
Job name							
Finglas Church							
Description/Comment	S						
Project		Site					
<mark>13061-08-23</mark>		Finglas Church					
Classified by							
Name: Barry Sexton	Company: Ground Investigations Ireland Ltd	HazWasteOnline [™] provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.					
21 Mar 2024 07:40 GMT	Newcastle, Co. Dublin.	HazWasteOnline™ Certification:	CERTIFIED				
Telephone:		Course	Date				
353 (01) 601 5175 / 5176		Hazardous Waste Classification	10 Apr 2019				
		Most recent 3 year Refresher	19 Apr 2022				
		Next 3 year Refresher due by	Apr 2025				
Purpose of classificat	ion						
7 - Disposal of Waste							
Address of the waste							
Finglas Church Dublin		Post	Code N/A				
Description of industr	y/producer giving rise to the waste						
Construction							
Description of the spe	cific process, sub-process and/or ac	tivity that created the waste					
Foundation Excavation and	d Site Levelling						
Description of the was	ste						

Made Ground and Soil & Stone

Job summary

_

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page		
1	TP-01-22/11/2023-0.50m		Non Hazardous		3		
2	TP-01-22/11/2023-1.00m		Non Hazardous		6		
3	TP-02-22/11/2023-0.50m		Non Hazardous		8		
4	TP-02-22/11/2023-1.00m		Non Hazardous		10		
5	TP-03-22/11/2023-0.50m		Non Hazardous				
6	TP-03-22/11/2023-2.00m		Non Hazardous				
7	BH-01-22/11/2023-1.00m		Non Hazardous				
8	BH-02-22/11/2023-1.00m		Non Hazardous		18		
9	BH-02-22/11/2023-2.00m		Non Hazardous		21		
10	BH-03-22/11/2023-1.00m		Non Hazardous		23		
11	BH-04-22/11/2023-1.00m		Non Hazardous		25		
12	BH-04-22/11/2023-2.00m		Non Hazardous		27		
13	BH-05-22/11/2023-0.50m		Non Hazardous		29		
14	BH-06-22/11/2023-1.00m		Non Hazardous		31		

Related documents

#	Name	Description
1	Finglas Church.HWOL	Element .hwol file used to populate the Job
2	Example waste stream template for contaminated soils	waste stream template used to create this Job

Report

Created by: Barry Sexton	Created date: 21 Mar 2024 07:40 GMT

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	33
Appendix B: Rationale for selection of metal species	34
Appendix C: Version	35

Classification of sample: TP-01-22/11/2023-0.50m

Sample details

Sample name:	LoW Code:	
TP-01-22/11/2023-0.50m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
21.6%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)
21.6% (wet weight correction)	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 03)

Hazard properties

None identified

Determinands

Moisture content: 21.6% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered data	a	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimony trioxide }		2 mg/l	kg	1.197	1.877	mg/kg	0.000188 %	\checkmark	
	•	051-005-00-X 215-175-0 1309-64-4	-								
2	4	arsenic { arsenic floxide } 033-003-00-0 215-481-4 1327-53-3		16.5 mg/l	kg	1.32	17.08	mg/kg	0.00171 %	\checkmark	
3	6	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		2.7 mg/l	kg	1.142	2.418	mg/kg	0.000242 %	\checkmark	
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		31.3 mg/l	kg	1.462	35.865	mg/kg	0.00359 %	\checkmark	
5	\$	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 mg/l	kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
	æ	copper { dicopper oxide; copper (I) oxide }				4 4 9 9	45.0		0.00450.0/		
6	-	029-002-00-X 215-270-7 1317-39-1		52 mg/i	кg	1.126	45.9	mg/kg	0.00459 %	\checkmark	
7	6	lead { lead chromate }	1	91 mg/l	kg	1.56	111.283	mg/kg	0.00713 %	\checkmark	
		082-004-00-2 231-846-0 7758-97-6			_						
8	4	mercury { mercury dichloride }		0.2 mg/l	kg	1.353	0.212	mg/kg	0.0000212 %	\checkmark	
	-	080-010-00-X 231-299-8 /487-94-7	-						+		
9	~	042-001-00-9 215-204-7 1313-27-5		3.4 mg/l	kg	1.5	3.999	mg/kg	0.0004 %	\checkmark	
	æ	nickel { nickel chromate }									
10	•	028-035-00-7 238-766-5 14721-18-7		49.3 mg/l	kg	2.976	115.036	mg/kg	0.0115 %	\checkmark	
11	2	selenium { nickel selenate }		2 mg/l	ka	2 554	4 004	ma/ka	0.0004.94	,	
		028-031-00-5 239-125-2 15060-62-5		2 mg/i	ĸу	2.554	4.004	шу/ку	0.0004 /8	~	
12	4	zinc { zinc chromate }		103 ma/l	ka	2.774	224.018	ma/ka	0.0224 %	1	
		024-007-00-3 236-878-9 13530-65-9			5					ľ	
13	8	TPH (C6 to C40) petroleum group		<52 mg/l	kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
		ТРН									
14		2-methoxy-2-methylpropane		<0.005 mg/l	kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4	-							-	
15		benzene		<0.005 mg/l	kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
16		toluene 601-021-00-3 203-625-9 108-88-3		<0.005 mg/l	kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>

www.hazwasteonline.com

#		Determinand		Note	User entered data		Conv.	Compound	conc.	Classification	Applied	Conc. Not	
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC/	USed
17	Θ	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4						0.0			
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		0.025	mg/kg		0.0196	mg/kg	0.00000196 %	~	
19	8	рН		DLI		7.67	pН		7.67	pН	7.67 pH		
		nanhthalana		FN									
20		601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
-	_	acenaphthylene	202-043-3	51-20-5									
21	۳		205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		acenanhthene	200 011 1	200 00 0									
22	9		201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene	201 100 0	00 02 0	\square								
23	Ŭ		201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
0.4		phenanthrene	1			0.45			0.440		0.0000110.0/	,	
24			201-581-5	85-01-8		0.15	mg/kg		0.118	mg/ĸg	0.0000118 %		
25	0	anthracene	·	·		<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		
25			204-371-1	120-12-7		<0.04	iiig/kg		<0.04	iiig/kg	<0.000004 /0		
26	0	fluoranthene				0.14	ma/ka		0 11	ma/ka	0 000011 %	1	
			205-912-4	206-44-0								ř	
27	8	pyrene				0.13	mg/kg		0.102	mg/kg	0.0000102 %	\checkmark	
			204-927-3	129-00-0									
28		benzo[a]anthracene			0.1	mg/kg		0.0784	mg/kg	0.00000784 %	\checkmark		
		601-033-00-9	200-280-6	56-55-3									
29		cnrysene	005 000 4	040.04.0		0.1	mg/kg		0.0784	mg/kg	0.00000784 %	\checkmark	
		001-048-00-0	205-923-4	218-01-9									
30				205 00 2		0.09	mg/kg		0.0706	mg/kg	0.00000706 %	\checkmark	
		benzo[k]fluoranthe	203-311-3	200-33-2	\vdash								
31		601-036-00-5	205-916-6	207-08-9		0.04	mg/kg		0.0314	mg/kg	0.00000314 %	\checkmark	
-		benzo[a]pvrene: b	enzo[def]chrvsene		\vdash								
32		601-032-00-3	200-028-5	50-32-8	1	0.08	mg/kg		0.0627	mg/kg	0.0000627 %	\checkmark	
22		indeno[123-cd]pyr	ene	·		-0.04	malka		-0.04	malka			
			205-893-2	193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.00004 %		
34		dibenz[a,h]anthrac	cene			<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<l0d< td=""></l0d<>
Ľ		601-041-00-2	200-181-8	53-70-3		10.0 4			-0.0T	mg/ng			.200
35	0	benzo[ghi]perylen	е			<0.04	ma/ka		< 0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
Ľ			205-883-8	191-24-2			33						
36	Θ	polychlorobipheny	ls; PCB			<0.035	mg/kg		<0.035	mg/kg	<0.000035 %		<lod< td=""></lod<>
<u> </u>		602-039-00-4	215-648-1	1336-36-3	-								
37	4	barium { 🤎 barium	n oxide }			135	mg/kg	1.117	118.171	mg/kg	0.0118 %	\checkmark	
			215-127-9	1304-28-5	1		5.5					Ĺ	
38	0	coronene				<0.04	ma/ka		< 0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
			205-881-7	191-07-1							<0.00004 %		-
39		benzo[j]fluoranthe 601-035-00-X	ne 205-910-3	205-82-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
						1				Total:	0.0695 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

≪
<LOD

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Solid waste without liquid phase

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

xylene: (conc.: 1.96e-06%)

Classification of sample: TP-01-22/11/2023-1.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
TP-01-22/11/2023-1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
16.7%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 16.7% Wet Weight Moisture Correction applied (MC)

#		EU CLP index EC Number CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
			Ĕ							-	
1	4			2	mg/kg	1.197	1.994	mg/kg	0.000199 %	\checkmark	
		arsenic { arsenic triovide }	-								
2	~	033-003-00-0 215-481-4 1327-53-3		12.8	mg/kg	1.32	14.078	mg/kg	0.00141 %	\checkmark	
	æ	cadmium { cadmium oxide }					0.400	4	0.000010.0/		
3		048-002-00-0 215-146-2 1306-19-0		2.3	mg/kg	1.142	2.189	тд/кд	0.000219 %	\checkmark	
4	4	chromium in chromium(III) compounds {		17.4	mg/kg	1.462	21.184	mg/kg	0.00212 %	~	
	•	215-160-9 1308-38-9	-								
5	4	compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		024-017-00-8								\vdash	
6	4	copper { dicopper oxide; copper (I) oxide }		37	mg/kg	1.126	34.701	mg/kg	0.00347 %	\checkmark	
		lead { lead chromate }									
7	~	082-004-00-2 231-846-0 7758-97-6	1	19	mg/kg	1.56	24.687	mg/kg	0.00158 %	\checkmark	
	A	mercury { mercury dichloride }							0.0000405.0/		
8	~	080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
0	æ	molybdenum { molybdenum(VI) oxide }		2.5	malka	1 5	4 274	ma/ka	0.000427.9/	,	
9		042-001-00-9 215-204-7 1313-27-5		3.5	шу/ку	1.5	4.374	шу/ку	0.000437 %	~	
10	4	nickel { nickel chromate }		51	ma/ka	2 976	126 441	ma/ka	0 0126 %	1	
		028-035-00-7 238-766-5 14721-18-7					.20			ľ	
11	4	selenium { nickel selenate }	ļ	<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
		028-031-00-5 239-125-2 15060-62-5									
12	4	zinc { zinc chromate }	ļ	89	mg/kg	2.774	205.667	mg/kg	0.0206 %	\checkmark	
		TPH (C6 to C40) potroloum group	-								
13	8			<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4									
15		benzene		<0.005	ma/ka		<0.005	ma/ka	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2									
16		toluene		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3			0						

Page 6 of 35

#	# Determinand		o Note	User entere	d data	Conv. Factor	Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used		
		EU CLP index number	EC Number	CAS Number	CLF							MC	
17	0	ethylbenzene				<0.005	ma/ka		<0.005	ma/ka	<0.0000005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
19	0	рН	1	DU		8.68	рН		8.68	рН	8.68 pH		
				РН	-								
20		naphthalene	000 040 5	01.00.0		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	-							-	
21	•	acenaphtnylene	005 017 1		-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
_	-	a a a a a a b th a n a	205-917-1	208-96-8	+							-	
22	9	acenaphthene	201-469-6	83-32-0	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene	201-403-0	03-32-3	+							-	
23			201-695-5	86-73-7	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		phenanthrene	20.0000										
24		·	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25		anthracene				-0.04			.0.04		-0.000004.9/		
25			204-371-1	120-12-7	1	<0.04	тід/кд		<0.04	тід/кд	<0.000004 %		<lod< td=""></lod<>
26		fluoranthene				<0.03	ma/ka		<0.03	ma/ka	<0.00003.9%		
20			205-912-4	206-44-0	1	<0.03	шу/ку		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
27		pyrene				<0.03	ma/ka		<0.03	ma/ka	<0.000003 %		
21			204-927-3	129-00-0		<0.00	ing/kg			ing/itg	<0.000000 /0		
28		benzo[a]anthracen	e			<0.06	ma/ka		<0.06	ma/ka	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	1								
29		chrysene				<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	-								
30		benzo[b]fluoranthe	ne	1		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	-								
31		benzo[k]fluoranthe	ne	0.07 0.0 0	_	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
-	-	601-036-00-5	205-916-6	207-08-9	+							-	
32		601 032 00 3		50 22 8	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
-	-	indeno[123-cd]pyra		00-02-0	+								
33			205-893-2	193-39-5	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		dibenz[a.h]anthrac	ene										
34		601-041-00-2	200-181-8	53-70-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[ghi]perylene	9										
35			205-883-8	191-24-2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		polychlorobiphenyl	s; PCB			-0.025			-0.025		-0.0000025.0/		
30		602-039-00-4	215-648-1	1336-36-3		<0.035	тіу/кд		<0.035	під/кд	<0.0000035 %		<lud< td=""></lud<>
~7	æ	barium {	oxide }			00			05 505		0.00050.0/		
31			215-127-9	1304-28-5	-	92	mg/kg	1.117	7 85.565	mg/kg	0.00856 %	\checkmark	
		coronene											
38			205-881-7	191-07-1		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20		benzo[j]fluoranther	ne	1							.0.0001.0/		1.00
39		601-035-00-X	205-910-3	205-82-3		<1	тід/кд		<1	під/кд	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0569 %		

Key

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Only the metal concentration has been used for classification

Classification of sample: TP-02-22/11/2023-0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
TP-02-22/11/2023-0.50m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
10.1%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 10.1% Wet Weight Moisture Correction applied (MC)

#		Determinand	P Note	User entered	User entered data		Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used
		number CAS Number	CLI						MO		
1	4	antimony { antimony trioxide }		1	ma/ka	1.197	1.076 r	na/ka	0.000108 %		
		051-005-00-X 215-175-0 1309-64-4						5 5		•	
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		8.3	mg/kg	1.32	9.852 r	ng/kg	0.000985 %	\checkmark	
2	æ	cadmium { cadmium oxide }		0.7		1 1 1 2	0.710	~~// <i>c</i> ~	0.0000710.0/	,	
3		048-002-00-0 215-146-2 1306-19-0		0.7	тід/кд	1.142	0.719 1	пд/кд	0.0000719 %	\checkmark	
4	4	chromium in chromium(III) compounds {		32	mg/kg	1.462	42.046 r	ng/kg	0.0042 %	~	
		215-160-9 1308-38-9									
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3	mg/kg	2.27	<0.681 r	ng/kg	<0.0000681 %		<lod< td=""></lod<>
		024-017-00-8									
6	4	copper { dicopper oxide; copper (I) oxide }		24	mg/kg	1.126	24.292 r	ng/kg	0.00243 %	\checkmark	
<u> </u>	•	029-002-00-X 215-270-7 1317-39-1	-								
7	44	1ead (1ead chromate) 082-004-00-2 231-846-0 7758-07-6	1	92	mg/kg	1.56	129.009 r	ng/kg	0.00827 %	\checkmark	
		mercury { mercury dichloride }									
8	•••	080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135 r	ng/kg	<0.0000135 %		<lod< td=""></lod<>
	æ	molvbdenum { molvbdenum(VI) oxide }			mg/kg				0.000135 %		
9	~	042-001-00-9 215-204-7 1313-27-5		1		1.5	1.349 r	ng/kg		\checkmark	
10	æ	nickel { nickel chromate }		10.1		2.076	48.420	~~//~~	0.00484.9/	\square	
10	~	028-035-00-7 238-766-5 14721-18-7		18.1	тд/кд	2.976	48.429 r	пд/кд	0.00484 %	\checkmark	
11	æ	selenium { nickel selenate }		-1	ma/ka	2 554	~2 554 r	na/ka	<0.000255 %		
		028-031-00-5 239-125-2 15060-62-5			шу/ку	2.554	<2.004 1	iig/kg	<0.000233 /8		
12	4	zinc { zinc chromate }		59	ma/ka	2.774	147.144 r	na/ka	0.0147 %	1	
		024-007-00-3 236-878-9 13530-65-9								Ň	
13	Θ	TPH (C6 to C40) petroleum group		<52	mg/kg		<52 r	ng/kg	<0.0052 %		<lod< td=""></lod<>
		TPH									
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.005	mg/kg		<0.005 r	ng/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4									
15				<0.005	mg/kg		<0.005 r	ng/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2	-							Н	
16		toluene		<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		001-021-00-3 203-625-9 108-88-3									

Page 8 of 35

#			Determinand		Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			, actor				MC	Cood
17	8	ethylbenzene				<0.005	ma/ka		< 0.005	ma/ka	<0.0000005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
19	0	рН		РН		11.35	pН		11.35	pН	11.35 pH		
		nanhthalene		µ 11	+								
20		601-052-00-2	202-040-5	01-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		aconaphthylono	202-049-5	91-20-3	-								
21		acenapititiyiene	205-017-1	208-96-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
	-	acenanhthene	203-317-1	200-30-0	+								
22			201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		fluorene		00 02 0									
23	ľ		201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		phenanthrene			1								
24			201-581-5	85-01-8		0.08	mg/kg		0.0719	mg/kg	0.00000719 %	\checkmark	
25		anthracene		1		-0.04	~~~// <i>c</i>		-0.04	~~~// <i>c</i> ~	-0.000004.9/		
25			204-371-1	120-12-7	1	<0.04	тід/кд		<0.04	тід/кд	<0.000004 %		<lod< td=""></lod<>
26		fluoranthene				0.1	ma/ka		0.0800	ma/ka	0.0000800 %	1	
20			205-912-4	206-44-0		0.1	mg/kg		0.0899	iiig/kg	0.00000039 /8	~	
27	0	pyrene				0.09	ma/ka		0 0809	ma/ka	0 00000809 %		
21			204-927-3	129-00-0		0.00	ing/kg		0.0000	iiig/kg	0.00000000 /0	~	
28		benzo[a]anthracer	1e			0.08	ma/ka		0.0719	ma/ka	0.00000719 %	1	
		601-033-00-9	200-280-6	56-55-3	1							ľ	
29		chrysene				0.06	mg/kg		0.0539	mg/kg	0.00000539 %	\checkmark	
		601-048-00-0	205-923-4	218-01-9	-								
30		benzo[b]fluoranthe	ene			0.06	mg/kg		0.0539	mg/kg	0.00000539 %	\checkmark	
		601-034-00-4	205-911-9	205-99-2	_								
31		benzo[k]fluoranthe	ene	007.00.0		0.03	mg/kg		0.027	mg/kg	0.0000027 %	\checkmark	
-		601-036-00-5	205-916-6	207-08-9	+								
32				50-32-8	-	0.04	mg/kg		0.036	mg/kg	0.0000036 %	\checkmark	
-	-	indeno[123_cd]pure	200-020-0	00-02-0	+							\vdash	
33			205-893-2	193-39-5	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
		dibenz[a.h]anthrac			+							H	
34		601-041-00-2	200-181-8	53-70-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[ghi]perylene	9		1								
35			205-883-8	191-24-2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		polychlorobipheny	ls; PCB			-0.025			-0.025		-0.0000025.0/	П	
30		602-039-00-4	215-648-1	1336-36-3		<0.035	тіу/кд		<0.035	пу/кд	<0.0000035 %		
~7	æ	barium {	oxide }						04.000		0.00040.00		
37	ľ		215-127-9	1304-28-5	-	61	mg/kg	1.11/	61.228	mg/kg	0.00612 %	\checkmark	
		coronene			+							H	
38			205-881-7	191-07-1	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20		benzo[j]fluoranthei	ne	1							.0.0001.0/	Π	1.00
39		601-035-00-X	205-910-3	205-82-3	1	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
				·						Total:	0.0476 %		

Key

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Only the metal concentration has been used for classification

Classification of sample: TP-02-22/11/2023-1.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
TP-02-22/11/2023-1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
24.5%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 24.5% Wet Weight Moisture Correction applied (MC)

#		EU CLP index EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimony trioxide }		3 mg/kg	1.197	2.711 mg/kg	0.000271 %	\checkmark	
2	4	arsenic { arsenic trioxide }		17.5 mg/kg	1.32	17.445 mg/kg	0.00174 %	\checkmark	
3	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		2.2 mg/kg	1.142	1.897 mg/kg	0.00019 %	\checkmark	
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		30.2 mg/kg	1.462	33.325 mg/kg	0.00333 %	~	
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (l) oxide } 029-002-00-X 215-270-7 1317-39-1		49 mg/kg	1.126	41.652 mg/kg	0.00417 %	~	
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	241 mg/kg	1.56	283.816 mg/kg	0.0182 %	\checkmark	
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.3 mg/kg	1.353	0.307 mg/kg	0.0000307 %	\checkmark	
9	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9 215-204-7 1313-27-5		4 mg/kg	1.5	4.531 mg/kg	0.000453 %	\checkmark	
10	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		50.7 mg/kg	2.976	113.927 mg/kg	0.0114 %	\checkmark	
11	4	selenium {		2 mg/kg	2.554	3.856 mg/kg	0.000386 %	\checkmark	
12	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		124 mg/kg	2.774	259.716 mg/kg	0.026 %	\checkmark	
13	8	TPH (C6 to C40) petroleum group		<52 mg/kg		<52 mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
15		benzene 601-020-00-8 200-753-7 71-43-2		<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
16		toluene 601-021-00-3 203-625-9 108-88-3		<0.005 mg/kg		<0.005 mg/kg	<0.000005 %		<lod< td=""></lod<>

Page 10 of 35

#			Determinand		Note	User entere	ed data	Conv.	Compound conc.		Classification value		Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP						Value	MC	0300
17		ethylbenzene				<0.005	ma/ka		<0.005	ma/ka	<0.000005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
19	0	рН		рц		8.76	pН		8.76	pН	8.76 pH		
		nanhthalana		ГП	+								
20			202 040 5	01 20 2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		001-052-00-2	202-049-5	91-20-3	+								
21	8	acenaphinylene	005 017 1	202 06 2	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		aconanhthono	203-317-1	200-30-0	-								
22		acenaphinene	201-469-6	83-32-0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene	201-409-0	05-52-9	+								
23			201-695-5	86-73-7	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		phenanthrene	-0.0000	00.01									
24			201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
0.5		anthracene				0.01			0.04		0.000004.0/		1.05
25			204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		fluoranthene		1		-0.02	malka		-0.02	malka	-0.00003.8/		
20			205-912-4	206-44-0	1	<0.03	тід/кд		<0.03	тід/кд	<0.000003 %		<lod< td=""></lod<>
27		pyrene				<0.03	ma/ka		<0.03	ma/ka	<0.000003.%		
21			204-927-3	129-00-0	1	<0.05	iiig/kg		<0.00	iiig/kg	<0.000003 /8		LOD
28		benzo[a]anthracen	ne			<0.06	ma/ka		<0.06	ma/ka	<0.000006 %		<i od<="" td=""></i>
		601-033-00-9	200-280-6	56-55-3	1		ing/kg			ing/kg			.200
29		chrysene				<0.02	ma/ka		<0.02	ma/ka	<0.00002 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9									
30		benzo[b]fluoranthe	ene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	_								
31		benzo[k]fluoranthe	ene			<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
_		601-036-00-5	205-916-6	207-08-9	-								
32		benzo[a]pyrene; be	enzo[def]chrysene	50.00.0		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	-	601-032-00-3	200-028-5	50-32-8	-								
33	•	Indeno[123-cd]pyre		102 20 5	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		dibenz[a b]anthrac	200-090-2	193-39-3	-								
34		601-041-00-2	200-181-8	53-70-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[ghi]pervlene	e		+								
35	ľ		205-883-8	191-24-2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		polychlorobipheny	ls; PCB										
36		602-039-00-4	215-648-1	1336-36-3	1	<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
	æ	barium (🍳 barium											
37			215-127-0	1304-28-5	-	140	mg/kg	1.117	118.015	mg/kg	0.0118 %	\checkmark	
-	-	coronene	-10121.0	1007 20-0	+							\square	
38			205-881-7	191-07-1	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[j]fluoranther	ne	1	1								
39		601-035-00-X	205-910-3	205-82-3	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0834 %	Γ	

Key

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Only the metal concentration has been used for classification

Classification of sample: TP-03-22/11/2023-0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
TP-03-22/11/2023-0.50m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
22.6%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 22.6% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered d	ata	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimony trioxide } 051-005-00-X 215-175-0 1309-64-4		3 m	g/kg	1.197	2.78	mg/kg	0.000278 %	\checkmark	
2	4	arsenic { arsenic trioxide }		17.3 m	g/kg	1.32	17.679	mg/kg	0.00177 %	\checkmark	
3	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		2.8 m	g/kg	1.142	2.476	mg/kg	0.000248 %	\checkmark	
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		26.6 m	g/kg	1.462	30.091	mg/kg	0.00301 %	~	
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 m	g/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		52 m	g/kg	1.126	45.315	mg/kg	0.00453 %	~	
7	*	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	113 m	g/kg	1.56	136.425	mg/kg	0.00875 %	\checkmark	
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.2 m	g/kg	1.353	0.21	mg/kg	0.000021 %	\checkmark	
9	4	molybdenum {		4.6 m	g/kg	1.5	5.341	mg/kg	0.000534 %	\checkmark	
10	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		61 m	g/kg	2.976	140.521	mg/kg	0.0141 %	\checkmark	
11	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		2 m	g/kg	2.554	3.953	mg/kg	0.000395 %	\checkmark	
12	4	zinc { <mark>zinc chromate</mark> } 024-007-00-3 236-878-9 13530-65-9		135 m	g/kg	2.774	289.871	mg/kg	0.029 %	\checkmark	
13	8	TPH (C6 to C40) petroleum group		<52 m	g/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.005 m	g/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
15		benzene 601-020-00-8 200-753-7 71-43-2		<0.005 m	g/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
16		toluene 601-021-00-3 203-625-9 108-88-3		<0.005 m	g/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>

Page 12 of 35

#			Determinand		o Note	User entere	d data	Conv. Factor	Compound conc.		Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
17		ethylbenzene				<0.005	ma/ka		< 0.005	ma/ka	<0.000005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
19	0	pН	1	DU		8.57	рН		8.57	pН	8.57 pH		
	-			РН									
20		naphthalene	000.040.5	01.00.0		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	-								
21	•	acenaphinylene	005 017 1		_	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
_	-	a a a na nh th a na	205-917-1	208-96-8	-								
22	•	acenaphthene	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene	-0.1000	00 02 0									
23			201-695-5	86-73-7	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24		phenanthrene				0.10			0.120		0.0000120.9/	,	
24			201-581-5	85-01-8		0.16	тід/кд		0.139	тід/кд	0.0000139 %	V	
25		anthracene				0.06	ma/ka		0.0464	ma/ka	0.00000464 %	,	
20			204-371-1	120-12-7		0.00	iiig/kg		0.0404	iiig/kg	0.00000404 /8	~	
26		fluoranthene				0.43	ma/ka		0.333	ma/ka	0 0000333 %	./	
			205-912-4	206-44-0		0.10	ing/kg			iiig/itg	0.0000000 //	Ŷ	
27	۰	pyrene				0.35	ma/ka		0.271	ma/ka	0.0000271 %	1	
_			204-927-3	129-00-0								*	
28		benzo[a]anthracen	e			0.26	mg/kg		0.201	mg/kg	0.0000201 %	\checkmark	
		601-033-00-9	200-280-6	56-55-3								-	
29		chrysene				0.28	mg/kg		0.217	mg/kg	0.0000217 %	\checkmark	
		601-048-00-0	205-923-4	218-01-9	-								
30		benzo[b]fluoranthe	ene		_	0.32	mg/kg		0.248	mg/kg	0.0000248 %	\checkmark	
-		601-034-00-4	205-911-9	205-99-2	+								
31		benzo[k]fluorantne		007.00.0	_	0.12	mg/kg		0.0929	mg/kg	0.00000929 %	\checkmark	
-	-	bonzolalovrono: b	200-910-0	207-06-9	-								
32		601-032-00-3	200-028-5	50-32-8	-	0.27	mg/kg		0.209	mg/kg	0.0000209 %	\checkmark	
		indeno[123-cd]pvr	ene		+								
33	-		205-893-2	193-39-5	-	0.17	mg/kg		0.132	mg/kg	0.0000132 %	\checkmark	
24		dibenz[a,h]anthrac	ene	1		.0.04	m ~ //		.0.04	m ~//	-0.000004.00		1.05
34		601-041-00-2	200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25		benzo[ghi]perylene	e			0.16	ma/ka		0 1 2 4	ma/ka	0.0000124.%	,	
55			205-883-8	191-24-2		0.10	mg/kg		0.124	iiig/kg	0.0000124 /8	V	
36		polychlorobipheny	ls; PCB			<0.035	ma/ka		<0.035	ma/ka	<0.0000035 %		
		602-039-00-4	215-648-1	1336-36-3						mg/ng			
37	4	barium { 🧧 barium	oxide }			139	ma/ka	1 117	120 12	ma/ka	0.012 %	1	
³		-	215-127-9	1304-28-5		100	ing/itg		120.12	mg/kg	5.012 /0	ľ	
20		coronene				~0.04	malka		<0.04	ma/ka	<0.00004.94		
			205-881-7	191-07-1		<0.04	mg/kg		<0.04	mg/kg	<0.00004 %		
39		benzo[j]fluoranther	ne			<1	ma/ka		<1	ma/ka	<0.0001 %		<lod< td=""></lod<>
Ľ		601-035-00-X	205-910-3	205-82-3									
										Total:	0.0802 %		

Key

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Only the metal concentration has been used for classification

Classification of sample: TP-03-22/11/2023-2.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
TP-03-22/11/2023-2.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
11.8%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 11.8% Wet Weight Moisture Correction applied (MC)

#		EU CLP index EC Number CAS Number	CLP Note	User entered data	Conv. Factor	. Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimony trioxide }		2 mg/kg	1.197	2.112 mg/kg	0.000211 %	\checkmark	
2	4	arsenic { arsenic trioxide }		12.3 mg/kg	1.32	14.324 mg/kg	0.00143 %	~	
3	4	u33-003-00-0 µ15-481-4 µ1327-53-3 cadmium { cadmium oxide } 048.002.00.0 µ15.146.2 µ206.10.0		1.9 mg/kg	1.142	1.914 mg/kg	0.000191 %	~	
4	4	chromium in chromium(III) compounds {		15.3 mg/kg	1.462	19.723 mg/kg	0.00197 %	~	
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		27 mg/kg	1.126	26.812 mg/kg	0.00268 %	~	
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	20 mg/kg	1.56	27.515 mg/kg	0.00176 %	\checkmark	
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9 215-204-7 1313-27-5		3.8 mg/kg	1.5	5.028 mg/kg	0.000503 %	~	
10	4	nickel { nickel chromate }		38.9 mg/kg	2.976	102.115 mg/kg	0.0102 %	\checkmark	
11	4	selenium { nickel selenate }		1 mg/kg	2.554	2.252 mg/kg	0.000225 %	\checkmark	
12	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		75 mg/kg	2.774	183.51 mg/kg	0.0184 %	\checkmark	
13	8	TPH (C6 to C40) petroleum group		<52 mg/kg		<52 mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
15		benzene 601-020-00-8 200-753-7 71-43-2		<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
16		toluene 601-021-00-3 203-625-9 108-88-3		<0.005 mg/kg		<0.005 mg/kg	<0.000005 %		<lod< td=""></lod<>

Page 14 of 35

#	Determinand		P Note	User entere	d data	Conv. Factor	Compound conc.		Classification value	C Applied	Conc. Not Used		
		number	EC Number	CAS Number	5							M	
17	8	ethylbenzene				<0.005	ma/ka		< 0.005	ma/ka	<0.000005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
19	0	рН				8.74	pН		8.74	pН	8.74 pH		
				PH									
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		acenaphthylene											
21			205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
22		acenaphthene	,			<0.05	ma/ka		<0.05	ma/ka	<0.000005.%		
22			201-469-6	83-32-9		<0.05	iiig/kg		<0.05	mg/kg	<0.000003 78		LOD
23	Θ	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene	201 000 0	00101		<0.03	ma/ka		<0.03	ma/ka	<0.00003.%		
			201-581-5	85-01-8									.200
25	٥	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		fluoranthene	204-371-1	120-12-1								H	
26			205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
07		pyrene	1	1		-0.02			.0.02		.0.000002.0/		
21			204-927-3	129-00-0		<0.03	тід/кд		<0.03	тід/кд	<0.000003 %		<lod< td=""></lod<>
28		benzo[a]anthracen	e			<0.06	ma/ka		<0.06	ma/ka	<0.000006 %		
		601-033-00-9	200-280-6	56-55-3									
29		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[b]fluoranthe	ne	210 01 3					0.05				
30		601-034-00-4	205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		benzo[k]fluoranthe	ne			-0.02			.0.02		.0.000002.0/		
31		601-036-00-5	205-916-6	207-08-9		<0.02	mg/kg		<0.02	тід/кд	<0.000002 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	enzo[def]chrysene			<0.04	mg/ka		<0.04	mg/ka	<0.000004 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8								\square	-
33	۲	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		dibenz[a,h]anthrac	ene			0.04			0.04		0.000004.04		1.00
34		601-041-00-2	200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
35		benzo[ghi]perylene	e			<0.04	ma/ka		<0.04	ma/ka	<0.000004.%		
55			205-883-8	191-24-2		<0.04	iiig/kg		<0.04	iiig/kg	<0.000004 /8		LOD
36	۲	polychlorobiphenyl	ls; PCB	1226 26 2		<0.035	mg/kg		<0.035	mg/kg	<0.000035 %		<lod< td=""></lod<>
-		002-003-00-4	<u>- 10-0-10-1</u>	1000-00-0	-							H	
37	-	barium { 📲 barium	oxide }	1204 20 5		45	mg/kg	1.117	44.314	mg/kg	0.00443 %	\checkmark	
<u> </u>		coronone	¥15-127-9	1304-28-5	-							\vdash	
38	9		205-881-7	191-07-1		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39		benzo[j]fluoranther		005 00 0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
_		601-035-00-X 205-910-3 205-82-3								Total:	0.0474 %	⊢	

Key

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Only the metal concentration has been used for classification

Classification of sample: BH-01-22/11/2023-1.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
BH-01-22/11/2023-1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
5.6%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 5.6% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered data	Conv Facto	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimony trioxide }		<1 mg/kg	1.197	<1.197 mg/kg	<0.00012 %		<lod< td=""></lod<>
2	4	arsenic { arsenic trioxide }		5.6 mg/kg	1.32	6.98 mg/kg	0.000698 %	~	
3	4	cadmium { cadmium oxide }		1.2 mg/kg	1.142	2 1.294 mg/kg	0.000129 %	~	
4	4	chromium in chromium(III) compounds { • chromium(III) oxide (worst case) } 1308-38-9		12.5 mg/kg	1.462	2 17.246 mg/kg	0.00172 %	~	
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		13 mg/kg	1.126	5 13.817 mg/kg	0.00138 %	~	
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	13 mg/kg	1.56	19.142 mg/kg	0.00123 %	\checkmark	
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	s <0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9 215-204-7 1313-27-5		1.6 mg/kg	1.5	2.266 mg/kg	0.000227 %	\checkmark	
10	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		14.9 mg/kg	2.976	6 41.863 mg/kg	0.00419 %	\checkmark	
11	4	selenium {		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
12	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		49 mg/kg	2.774	l 128.321 mg/kg	0.0128 %	~	
13	9	TPH (C6 to C40) petroleum group		<52 mg/kg		<52 mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
15		benzene 601-020-00-8 200-753-7 71-43-2		<0.005 mg/kg		<0.005 mg/kg	<0.000005 %		<lod< td=""></lod<>
16		toluene 601-021-00-3 203-625-9 108-88-3		<0.005 mg/kg		<0.005 mg/kg	<0.000005 %		<lod< td=""></lod<>

Page 16 of 35

#	¢		Note	User entere	d data	Conv. Factor Compound conc.		Classification dd value V		Conc. Not Used			
		EU CLP index number	EC Number	CAS Number	CLP			laotor			Value	MC	0000
17		ethylbenzene				<0.005	ma/ka		< 0.005	ma/ka	<0.000005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4	1								
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
19	8	рН		DН		9.45	pН		9.45	pН	9.45 pH		
-		nanhthalana		FII	-								
20		601-052-00-2	202-040-5	01-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		acenanhthylene	202-049-5	91-20-3	-								
21		acenaphilitylene	205-017-1	208-96-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		acenanhthene	203-317-1	200-30-0	+								
22		acenaphinene	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene	201 400 0	00 02 0									
23	ľ		201-695-5	86-73-7	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		phenanthrene			1								
24		·	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25		anthracene				-0.04			.0.04		10 000001 9/		
25			204-371-1	120-12-7	1	<0.04	тід/кд		<0.04	тід/кд	<0.000004 %		<lod< td=""></lod<>
26		fluoranthene				<0.03	ma/ka		<0.03	ma/ka	<0.00003.94		
20			205-912-4	206-44-0	1	<0.03	шу/ку		<0.03	шу/ку	<0.000003 %		<lod< td=""></lod<>
27	0	pyrene				<0.03	ma/ka		<0.03	ma/ka	<0.000003 %		
21			204-927-3	129-00-0		<0.00	ing/kg		<0.00	ing/kg	<0.000000 //		
28		benzo[a]anthracen	ne			<0.06	ma/ka		<0.06	ma/ka	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	1								
29		chrysene				<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	-								
30		benzo[b]fluoranthe	ene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	-								
31		benzo[k]fluoranthe	ene	b a = b a b		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
-	-	601-036-00-5	205-916-6	207-08-9	+								
32				50-32-8	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
-	-	indeno[123_cd]pur	200-020-0	00-02-0	+							\vdash	
33			205-893-2	193-39-5	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		dibenz[a.h]anthrac											
34		601-041-00-2	200-181-8	53-70-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[ghi]perylene	9		1								
35			205-883-8	191-24-2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		polychlorobipheny	ls; PCB			-0.025			-0.025		10 0000025 %		
30		602-039-00-4	215-648-1	1336-36-3		<0.035	пу/кд		<0.035	nig/kg	<0.0000035 %		
~7	æ	barium {	oxide }			00		4 4 4 -	44.405		0.00444.0%		
31			215-127-9	1304-28-5	-	39	тд/кд	1.117	41.105	тд/кд	0.00411 %	\checkmark	
		coronene			+							H	
38			205-881-7	191-07-1	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20		benzo[j]fluoranther	ne	1					.4		-0.0001.0/		1.00
39		601-035-00-X 205-910-3 205-82-3			1	<1	mg/kg		<1	під/кд	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0323 %	Γ	

Key

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Only the metal concentration has been used for classification

Classification of sample: BH-02-22/11/2023-1.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
BH-02-22/11/2023-1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
11.8%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 11.8% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number	LP Note	User entered data F		Conv. Factor Compound conc.		Classification value	1C Applied	Conc. Not Used	
		number	ပ							≥	
1	4	antimony { antimony trioxide }		1 m	ng/kg	1.197	1.056	mg/kg	0.000106 %	\checkmark	
		051-005-00-X 215-175-0 1309-64-4									
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		10.6 m	ng/kg	1.32	12.344	mg/kg	0.00123 %	\checkmark	
	æ	cadmium { cadmium oxide }		4.0			4.044	4	0.000101.0/		
3		048-002-00-0 215-146-2 1306-19-0		1.9 m	1g/кg	1.142	1.914	mg/kg	0.000191 %	\checkmark	
4	4	chromium in chromium(III) compounds {		15.5 m	ng/kg	1.462	19.981	mg/kg	0.002 %	~	
	•	215-160-9 $1308-38-9$	-								
5	~	compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 m	ng/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		024-017-00-8	-							⊢	
6	44	copper { dicopper oxide; copper (i) oxide }		28 m	ng/kg	1.126	27.805	mg/kg	0.00278 %	\checkmark	
		lead / lead chromate }	-								
7	•••	082-004-00-2 231-846-0 7758-97-6	1	15 m	ng/kg	1.56	20.636	mg/kg	0.00132 %	\checkmark	
	æ	mercury { mercury dichloride }							0.0000405.0/		
8	~	080-010-00-X 231-299-8 7487-94-7		<0.1 m	ng/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
_	æ	molybdenum { molybdenum(VI) oxide }		0.7 ~		4.5	2 572		0.000257.9/		
9	~	042-001-00-9 215-204-7 1313-27-5		2.7 m	1g/кg	1.5	3.573	mg/kg	0.000357 %	\checkmark	
10	æ	nickel { nickel chromate }		36.1 m	na/ka	2 976	94 765	ma/ka	0.00948 %	/	
		028-035-00-7 238-766-5 14721-18-7	ĺ	30.1 11	ig/kg	2.370	94.705	iiig/kg	0.00940 //	~	
11	4	selenium {		<1 m	na/ka	2 554	<2 554	ma/ka	<0.000255 %		<lod< td=""></lod<>
		028-031-00-5 239-125-2 15060-62-5			.9/9		121001				
12	4	zinc { zinc chromate }	ļ	66 m	ng/kg	2.774	161.489	mg/kg	0.0161 %	\checkmark	
		024-007-00-3 236-878-9 13530-65-9									
13	Θ	TPH (C6 to C40) petroleum group		443 m	ng/kg		390.726	mg/kg	0.0391 %	\checkmark	
			-							\square	
14		2-methoxy-2-methylpropane	ļ	<0.005 m	ng/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4								Ц	
15				<0.005 m	ng/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
13		601-020-00-8 200-753-7 /1-43-2	-							\vdash	
16		601-021-00-3 203-625-0 409-99-3		<0.005 m	ng/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		001-021-00-3 203-023-9 100-00-3		,							

Page 18 of 35

#		Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification	Applied	Conc. Not Used	
		EU CLP index number	EC Number	CAS Number	CLP			lation			Value	MC	0000
17		ethylbenzene				<0.005	ma/ka		< 0.005	ma/ka	<0.0000005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		0.006	mg/kg		0.0052	mg/kg	0.000000529 %	~	
19	0	рН	1			8.44	pН		8.44	pН	8.44 pH		
	-			РН	-								
20		naphthalene	boo 040 5	64.00.0		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	-	601-052-00-2	202-049-5	91-20-3									
21	•	acenaphthylene	005 047 4		_	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
-	-		205-917-1	208-96-8								\square	
22	8	acenaphthene	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	8	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene	bod 504 5	05.04.0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
-		anthracene	201-581-5	85-01-8	┢							\vdash	
25			204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		fluoranthene				<0.03	ma/ka		<0.03	ma/ka	<0.00003 %		
			205-912-4	206-44-0			ing/kg		<0.00	iiig/kg	<0.000000 /0		
27	0	pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
28		benzo[a]anthracen	e	1		<0.06	ma/ka		<0.06	ma/ka	<0.00006 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3									
29		chrysene	005 000 1			<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
	-	601-048-00-0	205-923-4	218-01-9									
30		benzo[b]fluoranthe	ne	bar an a	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
-	-	bonzo[k]fluorontho	205-911-9	205-99-2	-								
31		601-036-00-5	b05-016-6	207-08-9	_	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[a]pyrene: be	enzoldeflchrvsene	201-00-3									
32		601-032-00-3	200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyre	205-893-2	193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24		dibenz[a,h]anthrac	ene	100 00 0	+	-0.04	maller		10.04	maller	-0.00004.0/		
34		601-041-00-2	200-181-8	53-70-3		<0.04	тіg/кg		<0.04	mg/kg	<0.000004 %		
35	0	benzo[ghi]perylene)			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			205-883-8	191-24-2									
36	0	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3	-	<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
37	4	barium { 🧧 barium	oxide }	·		52	mg/kg	1.117	51.207	mg/kg	0.00512 %	\checkmark	
			215-127-9	1304-28-5	1			01.207					
38	0	coronene	205-881-7	191-07-1	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39		benzo[j]fluoranther	10			<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
<u> </u>		601-035-00-X	205-910-3	205-82-3							0.0700.01	\vdash	
1										iotal:	0.0783 %	1	

Key

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Solid waste without liquid phase

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0391%) xylene: (conc.: 5.29e-07%)

Classification of sample: BH-02-22/11/2023-2.00m

Sample details

Sample name:	LoW Code:	
BH-02-22/11/2023-2.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
6.8%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)
, ,		

Hazard properties

None identified

Determinands

Moisture content: 6.8% Wet Weight Moisture Correction applied (MC)

#		Determinand	P Note	User entered d	ata	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number	ö							ž	
1	4	antimony { antimony trioxide }		1 m	iq/kq	1.197	1.116	mg/kg	0.000112 %	1	
		051-005-00-X 215-175-0 1309-64-4			0 0					ľ	
2	4	arsenic { arsenic trioxide }		8.6 m	ig/kg	1.32	10.583	mg/kg	0.00106 %	\checkmark	
		033-003-00-0 215-481-4 1327-53-3								-	
3	4	cadmium { cadmium oxide }		1.5 m	ig/kg	1.142	1.597	mg/kg	0.00016 %	\checkmark	
		048-002-00-0 215-146-2 1306-19-0								-	
4	4	chromium in chromium(III) compounds { [●] chromium(III) oxide (worst case) }		19.5 m	ig/kg	1.462	26.562	mg/kg	0.00266 %	\checkmark	
		215-160-9 1308-38-9									
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 m	ıg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		024-017-00-8									
6	4	copper { <mark>dicopper oxide; copper (I) oxide</mark> }		21 m	iq/kq	1.126	22.036	mg/kg	0.0022 %	1	
		029-002-00-X 215-270-7 1317-39-1								-	
7	4	lead { lead chromate }	1	15 m	ig/kg	1.56	21.806	mg/kg	0.0014 %	\checkmark	
		082-004-00-2 231-846-0 7758-97-6									
8	4	mercury { mercury dichloride }		<0.1 m	ig/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94-7									
9	44	molybdenum { molybdenum(VI) oxide }		2.9 m	ig/kg	1.5	4.055	mg/kg	0.000405 %	\checkmark	
		042-001-00-9 215-204-7 1313-27-5									
10	44	nickei { nickei chromate } 028 025 00 7 b28 766 5 44724 48 7		34.6 m	ig/kg	2.976	95.976	mg/kg	0.0096 %	\checkmark	
		028-035-00-7 238-766-5 [14721-18-7									
11	44			3 m	ig/kg	2.554	7.141	mg/kg	0.000714 %	\checkmark	
		zinc { zinc chromate }									
12		024-007-00-3 236-878-9 13530-65-9		62 m	ig/kg	2.774	160.301	mg/kg	0.016 %	\checkmark	
		TPH (C6 to C40) petroleum group									
13		ТРН		<52 m	ig/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.005 m	ig/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4						5 0			
15		benzene	1	<0.005 ~~	a/ka		<0.005	ma/ka	<0.000005.9/		
		601-020-00-8 200-753-7 71-43-2		<0.000 III	ig/kg		20.005	mg/kg	<0.0000003 %		
16		toluene 601-021-00-3 203-625-9 108-88-3		<0.005 m	ig/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>

www.hazwasteonline.com

#	Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	Applied	Conc. Not		
		EU CLP index number	EC Number	CAS Number	СГР						Value	MC	0300
17	Θ	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19	٥	рН				8.24	pН		8.24	pН	8.24 pH		
				PH							·		
20		naphthalene	202 040 5	01 20 2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		001-052-00-2	202-049-5	91-20-3	-								
21	•	acenaphthylene	005 017 1	000.00.0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			205-917-1	208-96-8	-								
22	Θ	acenaphinene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	8	fluorene	004 005 5	00 70 7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24		phenanthrene	201-693-5	00-73-7		0.06			0.0550		0.00000550.0/		
24			201-581-5	85-01-8		0.06	тту/ку		0.0559	під/кд	0.00000559 %	~	
25	۲	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		fluoranthene		1									
26			205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
27		pyrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
28		benzolajanthracer	ie			<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	-								
29		cnrysene 601-048-00-0	205-923-4	218-01-9		0.05	mg/kg		0.0466	mg/kg	0.00000466 %	\checkmark	
		benzo[b]fluoranthe	200 320 4	210 01 3									
30		601-034-00-4	205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzolklfluoranthe	ne	200 00 2	\vdash								
31		601-036-00-5	205-916-6	207-08-9		<0.02	mg/кg		<0.02	mg/ĸg	<0.000002 %		<lod< td=""></lod<>
22		benzo[a]pyrene; b	enzo[def]chrysene			-0.04	malka		-0.04	malka	<0.00004.9/		
2		601-032-00-3	200-028-5	50-32-8		<0.04	ing/kg		<0.04	ing/kg	<0.00004 %		
33	0	indeno[123-cd]pyr	ene	100.00 5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>		- Character (1.2) - cl	205-893-2	193-39-5	-							\square	
34		dibenz[a,h]anthrac	ene	52 70 2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>		bonzolahilnonular		03-70-3	-							\vdash	
35	8	benzolgnijbervien	5 205 992 9	101 24 2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_	nolychlorobinbeny	200-000-0	131-24-2	+								
36		602-039-00-4	215-648-1	1336-36-3		<0.035	mg/kg		<0.035	mg/kg	<0.000035 %		<lod< td=""></lod<>
-	æ	barium (🏾 barium		ι	1								
37			215-127-9	1304-28-5		53	mg/kg	1.117	55.151	mg/kg	0.00552 %	\checkmark	
	-	coronene	-10 121-0	1007 20-0	\vdash							\vdash	
38			205-881-7	191-07-1	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39		benzo[j]fluoranthe		005.00 0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
-		р01-035-00-Х	205-910-3	205-82-3						Total	0.0453 %		
1										rotal.	5.0400 /0	1	

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

≪
<LOD

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH-03-22/11/2023-1.00m

Sample details

Sample name:	LoW Code:	
BH-03-22/11/2023-1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
12.6%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 12.6% Wet Weight Moisture Correction applied (MC)

#		EU CLP index EC Number CAS Number	CLP Note	User entered	data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	\$	antimony { antimony trioxide }	ļ	3	mg/kg	1.197	3.139	mg/kg	0.000314 %	~	
		051-005-00-X 215-175-0 1309-64-4									
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		11.2	mg/kg	1.32	12.924	mg/kg	0.00129 %	\checkmark	
3	*	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		2.4	mg/kg	1.142	2.396	mg/kg	0.00024 %	\checkmark	
4	*	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		20.2	mg/kg	1.462	25.803	mg/kg	0.00258 %	~	
5	*	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		coppor (dicoppor oxido: coppor (I) oxido)	-								
6	4	029-002-00-X 215-270-7 1317-39-1		30	mg/kg	1.126	29.521	mg/kg	0.00295 %	\checkmark	
7	8	lead { lead chromate }	1	10	mallia	1.50	24 520		0.00157.0/	,	
ľ		082-004-00-2 231-846-0 7758-97-6	1'	10	шу/ку	1.50	24.559	шу/ку	0.00157 %	~	
8	č.	mercury {		<0.1	ma/ka	1 353	<0.135	ma/ka	<0.0000135 %		<1 OD
Ľ	_	080-010-00-X 231-299-8 7487-94-7			iiig/itg	1.000		iiig/itg			.200
9	4	molybdenum {		7.8	ma/ka	1.5	10.227	ma/ka	0.00102 %	1	
		042-001-00-9 215-204-7 1313-27-5			5.5					ľ	
10	4	nickel { nickel chromate }		45.2	mg/kg	2.976	117.577	mg/kg	0.0118 %	\checkmark	
		028-035-00-7 238-766-5 14721-18-7									
11	4	selenium { nickel selenate }		5	mg/kg	2.554	11.16	mg/kg	0.00112 %	\checkmark	
	•	028-031-00-5 239-125-2 15060-62-5									
12	4	2110 { <mark>2110 CHIOMALE</mark> }		76	mg/kg	2.774	184.27	mg/kg	0.0184 %	\checkmark	
		TPH (C6 to C40) petroleum group									
13	۲	ТРН		<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4									
15		benzene		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2	-								
16		toluene		<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		001021000 200-020-3 100-00-5									

www.hazwasteonline.com

#	Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not		
		EU CLP index number	EC Number	CAS Number	СГР						Value	MC	0300
17	Θ	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19		рН				8.65	pН		8.65	pН	8.65 pH		
				PH						·	•		
20		naphthalene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	-								
21	۲	acenaphthylene	005 017 1	000.00.0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
\vdash	-	aaananbthana	205-917-1	208-96-8	\vdash							\square	
22	8	acenaprimene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	8	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
-		anthracene	201-581-5	85-01-8	-							\square	
25			204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		fluoranthene				<0.03	ma/ka		<0.03	ma/ka	<0.00003 %		
20			205-912-4	206-44-0		<0.00	ing/itg			ing/kg	<0.000000 /0		
27	۲	pyrene	004.007.0	400.00.0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
<u> </u>		h [.]	204-927-3	129-00-0	-								
28		benzolajanthracer	100 280 6	56 55 3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		chrysene	200-200-0	50-55-5								\square	
29		601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
20		benzo[b]fluoranthe	ene	Ц		-0.05			-0.05		-0.000005.0/		
30		601-034-00-4	205-911-9	205-99-2		<0.05	тід/кд		<0.05	тід/кд	<0.000005 %		<lud< td=""></lud<>
31		benzo[k]fluoranthe	ne	~		<0.02	ma/ka		<0.02	ma/ka	<0.000002 %		
		601-036-00-5	205-916-6	207-08-9			mg/ng						200
32		benzo[a]pyrene; b	enzo[def]chrysene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8	-							Н	
33	8	indeno[123-cd]pyr	205-893-2	193-39-5	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
-	-	dibenz[a.h]anthrac	zene	100 00 0	+							\vdash	
34		601-041-00-2	200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25		benzo[ghi]perylen	9			-0.04	ma/ka		<0.04	ma/ka	~0.000004.%		
33			205-883-8	191-24-2		<0.04	iiig/kg		<0.04	mg/kg	<0.000004 /8		LOD
36	۲	polychlorobipheny	ls; PCB			<0.035	mg/kg		< 0.035	mg/kg	<0.000035 %		<lod< td=""></lod<>
<u> </u>	-	602-039-00-4	215-648-1	1336-36-3								Ц	
37	4	barium { 🧧 barium	oxide }			310	mg/kg	1.117	302.506	mg/kg	0.0303 %	\checkmark	
			215-127-9	1304-28-5								Ц	
38	8	coronene	205-881.7	191-07-1		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[j]fluoranthei	ruo-oo i-7	191-07-1	-						0.0004.01	\vdash	
39		601-035-00-X	205-910-3	205-82-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.077 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

≪
<LOD

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH-04-22/11/2023-1.00m

Sample details

Sample name:	LoW Code:	
BH-04-22/11/2023-1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
12.4%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 12.4% Wet Weight Moisture Correction applied (MC)

#		EU CLP index EC Number CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	\$	antimony { antimony trioxide }	ļ	2	mg/kg	1.197	2.097	mg/kg	0.00021 %	~	
		051-005-00-X 215-175-0 1309-64-4									
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		13.4	mg/kg	1.32	15.499	mg/kg	0.00155 %	\checkmark	
3	6	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		2.4	mg/kg	1.142	2.402	mg/kg	0.00024 %	\checkmark	
4	*	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		18.2	mg/kg	1.462	23.302	mg/kg	0.00233 %	~	
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		coppor (dicoppor oxido: coppor (I) oxido)	-								
6	4	029-002-00-X 215-270-7 1317-39-1		41	mg/kg	1.126	40.437	mg/kg	0.00404 %	\checkmark	
-	8	lead { lead chromate }		40		4.50	04 505		0.00450.0/	,	
ľ		082-004-00-2 231-846-0 7758-97-6	1'	10	шу/ку	1.50	24.595	шу/ку	0.00156 %	~	
8	č.	mercury {		<0.1	ma/ka	1 353	<0 135	ma/ka	<0.0000135 %		<1 OD
Ľ	_	080-010-00-X 231-299-8 7487-94-7			iiig/itg	1.000		ing/kg			.200
9	4	molybdenum {		4.4	ma/ka	1.5	5.782	ma/ka	0.000578 %	1	
		042-001-00-9 215-204-7 1313-27-5						5.5		ľ	
10	4	nickel { nickel chromate }		50.8	mg/kg	2.976	132.446	mg/kg	0.0132 %	\checkmark	
		028-035-00-7 238-766-5 14721-18-7									
11	4	selenium { nickel selenate }		1	mg/kg	2.554	2.237	mg/kg	0.000224 %	\checkmark	
	•	028-031-00-5 239-125-2 15060-62-5									
12	4	2110 { 2110 Chromate }		95	mg/kg	2.774	230.864	mg/kg	0.0231 %	\checkmark	
		TPH (C6 to C40) petroleum group	-								
13	۲			<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4									
15		benzene		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2									
16		toluene		<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		001-021-00-3 203-023-9 100-00-3									

www.hazwasteonline.com

#	Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not		
		EU CLP index number	EC Number	CAS Number	СГР						Value	MC	0300
17	Θ	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19	8	рН				8.54	pН		8.54	pН	8.54 pH		
				PH									
20		naphthalene	202-049-5	01-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		aconaphthylono	202-049-3	91-20-3									
21	0		005 017 1	000 06 0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
-		aconaphthono	203-317-1	200-90-0	\vdash								
22	8	acenaphinene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	8	fluorene	201 605 5	96 72 7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	۲	phenanthrene	201-695-5	00-73-7	-	<0.03	ma/ka		<0.03	ma/ka			
27			201-581-5	85-01-8		<0.00					<0.000000 %		
25		anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		fluoranthene	1	1		0.00			0.00	//	0.00000.0/		
26			205-912-4	206-44-0		<0.03	mg/ĸg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
27	۵	pyrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
28		benzo[a]anthracen	ie			<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3									
29		cnrysene	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[b]fluoranthe	200 320 4	210 01 3									
30		601-034-00-4	205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzolklfluoranthe	ne	200 00 2	\vdash								
31		601-036-00-5	205-916-6	207-08-9		<0.02	mg/ĸg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
22		benzo[a]pyrene; be	enzo[def]chrysene			<0.04	ma/ka		<0.04	malka	<0.00004.9/		
2		601-032-00-3	200-028-5	50-32-8		NO.04	ing/kg		CO.04	ing/kg	<0.00004 //		
33	۲	indeno[123-cd]pyre	ene	400.00 5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>		dia and the state	205-893-2	193-39-5	-							\square	
34		dibenz[a,h]anthrac	ene	52 70 2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
-		601-041-00-2	200-181-8	53-70-3	-								
35	8	Denzolâniher Alene	205-883-8	191-24-2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_	nolychlorobinheny	200-000-0	131-24-2	+								
36		602-039-00-4	215-648-1	1336-36-3		<0.035	mg/kg		<0.035	mg/kg	<0.000035 %		<lod< td=""></lod<>
27	4	barium {	oxide }			60	malka	1 1 1 7	67 100	malka	0.00675.9/		
31			215-127-9	1304-28-5		09	тід/кд	1.117	07.400	шу/кд	0.00075 %	\checkmark	
0.0		coronene	0	а		-0.04	m a //		.0.04		.0.000004.0/	\square	1.00
38			205-881-7	191-07-1		<0.04	тід/кд		<0.04	тц/кg	<0.000004 %		<lud< td=""></lud<>
39		benzo[j]fluoranther	ne 205-910-3	205-82-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		000 00-7		-00 02 0						Total:	0.0593 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

≪
<LOD

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH-04-22/11/2023-2.00m

Sample details

Sample name:	LoW Code:	
BH-04-22/11/2023-2.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
10.7%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)
		00)

Hazard properties

None identified

Determinands

Moisture content: 10.7% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered d	lata	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimony trioxide }		2 m	ng/kg	1.197	2.138	mg/kg	0.000214 %	\checkmark	
		051-005-00-X 215-175-0 1309-64-4									
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		9.9 m	ng/kg	1.32	11.673	mg/kg	0.00117 %	\checkmark	
3	*	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		2.1 m	ng/kg	1.142	2.142	mg/kg	0.000214 %	\checkmark	
4	6	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		17.3 m	ng/kg	1.462	22.579	mg/kg	0.00226 %	~	
5	*	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 m	ng/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		coppor (dicoppor oxido: coppor (I) oxido)	-								
6	4	029-002-00-X 215-270-7 1317-39-1		27 m	ng/kg	1.126	27.146	mg/kg	0.00271 %	\checkmark	
7	8	lead { lead chromate }	1	16	~///a	1 50	00.007		0.001.43.8/		
ľ		082-004-00-2 231-846-0 7758-97-6	1'		ig/kg	1.50	22.201	шу/ку	0.00143 %	\checkmark	
8	č.	mercury {		<0.1 m	na/ka	1 353	<0.135	ma/ka	<0.0000135 %		<1 OD
Ľ	_	080-010-00-X 231-299-8 7487-94-7			ig/itg	1.000		iiig/itg			
9	4	molybdenum {		3.1 m	na/ka	1.5	4.153	ma/ka	0.000415 %	1	
		042-001-00-9 215-204-7 1313-27-5			5 5					•	
10	4	nickel { nickel chromate }		39.9 m	ng/kg	2.976	106.046	mg/kg	0.0106 %	\checkmark	
		028-035-00-7 238-766-5 14721-18-7									
11	4	selenium { nickel selenate }		1 m	ng/kg	2.554	2.281	mg/kg	0.000228 %	\checkmark	
	•	028-031-00-5 239-125-2 15060-62-5									
12	4	2110 { <mark>2110 CHIOMALE</mark> }		75 m	ng/kg	2.774	185.798	mg/kg	0.0186 %	\checkmark	
		TPH (C6 to C40) petroleum group	-								
13		ТРН		<52 m	ng/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.005 m	ng/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4									
15		benzene		<0.005 m	ng/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2								\square	
16		toluene		<0.005 m	ng/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		001-021-00-3 203-023-3 100-00-3									

www.hazwasteonline.com

#			Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	
17	Θ	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19	0	рН		PH		8.64	рН		8.64	pН	8.64 pH		
-		nanhthalene		111									
20		601-052-00-2	202-049-5	01-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_	acenanhthylene	202-043-3	51-20-5	+								
21	۲		205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		acenanhthene	200 011 1	200 00 0	+								
22			201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene		00 02 0									
23	Ĩ		201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		phenanthrene				0.00			0.00	//	0.00000.0/		1.00
24		·	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25		anthracene				-0.04			-0.04		-0.000004.9/		
25			204-371-1	120-12-7	1	<0.04	тід/кд		<0.04	тід/кд	<0.000004 %		<lod< td=""></lod<>
26	۲	fluoranthene	·			~0.03	ma/ka		<0.03	ma/ka	<0.00003 %		
20			205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 /8		LOD
27	۲	pyrene				<0.03	ma/ka		<0.03	ma/ka	<0.000003 %		
			204-927-3	129-00-0			ing/kg			ing/kg			200
28		benzo[a]anthracen	ie			<0.06	ma/ka		<0.06	ma/ka	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	1								
29		chrysene				<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	<u> </u>								
30		benzo[b]fluoranthe	ene	1		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2									
31		benzo[k]fluoranthe	ne			<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
<u> </u>	-	pu1-036-00-5	205-916-6	207-08-9	+								
32		benzolajpyrene; be		50 32 8	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
-	-	indeno[123-cd]our	200-020-0	00-02-0	+							\vdash	
33			205-893-2	193-39-5	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		dibenz[a h]anthrac	ene										
34		601-041-00-2	200-181-8	53-70-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzolahilpervlene	9										
35	-		205-883-8	191-24-2	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
00		polychlorobipheny	ls; PCB	1		0.005			0.005		0.0000005.0/		1.00
30		602-039-00-4	215-648-1	1336-36-3	1	<0.035	тıg/кğ		<0.035	під/кд	<0.0000035 %		<lod< td=""></lod<>
6-	æ	barium (🧧 barium		~					F 0.046		0.00500.01		
31			215-127-9	1304-28-5	-	51	mg/kg	1.11/	50.849	mg/kg	0.00508 %	\checkmark	
	_	coronene			+								
38	-		205-881-7	191-07-1	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39		benzo[j]fluoranther	ne			<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		601-035-00-X	205-910-3	205-82-3							0.0404.5		
1										Total:	0.0484 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

≪
<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH-05-22/11/2023-0.50m

Sample details

	2011 00000.	
BH-05-22/11/2023-0.50m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
19.2%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)
Moisture content: 19.2% (wet weight correction)	Entry:	from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in ' 03)

Hazard properties

None identified

Determinands

Moisture content: 19.2% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered d	lata	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	\$	antimony { antimony trioxide }		3 m	ng/kg	1.197	2.902	mg/kg	0.00029 %	\checkmark	
		051-005-00-X 215-175-0 1309-64-4									
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		15.1 m	ng/kg	1.32	16.109	mg/kg	0.00161 %	\checkmark	
3	\$	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		1.9 m	ng/kg	1.142	1.754	mg/kg	0.000175 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		22.8 m	ng/kg	1.462	26.925	mg/kg	0.00269 %	~	
5	*	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 m	ng/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		coppor (dicoppor oxido: coppor (l) oxido)									
6	~	029-002-00-X 215-270-7 1317-39-1		61 m	ng/kg	1.126	55.493	mg/kg	0.00555 %	\checkmark	
7	4	ead { lead chromate }		133 m	ng/kg	1.56	167.624	mg/kg	0.0107 %	\checkmark	
		082-004-00-2 231-846-0 7758-97-6	\mapsto								
8	4	mercury { mercury dichloride }		0.4 m	ng/kg	1.353	0.437	mg/kg	0.0000437 %	\checkmark	
		080-010-00-X [231-299-8 [7487-94-7	- 3.3 42.1		mg/kg	1.5			0.0004 %		
9	4	molybdenum { molybdenum(VI) oxide }		3.3 m			4	mg/kg		\checkmark	
		042-001-00-9 215-204-7 [1313-27-5									
10	~	028-035-00-7 238-766-5 14721-18-7		42.1 m	mg/kg	2.976	101.243	mg/kg		\checkmark	
	æ	selenium { nickel selenate }									
11	*	028-031-00-5 239-125-2 15060-62-5		1 m	ng/kg	2.554	2.064	mg/kg	0.000206 %	\checkmark	
12	2	zinc { zinc chromate }		11/ ~~	aa/ka	2 774	255 522	ma/ka	0.0256.%		
12		024-007-00-3 236-878-9 13530-65-9		114 11	іу/ку	2.114	200.002	шу/ку	0.0250 %	~	
13	8	TPH (C6 to C40) petroleum group		<52 m	na/ka		<52	ma/ka	<0.0052 %		<lod< td=""></lod<>
		TPH			.9/9						
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.005 m	ng/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4									
15		benzene		<0.005 m	ng/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 /71-43-2								\vdash	
16		601-021-00-3 203-625-9 108-88-3		<0.005 m	ng/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
	L										

www.hazwasteonline.com

#		Determinand	1	Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index EC Number number	CAS Number	CLP			, actor				MC	0000
17	8	ethylbenzene			<0.005	ma/ka		< 0.005	ma/ka	<0.0000005 %		<lod< td=""></lod<>
Ľ		601-023-00-4 202-849-4	100-41-4									
18		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
19	0	рН	рн		8.35	pН		8.35	pН	8.35 pH		
		nanhthalene										
20		601-052-00-2 202-049-5	91-20-3		0.05	mg/kg		0.0404	mg/kg	0.00000404 %	\checkmark	
-		acenaphthylene	51200								H	
21		205-917-1	208-96-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		acenaphthene		+								
22	-	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	8	fluorene	96 73 7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_	phenanthrene	00-73-7		0.17 mg/kg							
24		201-581-5	85-01-8					0.137	mg/kg	0.0000137 %	\checkmark	
25	0	anthracene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		204-371-1	120-12-7									
26	۲	fluoranthene	000 44 0		0.31	mg/kg		0.25	mg/kg	0.000025 %	\checkmark	
		205-912-4	206-44-0	+								
27	۲	204-927-3	120-00-0		0.27	mg/kg		0.218	mg/kg	0.0000218 %	\checkmark	
		benzolalanthracene	123-00-0	-								
28		601-033-00-9 200-280-6	$\left \right $	0.19	mg/kg		0.154	mg/kg	0.0000154 %	\checkmark		
		chrvsene										
29		601-048-00-0 205-923-4	218-01-9	-	0.2	mg/kg		0.162	mg/kg	0.0000162 %	\checkmark	
20		benzo[b]fluoranthene	1	1	0.00			0.470		0.0000178.9/		
30		601-034-00-4 205-911-9	205-99-2	-	0.22	тід/кд		0.178	mg/kg	0.0000178 %	\checkmark	
31		benzo[k]fluoranthene			0.08	ma/ka		0.0646	ma/ka	0.0000646 %	/	
		601-036-00-5 205-916-6	207-08-9		0.00	iiig/kg		0.0040	iiig/kg	0.00000040 /8	~	
32		benzo[a]pyrene; benzo[def]chrysene			0.19	ma/ka		0 154	ma/ka	0.0000154 %	1	
Ľ		601-032-00-3 200-028-5	50-32-8			59			59		Ľ	
33	۲	indeno[123-cd]pyrene			0.11	mg/kg		0.0889	mg/kg	0.00000889 %	\checkmark	
<u> </u>		205-893-2	193-39-5	-							\square	
34			52 70 2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>	-	benzolahilherulene	00-70-0	+							\square	
35		205-883-8		0.11	mg/kg		0.0889	mg/kg	0.00000889 %	\checkmark		
		polychlorobiphenyls: PCB	+					_		Η		
36		602-039-00-4 215-648-1		<0.035	mg/kg		<0.035	mg/kg	<0.000035 %		<lod< td=""></lod<>	
-	æ	barium (• barium oxide)		\uparrow	10.							
37		215-127-9	-	124	mg/kg	1.117	111.865	mg/kg	0.0112 %			
-		coronene		+							Η	
38		205-881-7	191-07-1	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39		benzo[j]fluoranthene			<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
-		рот-035-00-х 205-910-3	205-82-3						Total	0.07/1.9/	\vdash	
1									ioidi.	0.01 - 1 /0	1	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

≪
<LOD

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH-06-22/11/2023-1.00m

Sample details

Sample name:	LoW Code:	
3H-06-22/11/2023-1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
loisture content:		from contaminated sites)
7.9%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 17.9% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number	CLP Note	User entered data	a	Conv. Factor	Compound conc		Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimony trioxide }		2 mg/l	kg	1.197	1.966 mg/	kg	0.000197 %	\checkmark	
2	\$	arsenic { arsenic trioxide }		13.6 mg/	kg	1.32	14.742 mg/	kg	0.00147 %	\checkmark	
3	*	cadmium (cadmium oxide) 048-002-00-0 215-146-2 1306-19-0		1.8 mg/	kg	1.142	1.688 mg/	kg	0.000169 %	~	
4	\$	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		42 mg/l	kg	1.462	50.397 mg/	kg	0.00504 %	~	
5	*	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 mg/	kg	2.27	<0.681 mg/	kg	<0.0000681 %		<lod< td=""></lod<>
6	*	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		35 mg/l	kg	1.126	32.352 mg/	kg	0.00324 %	~	
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	23 mg/l	kg	1.56	29.454 mg/	kg	0.00189 %	~	
8	\$	mercury { mercury dichloride }		<0.1 mg/l	kg	1.353	<0.135 mg/	kg	<0.0000135 %		<lod< td=""></lod<>
9	\$	molybdenum { molybdenum(VI) oxide } 042-001-00-9 215-204-7 1313-27-5		3 mg/l	kg	1.5	3.695 mg/	kg	0.000369 %	\checkmark	
10	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		54.7 mg/	kg	2.976	133.66 mg/	kg	0.0134 %	\checkmark	
11	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		1 mg/l	kg	2.554	2.097 mg/	kg	0.00021 %	\checkmark	
12	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		98 mg/l	kg	2.774	223.202 mg/	kg	0.0223 %	\checkmark	
13	0	TPH (C6 to C40) petroleum group		<52 mg/l	kg		<52 mg/	kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X b16-653-1 b1634-04-4		<0.005 mg/	kg		<0.005 mg/	<0.005 mg/kg			<lod< td=""></lod<>
15		benzene 601-020-00-8 200-753-7 71-43-2	-	<0.005 mg/	kg		<0.005 mg/	kg	<0.000005 %		<lod< td=""></lod<>
16		toluene 601-021-00-3 203-625-9 108-88-3		<0.005 mg/	kg		<0.005 mg/	kg	<0.000005 %		<lod< td=""></lod<>

www.hazwasteonline.com

#			User entered data		Conv. Factor	Compound	conc.	Classification value		Conc. Not			
		EU CLP index number	EC Number	CAS Number	CLP						Value	MC	0300
17	Θ	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	_								
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19		рН	1			8.4	pН		8.4	pН	8.4 pH		
				PH									
20		naphthalene	202-049-5	91-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_	acenanhthylene	202 043 0	01200									
21	۲		205-917-1	208-96-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
-		acenanhthene	200 011 1	200 00 0	+							\vdash	
22			201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	8	fluorene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>	
24	0	phenanthrene			<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>	
25		anthracene	1			<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		
			204-371-1	120-12-7	1								
26	•	fluoranthene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			205-912-4	206-44-0									
27	۲	pyrene	204-927-3	129-00-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		benzo[a]anthracene										H	
28		601-033-00-9	-	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>		
		chrysene			+								
29		601-048-00-0		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>		
20		benzo[b]fluoranthe	ene			<0.05	ma/ka		<0.05	ma/ka	<0.00005.%		
30		601-034-00-4	205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000003 /8		LOD
31		benzo[k]fluoranthe	ene			<0.02	ma/ka		<0.02	ma/ka	<0.000002 %		
		601-036-00-5	205-916-6	207-08-9		<0.02	ing/itg						.200
32		benzo[a]pyrene; b	enzo[def]chrysene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	-	601-032-00-3	200-028-5	pU-32-8	-							\vdash	
33	0		205-893-2	193-39-5	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	\vdash	dibenz[a,h]anthrac	cene	+				<i></i>		0.00000.1.0/	\square		
34		601-041-00-2	200-181-8	53-70-3	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25		benzo[ghi]perylene				-0.01			.0.04		-0.000004.9/		
35		205-883-8 191-24-2				<0.04	під/кд		<0.04	під/кд	<0.000004 %		
36		polychlorobipheny	ls; PCB			<0.035	ma/ka		<0.035	ma/ka	<0.000035 %		
Ľ		602-039-00-4 215-648-1 1336-36-3										Ц	
37	4	barium { 🏾 barium	<mark>n oxide</mark> }			91	mg/kg	1.117	83.415	mg/kg	0.00834 %	\checkmark	
			215-127-9	1304-28-5								Ц	
38	0	coronene	005 004 7	404.07.4		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[i]fluoranthe	205-881-7 ne	191-07-1	+							\vdash	
39		601-035-00-X	205-910-3	205-82-3	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0621 %	Γ	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

≪
<LOD

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Appendix A: Classifier defined and non EU CLP determinands

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

Iluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Report created by Barry Sexton on 21 Mar 2024

[•] pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied. Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s): 29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

[•] barium oxide (EC Number: 215-127-9, CAS Number: 1304-28-5)

Description/Comments: Data from ECHA's C&L Inventory Database, Sigma Aldrich SDS dated 6/2/20 Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/88825 Data source date: 02 Apr 2020 Hazard Statements: Acute Tox. 3; H301, Skin Corr. 1B; H314, Eve Dam. 1; H318, Acute Tox. 1; H332

^o coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic. Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case CLP species based on hazard statements/molecular weight and low solubility. Industrial sources include: flame retardants in electrical apparatus, textiles and coatings (edit as required)

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

Report created by Barry Sexton on 21 Mar 2024

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

barium {barium oxide}

Cr VI not detected

Appendix C: Version

HazWasteOnline Classification Engine: EU WM3 1st Edition v1.1.NI using the EU LoW HazWasteOnline Classification Engine Version: 2024.80.5988.11077 (20 Mar 2024) HazWasteOnline Database: 2024.80.5988.11077 (20 Mar 2024)

This classification utilises the following guidance and legislation: WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 17th ATP - Regulation (EU) 2021/849 of 11 March 2021 18th ATP - Regulation (EU) 2022/692 of 16 February 2022 POPs Amendment 2022 - Regulation (EU) 2022/2400 of 23 November 2022 19th ATP - Regulation (EU) 2023/1434 of 25 April 2023 20th ATP - Regulation (EU) 2023/1435 of 2 May 2023

APPENDIX 7 – Waste Category Summary Data

Waste Categorisation Summary Table

Waste Categorisation Summary Table																				
Finglas Church															1					
Sample ID	1P-01	100	1P-02	100	1P-03	1P-03	BH-01	BH-02	BH-02	BH-03	BH-04	BH-04	BH-05	BH-06	1					
Sample Depth (m)	0.50	1.00	0.50	1.00	0.50	2.00	1.00	1.00	2.00	1.00	1.00	2.00	0.50	1.00	1		GROUND INV	STIGATIONS IPELAND		
	Made Ground <2%	0.1	Made Ground <2%	Made Ground <2%	Made Ground <2%	01	0.00	01	0.1	0	0.000	0.00	Made Ground <2%	01			Geotechn	ical & Environmental		
Material Description	Anthropogenic	ciay	Anthropogenic	Anthropogenic	Anthropogenic	Clay	Clay	Clay	Ciay	Clay	Clay	Clay	Anthropogenic	Clay						
	Material		Material	Material	Material								Material		-					
Sample Date	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023						
LoW Code	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	Domain 2	Category B1	Category B2	Hazardous		Units
Waste Category	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	Domain 2	(1.5 limit)	Criteria	Criteria	Criteria		
Metals																				
Antimony	2	2	1	3	3	2	<1	1	1	3	2	2	3	2		-	-	HazWaste	<1	mg/kg
Arsenic	16.5	12.8	8.3	17.5	17.3	12.3	5.6	10.6	8.6	11.2	13.4	9.9	15.1	13.6	37.35	-		HazWaste	<0.5	mg/kg
Barium	135	92	61	140	139	45	39	52	53	310	69	51	124	91	-		-	HazWaste	<1	mg/kg
Cadmium	2.7	2.3	0.7	2.2	2.8	1.9	1.2	1.9	1.5	2.4	2.4	2.1	1.9	1.8	4.92	-	-	HazWaste	<0.1	mg/kg
Chromium	31.3	17.4	32	30.2	26.6	15.3	12.5	15.5	19.5	20.2	18.2	17.3	22.8	42	75.45		-	HazWaste	<0.5	mg/kg
Copper	52	37	24	49	52	27	13	28	21	30	41	27	61	35	96.25	-	-	HazWaste	<1	mg/kg
Lead	91	19	92	241	113	20	13	15	15	18	18	16	133	23	129.15	-	-	HazWaste	<5	mg/kg
Mercury	0.2	<0.1	<0.1	0.3	0.2	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	0.4	<0.1	0.54	-	-	HazWaste	<0.1	mg/kg
Molybdehum	3.4	3.5	1	4	4.6	3.8	1.0	2.1	2.9	7.8	4.4	3.1	3.3	3	-			Hazwaste	<0.1	mg/kg
Nickel	49.3	-1	10.1	2	2	30.5	14.5	30.1	34.0	40.2	1	35.5	42.1	1	52.05		-	HazWaste	<0.7	mg/kg
Zine	103	89	59	124	135	75	49	66	62	76	95	75	114	98	295.5		-	HazWaste	<1	mg/kg
Heravalent Chromium	=0.3	<0.3	=0.3	<0.3	<0.3	-0.3	403	≤0.3	<0.3	<0.3	<0.3	=0.3	<0.3	=0.3	-			HarlWaste	<0.3	marka
Treatment of offernam																-		THEFTERSTE	-0.0	mgrag
pH (solid sample)	7.67	8.68	11.35	8.76	8.57	8.74	9.45	8.44	8.24	8.65	8.54	8.64	8.35	8.4	-	-	-	HazWaste	<0.01	pH units
alkali reserve	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	<0.000	gNaOH/100g
Asbestos	1	1																		
Asbestos (Dry Weight)	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD		-	0.1	<0.001	%
Asbestos (Moisture Corrected Weight)	+	+	· ·	÷				-	-		· ·			-		· ·		-	-	%
ACM Detected				-	-		· ·	· ·		· ·		· ·				· ·		-	Presence	Presence
					1															<u> </u>
PAHs	-0.01	-0.04	-0.01	-0.04	-0.04	-0.04	-0.04	-0.04	-0.01	-0.04	-0.01	-0.04	0.05	-0.04		1		HealMostr	-0.04	maka
Accessibility force	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	<0.04	<u> </u>	· ·		Hazwaste	<0.04	mg/kg
Adenaphthysee	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			-	HazWaste	<0.03	mg/kg
Elizare	<0.05	<0.04	<0.04	<0.04	<0.04	<0.05	<0.03	<0.05	<0.05	<0.00	<0.04	<0.03	<0.04	<0.05				HarlWaste	<0.03	marka
Phenanthrene	0.15	<0.03	0.08	<0.03	0.18	<0.03	<0.03	<0.03	0.06	<0.03	<0.03	<0.03	0.17	<0.03	-			HazWaste	<0.03	ma/ka
Anthracene	<0.04	< 0.04	<0.04	< 0.04	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	-		-	HazWaste	< 0.04	ma/ka
Fluoranthene	0.14	< 0.03	0.1	< 0.03	0.43	<0.03	<0.03	<0.03	<0.03	< 0.03	< 0.03	< 0.03	0.31	<0.03	-	-	-	HazWaste	< 0.03	mg/kg
Pyrene	0.13	< 0.03	0.09	< 0.03	0.35	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	< 0.03	0.27	<0.03	-	-	-	HazWaste	< 0.03	mg/kg
Benzo(a)anthracene	0.1	< 0.06	0.08	<0.06	0.26	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.19	<0.06		-	-	HazWaste	< 0.06	mg/kg
Chrysene	0.1	<0.02	0.06	<0.02	0.28	<0.02	<0.02	<0.02	0.05	<0.02	<0.02	<0.02	0.2	<0.02	-	-	-	HazWaste	< 0.02	mg/kg
Benzo(bk)fluoranthene	0.13	<0.07	0.09	<0.07	0.44	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	0.3	<0.07	-	-	-	HazWaste	<0.07	mg/kg
Benzo(a)pyrene	0.08	<0.04	0.04	< 0.04	0.27	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.19	<0.04	-		-	HazWaste	< 0.04	mg/kg
Indeno(123cd)pyrene	<0.04	<0.04	<0.04	<0.04	0.17	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.11	<0.04	-		-	HazWaste	< 0.04	mg/kg
Dibenzo(ah)anthracene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	-	-	-	HazWaste	< 0.04	mg/kg
Benzo(ghi)perylene	<0.04	<0.04	<0.04	<0.04	0.16	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.11	<0.04	-	-	-	HazWaste	< 0.04	mg/kg
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	-	-	-	HazWaste	< 0.04	mg/kg
PAR 6 Iotal	0.35	<0.22	-0.64	<0.22	1.4/	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	1.02	<0.22	-	-	-	-	<0.22	mg/kg
PAR 17 Total	0.09	<0.04	0.04	<0.05	0.32	<0.05	<0.04	<0.05	<0.05	<0.04	<0.04	<0.05	0.22	<0.04	-	100	100	- HealMonte	<0.04	mg/kg
Benzo(k)/luoranthene	0.04	<0.02	0.03	<0.02	0.12	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.08	<0.02	-			HazWaste	<0.02	ma/ka
Benzo(i)/luoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-		-	HazWaste	<1	ma/ka
0																				
Hydrocarbons																				
TPH (C5-40)	<52	<52	<52	<52	<52	<52	<52	443	<52	<52	<52	<52	<52	<52		-	-	HazWaste	<52	mg/kg
MTBE	4	<5	45	45	<5	45	<5	6	45	<5	45	¢	<5	<5	-	-	-	HazWaste	<5	ug/kg
Benzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	-		-	HazWaste	<5	ug/kg
Toluene	<5	<5	-6	<6	<5	<5	<5	-6	<5	<5	-6	-6	<5	<5		· ·		HazWaste	<5	ug/kg
Ethylbenzene	- 6	<5	-6	-6	<5	<5	<5	-6	<5	<5	-6	<6	<5	<5	-	· ·		HazWaste	<5	ug/kg
m/p-Xylene	15	<	0	4	<5	<0 -5	<5	6	<0 	<0	0	4	<5	<0 .5		· ·		HazWaste	<b< td=""><td>ug/kg</td></b<>	ug/kg
0-Xytene Total 7 BCBs	10	<0	0	<0 _25	<0	(0) _05	<0			<0 _25	0	<0 25	<0	<0 _05	-	1.000	1.000	HazWaste HazMosto	<0 _26	ug/kg
Total / PUBS	<30	<30	<35	<30	<30	*30	<30	<30	<30	<30	<35	<30	<30	*30	DU	1,000	1,000	riaz viraste	-30	ug/Kg
WAC** Solid Sample Summary	1	1			1			1								1				
Total Organic Carbon *	3.75	0.47	0.32	1.87	1.39	0.46	0.28	0.27	0.48	0.69	0.41	0.37	2.59	0.75	3	3	6	-	< 0.02	%
Sum of BTEX	0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.05	6	6	-	<0.025	mg/kg
Sum of 7 PCBs	<0.035	<0.035	<0.035	<0.035	<0.035	< 0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	0.05	1	1		< 0.035	mg/kg
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	321	<30	<30	<30	<30	<30	<30	50	500	500	-	<30	mg/kg
PAH Sum of 6	0.35	<0.22	0.23	<0.22	1.47	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	1.02	<0.22	-	-	-	-	<0.22	mg/kg
PAH Sum of 17	0.83	<0.64	<0.64	<0.64	2.60	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	1.90	<0.64	1	100	100	-	<0.64	mg/kg
					1															<u> </u>
WAC** Leachate Data	.0 00r	-0.005	-0.000	-0 00F	-0.007	-0.005	-0.00r	_0r	-0.005	-0.005	-0.000	-0 00r	-0.005	-0.000					0	
Arsenic	<0.025	<0.025	<0.025 0.26	<0.025	<0.025 0.07	<0.025	<0.025	<u.u25< td=""><td><0.025</td><td><0.025</td><td><u.u25< td=""><td><0.025</td><td><0.025</td><td><0.025</td><td><u> </u></td><td>0.5</td><td>1.5</td><td>-</td><td><0.025</td><td>mg/kg</td></u.u25<></td></u.u25<>	<0.025	<0.025	<u.u25< td=""><td><0.025</td><td><0.025</td><td><0.025</td><td><u> </u></td><td>0.5</td><td>1.5</td><td>-</td><td><0.025</td><td>mg/kg</td></u.u25<>	<0.025	<0.025	<0.025	<u> </u>	0.5	1.5	-	<0.025	mg/kg
Cadmin	0.29 <0.005	0.04 c0.005	v.20 ≼0.005	0.07 <0.005	10.07	<0.005	<0.03 <0.005	0.10 d0.005	0.20 ≤0.005	<0.03 c0.005	0.05 c0.005	0.04 ≰0.005	0.07 ≤0.005	v.15 ≼0.005	<u> </u>	20	20		<0.03	mg/kg
Chromium	<0.005	<0.005	0.236	0.084	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		0.04	0.04		<0.005	mg/kg
Conner	*0.07	<0.07	<0.07	≤0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	-	2	2		<0.07	ma/kg
Mercury	<0.07	<0.07	<0,0001	<0.0001	<0.0001	<0.001	<0.0001	<0.001	<0.001	<0.001	<0.001	<0.0001	<0.001	<0.001		0.01	0,01	-	<0.001	mg/kg
Molybdenum	0.08	0.06	<0.02	0.12	0.07	0.10	0.23	0.15	0.21	0.08	0.25	0.18	0.07	0.14	-	0.5	1.5	-	<0.02	mg/ka
Nickel	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	0.02	-	0.4	0.4	-	<0.02	ma/ka
Lead	<0.05	<0.05	<0.05	<0.05	<0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		0.5	0.5	-	<0.05	mg/ka
Antimony	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	0.06	0.18	-	<0.02	mg/kg
Selenium	<0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	<0.03	0.33	<0.03	< 0.03	< 0.03	< 0.03	<0.03	-	0.1	0.3	-	< 0.03	mg/kg
Zinc	<0.03	0.03	<0.03	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	-	4	4		< 0.03	mg/kg
Total Dissolved Solids	1309	490	1400	830	740	440	470	810	1070	450	560	460	810	880	-	4000	12,000	-	<350	mg/kg
Dissolved Organic Carbon	40	<20	40	<20	<20	<20	<20	30	<20	<20	<20	<20	30	20		500	500	-	<20	mg/kg
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	-	1	1	-	<0.1	mg/kg
Fluoride	<3	3	<3	6	4	<3	<3	3	<3	<3	<3	<3	5	<3	-	10	10	-	<3	mg/kg
Suphate as SO4	18/	19	197	59	<5	6	65	51	307	<0	21	20	6	14		1000	3,000		<0.5	mg/kg
Chloride	3/	10	o	<3	<3	<3	4	D	90	5	8	я	0	0		800	2,400	-	<3	mg/kg

Choride 37 10 v
 NAD- no asbestos detected
 *- Integrated Materials Solutions LandIII, Hollywood Great, Nag's Head, The Naul, Co. Dublin
 *- limits as specified in Council Decision 2003/3/EC
ORS

Appendix D: WAC Tested Areas And Classification Results

ENGINEERING A SUSTAINABLE FUTURE

and expertise by visiting our brand-new

website.

Find Us Nationwide, on LinkedIn or on Youtube in 🕨

) Block A,

Marlinstown Business Park, Mullingar, Co. Westmeath, Ireland, N91 W5NN

Office 2, Donegal Town, Enterprise Centre, Lurganboy, Donegal Town, Co. Donegal, Ireland, F94 KT35 Suite: G04, Iconic Offices, Harmony Row, Dublin 2, Co. Dublin, Ireland, D02 H270

) Office 4, Spencer House, High Road, Letterkenny, Co. Donegal, Ireland, F92 PX8N Level One, Block B,
Galway Technology Park,
Parkmore, Co. Galway,
Ireland, H91 A2WD

NSQ2,
Navigation Square,
Albert Quay, Cork
Ireland, T12 W351