St Andrews Court

Lifecycle Report

Volumetric Bundle 3

Lifecycle Report September 2024 Client Dublin City Council

Contents

Section 1 : Introduction

Page

7 1.01 Report Structure & Project Description

Section 2 : Assessment of Long Term Running & Maintenance Costs

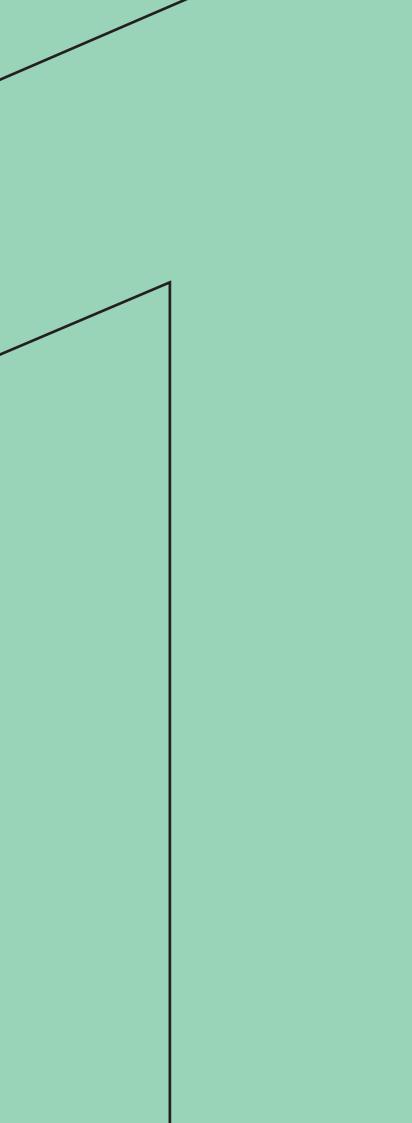
 Page

 10
 2.01 Long Term Running Costs

 11
 2.02 Property Management of Common Areas

Section 3: Measures to Manage and Reduce Costs

Page


- 143.01 Treatment, Materials and Finishes153.02 Landscaping163.03 Waste Management173.04 Human Health and Well-being183.05 Residential Management193.06 Transport203.07 Energy and Carbon Emissions
- Section 4: Appendices

_			
D	2	~	0
	u	ч	c

26 Phases of the Life Cycle - BS7543; 2015

Section 1: Introduction

1.0 Introduction 1.01 Report Structure & Project Description

This report relates to the proposed development for Dublin City Council (DCC) at St. Andrew's Court, on the corner of Fenian Street and Sandwith Street.

Statutory Guidance: DSfNA

Sections 6.11 to 6.14 of the Sustainable Urban Housing: Design Standards for New Apartments (DSfNA) provide guidance on the 'Operation and Management of Apartment Developments.' Section 6.13 specifically states, 'planning applications for apartment developments shall include a building lifecycle report which in turn includes an assessment of long term running and maintenance costs as they would apply on a per residential unit basis at the time of application, as well as demonstrating what measures have been specifically considered by the proposer to effectively manage and reduce costs for the benefit of residents.'

Statutory Guidance: Development Plan

Furthermore, the Dublin City Development Plan 2022-2028 states, 'All residential developments should include a building lifecycle report that sets out the long term management and maintenance strategy of a scheme. The lifecycle report should include an assessment of the materials and finishes proposed, the ongoing management strategy, the protocol for maintenance and repair, the long term maintenance costs for residents and the specific measures that have been taken to effectively manage and reduce the costs for the benefit of residents.'

Report Structure

Accordingly, the report aims to address the requirements specified in section 6.13 of the DSfNA and the Dublin City Development Plan 2022-2028. It is structured in two sections:

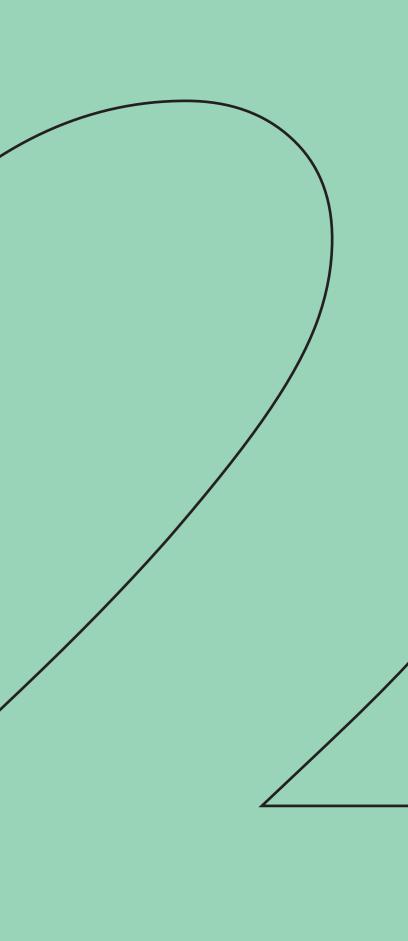
Section 2 provides a comprehensive assessment of the long-term running and maintenance costs associated with the project at the time of the application.

Section 3 outlines the measures and strategies that will be implemented to manage and reduce these costs for the benefit of the residents.

The n

The proposal is for construction of a new development consisting of 33 no. residential units, all with private amenity space in two interconnected blocks arranged around a communal courtyard. These new homes will be for social housing and will be managed by Dublin City Council. Bike parking, bin store and plant rooms are also provided at ground floor level. The building ranges in height from four to seven stories, with a communal roof garden located on the four storey block. To facilitate the proposed development the scheme will require demolition of an existing three storey building which is currently vacant.

A DSfNA 2022


Project Description

▲ Development Plan 2022-2028

Section 2: Assessment of Long Term Running & Maintenance Costs

2.0 Assessment of Long Term Running & Maintenance Costs 2.01 Long Term Running Costs

From the outset of the project, the Design Team have taken care to consider the long-term running costs for residents. As such, the following measures have been taken to minimise unnecessarily high running and maintenance costs running costs for all residents:

Exhaust Air Heat Pumps

All homes benefit from an Exhaust Air Heat Pump (EAHP). EAHPs recover heat from the exhaust air of a building, which would otherwise be wasted, and use it to heat fresh incoming air. This recycling of energy significantly improves overall energy efficiency. By reusing heat from exhaust air, EAHPs reduce the need for additional energy for heating, thus leading to lower utility bills.

Furthermore, as EAHPs often have fewer components than separate heating and ventilation systems, they can be easier and less expensive to maintain.

Floor to Ceiling Fenestration

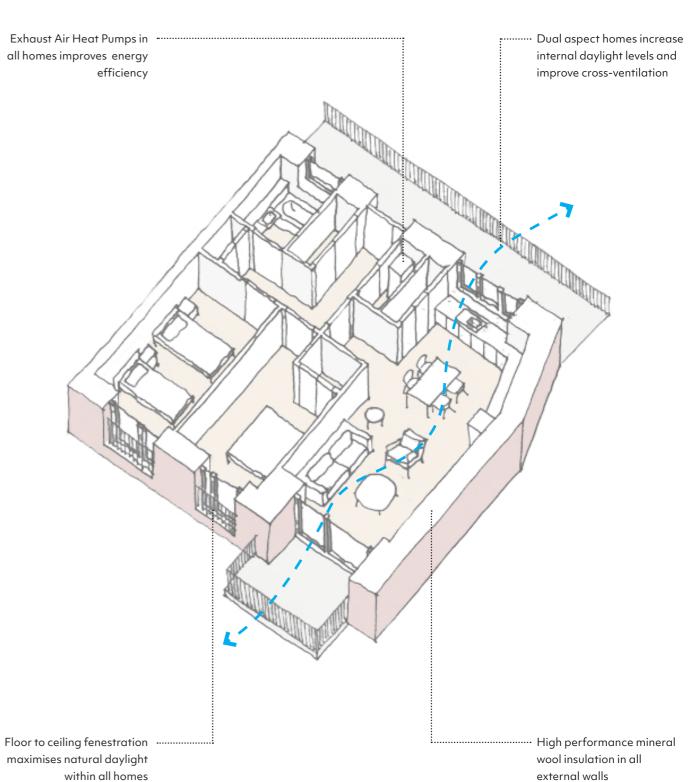
Floor to ceiling fenestration is utilised in all apartments. These large windows allow more natural light to enter each apartment, thus reducing the need for artificial lighting during the day. This can significantly lower electricity usage for lighting.

During colder months, floor-to-ceiling windows allow increased levels of solar energy to be harnessed which naturally increases the internal temperature of each apartment. This in turn, reduces the need for heating and its associated costs.

Dual Aspect Homes

All apartment layouts within the scheme are dual aspect, again increasing the levels of natural light within apartments. This in turn, further reduces artifical lighting and its associated costs.

With windows on multiple facades, dual aspect homes can achieve better cross-ventilation. This natural airflow helps cool the home during warmer months, reducing the reliance on air conditioning and lowering energy costs.


During colder months, dual aspect can help warm homes naturally by capturing sunlight from different angles thus reducing heating costs further.

Well Insulated Homes

High performing mineral wool insulation within the external envelope of the building ensures heat is retained during winter and kept out during summer. This mitigates against the reliance on constant heating and cooling systems which reduces energy consumption and associated utility costs.

External wall build-ups for all homes will be designed to achieve a U-Value of 0.13 W/m2K which is below the maximal value of 0.18 W/m2K as indicated in Table 1 of Technical Guidance Document L.

all homes improves energy efficiency

maximises natural daylight

2.0 Assessment of Long Term Running & Maintenance Costs 2.02 Property Management of Common Areas

Common Areas

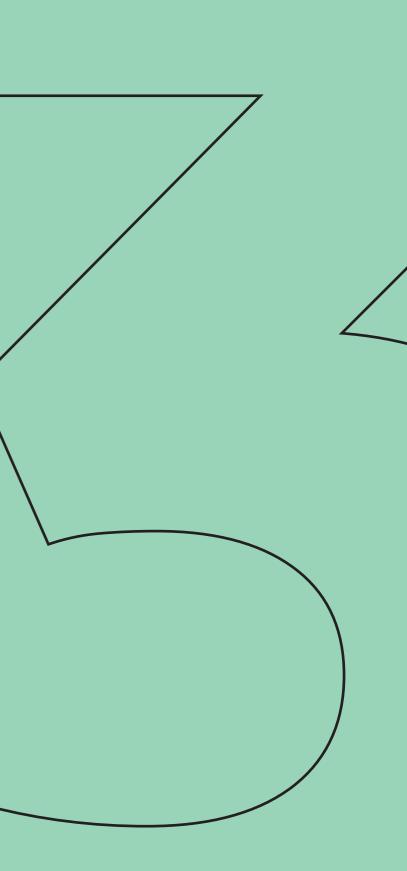
The day to day upkeep of the following common areas will be overseen by Dublin City Council's maintenance team:

- Ground floor courtyard,
- Level 04 roof garden,
- Street planters,
- Communal stair serving upper levels,
- Communal passenger lifts serving upper levels,
- External access decks to apartments at upper levels (Level 01 Level 06)
- Bin Store
- Bike Store

Future Refurbishment & Maintenance

Any future refurbishment, improvement or maintenance of a non-recurring nature will be carried out, and funded by Dublin City Council.

• Communal Courtyard located at ground floor


Communal Roof Garden located at L04

▲ Communal Residents' Garden at ground floor

Section 3: Measures to Manage and Reduce Costs

3.0 Measures to Manage and Reduce Costs

3.01 Treatment, Materials & Finishes

Measure	Description	Benefit
General	Consideration is given to the requirements of the Building	Long-term durability and
	Regulations and includes reference to BS 7543:2015, 'Guide	drivers of the Design, sinc
	to Durability of Buildings and Building elements, Products and	Specification of the works
	Components', which provides guidance on the durability, design life	
	and predicted service life of buildings and their parts.	
	All common areas of the scheme and the durability and	
	performance of the materials comprising them are designed and	
	specified in accordance with Figure 4; Phases of the Life Cycle of	
	BS7543; 2015, including:	
	- Annex A Climatic Agents affecting Durability	
	- Annex B Guidance on materials and durability	
	- Annex C Examples of UK material or component failures and	
	- Annex D Design Life Data sheets.	
General	The primary materials are: brickwork and render, with	Proposed materials intend
	complementary use of spandrel panels, galvanised and painted	staining and require minin
	metal railings.	
General	Pitched roofs are proposed to be standing seam zinc roofs. Zinc is a	Zero to minimal maintena
	self-weathering material with no need for maintenance. Installation	
	of a fall arrest system is not necessary.	
Building - Natural / DayLight	Daylighting to circulation areas where possible. Circulation areas	Avoids the requirement fo
	are open spaces, well lit and ventilated.	
Building - Natural / DayLight	Hard paving and low shrubbery are selected, with robust trees	Robust materials selected
	within the residential courtyard.	
Building - Windows	Factory finished aluclad windows and doors will be installed	No maintenance required
	throughout the development.	
Building - Window Cleaning	Balcony doors are cleaned from the balcony area and windows open	Reduces maintenance cos
	fully inwards, allowing residents to clean all fenestration themselves,	cleaning contractors.
	with safety.	

nd maintenance of materials are integral nce the early stages, and the proposed rks will reflect the same principles.

end to ensure long term durability, counteract nimal ongoing maintenance.

nance required.

for continuous artificial lighting.

ed, requiring low/minimal maintenance.

ed.

cost and reliance on 3rd party maintenance &

3.0 Measures to Manage and Reduce Costs 3.02 Landscaping

Measure	Description	Benefit		
Materials - Hard Landscape	Robust, locally sourced materials, with high slip resistance to be used for paving. Anti-slip screed proposed for walkway areas. Durable and robust furniture and equipment (e.g. play, fencing etc.) to be used throughout.	Minimal maintenance / re- upkeep as a direct result o installed to high standards		
Materials - Soft Landscape	The planting has been carefully selected to suit the north-facing aspect of the courtyard. Tree species are selected for longevity, suitability to local soil conditions and microclimate, biodiversity (native species) and where required suitability to close proximity to residential buildings. The low planting is conceived as subtle layering of greens within the open spaces.	Reduction in the frequency required for planted areas		
Materials - Fittings	All external metal fittings are proposed to be galvanised and/ or powder coated to minimise painting requirements.	Minimal maintenance / re upkeep as a direct result a installed to high standards		
Green Roofs	High percentage of green roofs achieved, as per the New Dublin Development Plan 2022-2028. Robust and proven detailing is proposed.	Increased biodiversity of t		
Site Layout	The main courtyard creates a visual break within the built environment, a moment of openness and greening between streets and buildings within a densely-built central area of Dublin.	Increased biodiversity of t		
Maintenance & Management	Planting (trees and lower planting) has been judiciously selected and used, with maintenance and management requirements in mind. Avoidance of complex planting arrangements has been favoured.	Reduced management an		
Sustainability & Biodiversity	North-facing aspect of the courtyard has been considered, with selected trees suitable to thrive in a north aspect. Other, lower planting species, have been selected based on their intended use and compatibility with the available space. Perimeter planting (courtyard and main street) is greening the site boundary throughout. Sedum roofs, combined with the selected plant species at ground levels, further enhance biodiversiy.	Reduces maintenance cos cleaning contractors.		

reduced frequency of maintenance and t of the use of robust materials, detailed and rds.

ncy / intensity of maintenance and upkeep eas.

reduced frequency of maintenance and t of the use of robust materials, detailed and rds.

the development.

the development.

and upkeep costs.

ost and reliance on 3rd party maintenance &

3.0 Measures to Manage and Reduce Costs 3.03 Waste Management

Measure	Description	Benefit
Construction and Demolition Waste Management Plan	Details regarding a Construction and Demolition Waste	The Construction and Der
		illustrates how the project
Operational Waste Management Plan	Details regarding operational waste management are set out in	This report illustrates how
	Construction and Environmental Management Plan preparted by	
	Horgan Lynch Consulting Engineers	
Storage of Non- Recyclable Waste and Recyclable Household	A communal bin store is located on the ground floor, offering ample	The communal bin store is
Waste	space to accommodate an adequate number of bins based on the	reducing the likelihood of
	building's maximum occupancy to be collected on a weekly basis.	
Domestic Waste Management Strategy	Separate bins provided for general waste, mixed recyclables, glass,	Helps reduce potential cro
	and organic waste.	charges and is in full comp
		Plan 2022-2028.
Securely Restricted Bin Store	Residents access the bin store via the courtyard, which is not	This reduces the likelihood
	open to the public. Street access is restricted to the DCC Waste	residents or being targete
	Management team only.	
Clear Signage	Clearly signed waste storage rooms with obvious distinctions	This helps reduce potentic
	between bins for general waste, mixed recyclable, glass and organic	and overall waste charges
	waste.	
Composting	Organic waste bins intended to be provided in waste storage areas.	Helps reduce potential wa
		and is in full compliance w
		2022-2028.

Demolition Waste Management Plan act adheres to best practices.

ow the project adheres to best practice

e is conveniently accessible to all residents, of littering.

cross-contamination of waste, general waste mpliance with the New Dublin Development

ood of the bins being used by neighboring eted for fly-tipping by the public.

tial littering, cross-contamination of waste ges.

waste charges with the New Dublin Development Plan

3.0 Measures to Manage and Reduce Costs 3.04 Human Health & Well-being

Measure	Description	Benefit
Natural Daylight/Sunlight	The design and layout aim to maximize natural daylight in every	Reduces reliance on artific
	dwelling. Floor-to-ceiling fenestration is incorporated into all	costs.
	main facades to provide each home with abundant natural light.	
	Additionally, sufficient separation distances from neighboring	
	approved developments have been carefully considered.	
Accessibility	All homes comply with regulations and requirements set out in	Minimises the need for ad
	Technical Guidance Documents Part M and Part K. All communal	arise from future changes
	circulation spaces comply with guidance set out in 'Universal Design	
	Guidelines For Homes in Ireland,' Section 2, 'Entering and Moving	
	Around'	
Universal Design Compliant Homes	The scheme provides 3 no. UD+ compliant apartments at ground	Provides homes which mee
	floor with level access from the street and to the communal	their age, size, ability or di
	courtyard. A further 5no. apartments are UD compliant. Each of	meet changing needs of re
	these homes have been designed in ine with guidance set out in	living in their own homes o
	'Universal Design Guidelines For Homes in Ireland.'	become disabled.
Security	Passive surveillance has been a key consideration from the early	Enhances safety for reside
	design stages. Upper-level external access decks overlook the	secuirty management cos
	ground floor communal courtyard. Street-level apartments have	
	direct street access, enhancing active frontage. Access to back-of-	
	house plant spaces is restricted to authorized personnel only.	
	Additional security measures will include:	
	- CCTV monitoring;	
	- Fob access to entrance gates, ensuring access to residents only;	
	- Open views towards all circulation areas, avoiding potential 'blind-	
	spots' or hiding places;	
	- Secure bike storage area, accessible to residents only;	
	- Appropriately lit external spaces	
Communal Amenity	A more attractive public streetscape is achieved through active	Communal amenity space
	frontages and street-level planting. A well-lit external communal	fostering a strong sense of
	courtyard, accessible to all residents, is located at ground floor with	with neighbours. These gr
	an abundance of greenery, trees and a play space for children.	enhances social engagem
	Another communal amentiy space for residents is provided at level	
	04 which offers views towards the city.	

fical lighting and its associated running

adjustments and the related costs that might es in residents' circumstances.

neet the needs of occupants regardless of disability. UD/UD+ compliant homes also f residents over time so they can continue s and communities as they get older or if they

dents and visitors and reduces potential osts

ices provide increased opportunities for a of community through regular interaction green areas offer a healthy environment that ement and overall well-being for residents.

3.0 Measures to Manage and Reduce Costs 3.05 Residential Management

Measure	Description	Benefit		
Home User Guide	Upon moving into their home, all residents will recieve a home user	Residents are as informed		
	guide including:	addressed in a timely and		
	A User Information Manual			
	This will provide important information for the resident about			
	their new home. It will typically include information in relation to			
	connecting with utilities and communication providers, contact			
	details for all relevant suppliers and user Instructions for appliances			
	and devices in the property such as EAHPs.			
	A Residents Pack prepared by DCC			
	This will provide information and contact details for mainteance			
	personnel, the agent, emergency contact information, transport			
	links in the area and a clear set of rules and regulations.			

ed as possible so that any issues can be nd efficient manner.

3.0 Measures to Manage and Reduce Costs3.06 Transport

Measure	Description	Benefit		
Access to Public Transport	Located in the core of the historic city within 5 minutes' walk of	The proximity, frequency of		
	Merrion Square and Trinity College, the site is well served by public	of public transport enhance		
	transport.	residential development.		
	In detail, Dublin Pearse is 350m away and multiple bus stops can be			
	found within a 400m distance. Luas stops Dawson and Trinity are			
	both within a 15min walking distance.			
Bicycle storage	There is provision of 59 secure bicycle storage spaces, within an	This provision is in line with		
	enclosed bike store accessible from the residential courtyard.	2022-2028 and promotes		
		associated with decreased		
		wellbeing.		
Cycling Facilities around the site	On-street bicycle parking is available along the adjacent streets in	The central location prom		
	the vicinity of the site for visitors to use.	directly associated with de		
	In detail, there is a Dublin Bike docking station directly across the	and wellbeing.		
	development, on Fenian Street (station no63). Furthermore, two			
	additional Dublin Bike docking stations are located within a 5min			
	radius from the main entrance of St Andrews Court (stations no 25			
	and 57).			
	Furthermore, there are 14 free, public locations furnished with			
	Sheffield stands within a 5min walking radius - one of which is			
	located directly to the left of the development, along Fenian Street			
	(station ID: 16519).			

cy and range of destinations served by means ance the accessibility levels of the proposed

vith the New Dublin Development Plan res the uptake of cycling, an activity directly sed emissions and increased health and

omotes the uptake of cycling, an activity decreased emissions and increased health

Measure	Description	Benefit		
BER Certificates	A Building Energy Rating (BER) certificate will be supplied for each	Higher BER ratings reduc		
	unit in the proposed development, which provides detail of the	Target ratings for this pro		
	energy performance of the dwellings.			
	A BER is calculated assessing energy use for space and hot water			
	heating, ventilation, and lighting and occupancy. It is proposed to			
	target an A2 rating for the apartments as a minimum, which will			
	equate to the following emissions:			
	A2: 25-50 kwh/m2/yr with CO2 emissions circa 10kgCO2/m2 year			
	This is in line with the brieg requirement to achieve NZEB			
	compliance and HPi certified status.			
Building Fabric Efficiency - U-values	Thermal transmittance, also known as U-value, is the rate of	Lower energy consumptic		
	transfer of heat through a structure (which can be a single material	the high performance of t		
	or a composite), divided by the difference in temperature across	gains are minimised throu		
	that structure. The units of measurement are W/m²K. The better-			
	insulated a structure is, the lower the U-value will be.			
	The proposed u-values are mandated by two driving factors:			
	- Compliance to Building Regulation TGD Part L for Dwellings.			
	- Achieving NZEB, as per brief requirement. The brief sets outs			
	higher efficiencies that TGD.			
	See below the U-values set out for the building.			
	- External Walls 0.13W/m²K			
	- Roofs 0.13W/m²K			
	- Ground floor 0.13W/m²K			
	- Windows 1.2W/m²K, G Value: 0.6			
	- External doors 0.7W/m²K			
	The proposed u-values result in a highly efficient building fabric that			
	minimises the plantroom area required. Reduction in plantrom areas	;		
	have further benefits, such as reduced construction, installation,			
	maintenance costs and a reduced building footprint within the			
	national energy grid.			

uce energy consumption and running costs. roject are BER A2.

tion and carbon emissions projected due to of the building fabric. Heat losses and heat oughout the year.

Measure	Description	Benefit		
Building Fabric Efficiency - Thermal bridging	Thermal bridges are areas where heat can escape the building due	Avoidance of excessive he		
	to lack of insulation continuity - junctions of the building fabric are	consumption and carbon e		
	more prone to heat losses.			
	Limiting thermal bridging shall be achieved through careful design			
	and detailing and shall be in line with Building Regulation Technical			
	Guidance Documents Part L for Dwellings, section 1.5.			
	Building junctions will either be designed in line with Acceptable			
	Construction Details or be tested by an NSAI accredited thermal			
	modeller, if deviating from the ACDs.			
	Further on-site inspection and quality control will be described in			
	the works requirements to ensure continuity of insulation and to limit			
	local thermal bridging at junctions between construction elements			
	and other locations e.g. around windows, door and other wall			
	openings, party walls etc.			
Air tightness	The proposed air permeability goals are in line with Building	Avoidance of excessive he		
	Regulation Technical Guidance Documents Part L for Dwellings,	lower energy consumption		
	setting the performance at a minimum of 3m³/(h.m²) at 50 Pa.			
	In order to ensure that a sufficient level of air tightness is			
	achieved, air permeability testing will be specified in the General			
	Requirements, with the responsibility being placed on the main			
	contractor to carry out testing and achieve the targets identified in			
	the tender documents. Testing is to be carried out by an independent			
	third party (National Standards Authority of Ireland or equivalent			
	certification body).			
Lighting Efficiency	High efficiency LED lighting is used to reduce the heat gains from	Reduction in the consump		
	lighting with optimised lighting control in communal areas.	carbon emissions and ope		
Water Consumption	Hot water taps throughout the development are to be fitted with	Efficient water usage.		
	flow restrictors to 6L/s, as per DHLGH Employer's Requirements for	Reduction in energy consu		
	Detail Design of Quality Housing 2020.	hot water provision.		

heat losses at junctions - lower energy n emission.

heat losses through the building fabric on and carbon emission.

nption of electricity and the associated perating costs.

sumption / heat pump operational cost for

Measure	Description	Benefit		
Air Source Heat Pump (ASHP) per Apartment	With the development identified as being outside a district heat	Lowest life cycle cost achie		
	network area with no immediate plans for a future heat network	maintenance / replaceme		
	currently existing, Air Source Heat Pump (ASHP) based heating			
	solutions were considered for the heating strategy.			
	Heating strategies considered include ASHP high temperature			
	communal heat network with dwelling heat interface units, ASHP			
	ambient temperature communal heat network with dwelling			
	water source heat pumps, dwelling balcony type split ASHP units			
	and dwelling exhaust air heat pumps combined with Mechanical			
	ventilation and heat recovery system.			
	Communal type heat networks were not carried forward due to			
	the project budget constraints. A detailed lifecycle cost analysis			
	was carried out by the energy consultant between the split type			
	ASHP units and Exhaust air heat pumps considering capital costs,			
	operational costs, maintenance & plant replacement costs and			
	resultant CO2 emissions.			
Mechanical ventilation	MVHR units are provided in dwellings for mechanical ventilation.	Reduction in energy consu		
	The units are equipped with full summer bypass function to make			
	use of free cooling during the summer months. MVHR units are	Increase in fresh air flow e		
	provided with a boost mode to enable occupants to increase the			
	ventilation rate if required.			
Passive Ventilation	High levels of passive ventilation have been considered to reduce the	Reduction in energy consu		
	likelihood of the dwellings overheating.			
	The dwelling and window designs are provided to maximise the	Low noise impact for neig		
	openable area available to each occupied space. The dwelling floor	development).		
	plates are relatively shallow and so occupied spaces are provided			
	close to the façade openings. Most dwellings will benefit from cross	Less equipment to be main		
	ventilation.	building.		
		Increase in fresh air flow e		

hieved due to lower capital costs and nent costs.

sumption / carbon emission.

vensures a healthier living environment.

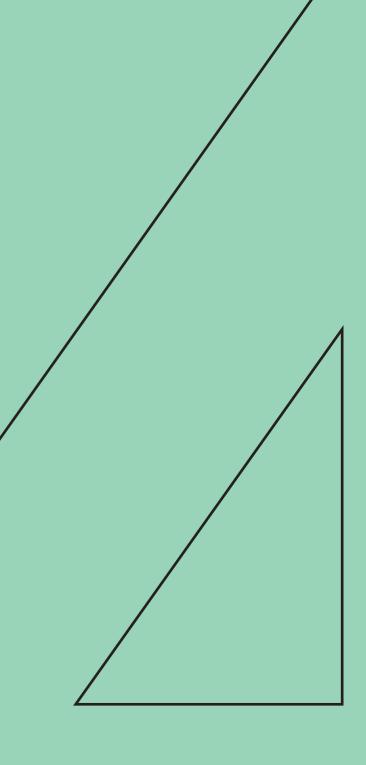
sumption / carbon emission.

ighbouring dwellings (within and around the

aintained / disposed of during the life of the

ensures a healthier living environment.

Measure	Description	Benefit		
PV Panel Provision	PV panels produce high grade electricity. If generated electricity	Reduced fossil fuel consur		
	is used on site, the cost of installation is mitigated as PV eventually			
	pays back itself throughout its lifetime.	Reduced requirement for		
	PVs could play an important role in the project becoming zero	grid.		
	carbon in years to come. The viability of this will depend on the rate			
	of change for; rising cost of electricity, efficiency increase of the			
	panels, and overall cost of the installation continuing to fall. It's a			
	viable measure in order to comply with the objectives set out in the			
	New Dublin Development Plan 2022-2028.			
Overheating Mitigation	Measures to reduce the risk of overheating have been incorporated	Unnecessary heat losses /		
	in the development since the early design stages:	energy consumption / car		
	- Reduce the amount of heat entering the building			
	Balconies and deck access roofs provide external shading to the			
	dwellings below. High efficiency building fabric with low U-values			
	incorporated in design would reduce the heat transfer from outside			
	during summer months. The g-value and glazing ratio of windows			
	has been selected to optimise the amount of solar heat gains and			
	natural daylight levels throughout the year.			
	- Minimise internal heat generation			
	The heat distribution infrastructure and building services within			
	the building are designed to avoid overheating. Standalone ASHPs			
	will have no communal distribution heating pipework compared			
	to a standard communal heat network mitigating overheating risk			
	in communal areas. Where required pipework and ductwork are			
	insulated to exceed the requirements of Building Regulations to			
	reduce heat losses.			


sumption / carbon emissions.

or electricity directly fed from the national

s / gains are kept to a minimum. Reduction in arbon emission.

Section 4: Appendices

1.0 Appendices

1.01 Phases of the Life Cycle - BS7543; 2015

BUILDING ASSESSMENT INFORMATION

			BUILDING I	IFE CYCLE	INFORM	IATION							
В	EFORE USE STA	GE			USE	STAGE	E		A	FTER U	SE STAC	θE	
A0	A1 - 3	A4	1 - 5		В	1 - 7]	[C 1	- 4		
PRE- CONSTRUCTION	PRODUCT STAGE	CONSTRUCTION PROCESS		USE STAGE		EN	ID OF L	IFE STA	GE				
			s	B1	B2	B3	B4	B5			overy		
Land and associated fees/advice	Raw Materials Supply Transport Manufacturing		Construction - Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	ruction	ť	Waste processing for reuse, recovery or and recycling		
0 Land and	y Raw Materials (V-Transport ເວັ Manufacturing	₽ Transport	5 Construc		ational E ational V				Deconstruction	S Transport	က Waste pr တor and re	Q Disposal	

Key

1 Highest severity of consequence of failure

2 Anticipated severity of consequence of failure

3 Lowest severity of consequence of failure

4 Minimum service life

5 Most likely service life

6 Maximum service life

SUPPLEMENTARY INFORMATION BEYOND HE BUILDING LIFE CYCLE

D

Benefits and loads beyond the system boundary

Reuse -Recovery -Recycling potential

Septmber 2024 Lifecycle Report: DCC St Andrews Court